
Received September 28, 2020, accepted October 12, 2020, date of publication October 19, 2020, date of current version October 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031973

Consecutive Context Perceive Generative
Adversarial Networks for Serial
Sections Inpainting
SIQI ZHANG1, LEI WANG1, JIE ZHANG2, LING GU2, XIRAN JIANG 1,
XIAOYUE ZHAI2, XIANZHENG SHA1, AND SHIJIE CHANG 1
1Division of Biomedical Engineering, China Medical University, Shenyang 110122, China
2School of Basic Medicine Science, China Medical University, Shenyang 110122, China

Corresponding author: Shijie Chang (sjchang@cmu.edu.cn)

This work was supported in part by the National Science Fund of Liaoning under Grant 2018-64, in part by the
National Science Fund of China (NSFC) under Grant 31971115, in part by the Big Data Research for Health
Science of China Medical University under Grant Key Project 6, and in part by the Science Research Fund for
Higher Education of Liaoning under Grant LQNK201744.

ABSTRACT Image inpainting is a hot topic in computer vision research and has been successfully applied to
both traditional and digital mediums, such as oil paintings or old photos mending, image or video denoising
and super-resolution. With the introduction of artificial intelligence (AI), a series of algorithms, represented
by semantic inpainting, have been developed and better results were achieved. Medical image inpainting,
as one of themost demanding applications, needs tomeet both the visual effects and strict content correctness.
3D reconstruction of microstructures, based on serial sections, could provide more spatial information and
help us understand the physiology or pathophysiology mechanism in histology study, in which extremely
high-quality continuous images without any defects are required. In this article, we proposed a novel
Consecutive Context Perceive Generative Adversarial Networks (CCPGAN) for serial sections inpainting.
Our method can learn semantic information from its neighboring image, and restore the damaged parts of
serial sectioning images to maximum extent. Validated with 2 sets of serial sectioning images of mouse
kidney, qualitative and quantitative results suggested that our method could robustly restore breakage of any
size and location while achieving near realtime performance.

INDEX TERMS Serial sectioning images, generative adversarial network, consecutive context
perceive GAN.

I. INTRODUCTION
Image inpainting is a process of restoration or reconstruc-
tion of an image in the light of its background information,
in which part is damaged, deteriorated, or missing with the
goal of presenting the image as it is originally created. It is one
of the hot topics in computer vision and artificial intelligence,
and is widely used in our daily life, like conservation and
restoration of old paintings or damaged photographs, elimina-
tion of red-eye, removal of watermarks from pictures, or the
date-print from stamps.

This technique would also help researchers in medical
study who are trying to check the images with defects that
are inevitably produced, e.g., a stack of pathophysiology
images for 3D reconstruction in histology research. 3D recon-
struction of microstructures could provide more spatial infor-
mation comparing traditional sectional images, and help us
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understand the physiology or pathophysiology mechanism
[1]. The histological imaging method of serial sectioning
offers ultra-high-resolution images of a large tissue block
with abundant staining information and nucleic acid / pro-
tein labeling information, which OPT or small animal MRI
could not provide [2]. Therefore, it has been the mainstream
procedure in histology study. As all the operations are done
manually, especially the sectioning procedure, a small num-
ber of tissue sections are inevitably damaged in parts or in
whole. These defects would seriously affect the accuracy of
automatic image segmentation, object recognition and track-
ing of the structure, producing artifacts in virtual section
rendered from the image stack, and even make a failure of
3D reconstruction. Therefore, high-quality serial sectioning
images containing damaged parts are needed to be restored
before we facilitate them.

Image inpainting was carried out in a series of
block-removing algorithms at first. They connected the pixels
with same gray-level, which obviously were not suitable
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FIGURE 1. Image inpainting with specific objects unusual to restore. (a) Image with masks representing damaged patches; (b) The inpainting result;
(c) Ground Truth. Lampposts in (c) cannot be restored with existing methods.

for natural images. Kokaram et al. [3] tried to use motion
estimation and autoregressive model to mend up the defect
parts by interpolating the neighboring frame in cinema prod-
ucts, but this technique could not be applied to still images.
Then image inpainting techniques are divided into two broad
categories: non-textured and textured structure methods.
(1) The non-textured structure method utilizes higher order
partial differential equation (PDE) [4], or extreme value
of function of prior model and data model to generate the
mending patches, which is effective in small-sized breakage.
Bertalmio et al. [5] adopted a patching algorithm based on
PDE to spread the patches within boundary using the edge
information of the damaged area for inpainting, in which
BSCB model, simulating curvature driven diffusion (CDD)
with a third-order PDE. Furthermore, improved methods,
including total variation model (TV) [6] and Euler’s elas-
tica model [7] etc. were all designed to fill the geometric
image model and improve computing speed. (2) The tex-
tured structure method, which was effective in large-sized
breakage, is another way of image completion. A pixel
from the boundary of patch area was selected to search a
patch with the most similar textures, which is further used
for replacing the hole, including exemplar-based techniques
[8], Harrison’s algorithm, and Criminisi’s algorithm [9].
Overall, these methods without artificial intelligence filled
the blanks with patches calculated from statistics features
of the rest image, but they did not fully utilize semantic
information.

After a series of breakthroughs of artificial intelligence
(AI) in image processing, it has also been applied to image
inpainting. MemNet [10], employing memory network for
image restoration, was very deep convolutional neural net-
works (CNNs) that introduced a memory block, consisting of
a recursive unit and a gate unit, to explicitly mine persistent
memory through an adaptive learning process. The recursive
unit learned multi-level representations of current state under
different receptive fields. The representations and outputs
from the previous memory blocks were concatenated and sent
to the gate unit. MemNet was applied to image demising,
super-resolution and JPEG deblocking. Another kind of net-
work was the generative adversarial networks (GAN) [11]. Its
generativemodel consisted of a feature detector or interpreter,

such as encoder-decoder [12]; while its discriminative model
pre-trained by millions of images was implemented to guide
the image restoration to improve the similarity of generated
and original images [13]. WGAN [14] and WGAN-GP [15]
were subsequently proposed to improve the stabilization in
process of training. DCGAN [16], a combination of CNN
and GAN, used convolution networks to generate model for
unsupervised training and got excellent results of feature
extraction. Recently, GAN has been introduced in different
fields of image processing. Deepfill [17] employed a coarse-
to-refine training process and designed a contextual atten-
tion layer to improve its spatial consistency of perception.
Saliencygan [18] was proposed for semi-supervised salient
object detection. TPSDicyc [19] could generate synthesized
images with unpaired and unaligned data. DAGAN [20] was
applied to image reconstruction. More newly designed net-
works based on GANs [21]–[23] have proven the ability
of contextual information and perceptual information detec-
tion in daily pictures. But the existed methods were not
able to restore the specific objects in the image, as shown
in Fig. 1.

For medical image inpainting which seems suitable
for employing AI techniques, we find that the generated
image patches, always show strange results for doctors or
researchers. The key reason is the correctness is more impor-
tant than its visual effects and quantitative evaluation met-
rics. The existed methods restored the damaged images by
gathering and comparing the patches features from the rest
of image, but ignored the specific and unpredictable targets
that existing in damaged areas. Our framework is based
on contextual attention [17], a two-stage network architec-
ture. We have designed Serial Perceive Module, 2-pathway
deep learning networks with concatenation extracting fea-
tures from both the damaged image and its neighboring
image to acquire more valuable features. SPM consists of two
encoder-decoder structures and combines the features when
restoring inpainting image. For serial sectioning images,
we find that the structural information and spatial completion
of damage parts are also related to their neighboring images.
When the neighboring image is fed into the framework, both
surrounding features of damaged image and the features in
neighboring image can be learned to restore damaged parts.
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Therefore, the features in neighboring image could pro-
vide more detailed information of broken part, while the
surroundings could provide better edge information to make
the generated image more consistent. The result generated in
SPM is sent to the refined generating network to generate the
final image. In the refined generating network, an attention
module and a dilated convolution module are employed in
different networks. The attention module would focus on the
most important patches for restoration. The dilated convolu-
tion module continues to focus on the features with larger
receptive fields and constructs the image with deeper seman-
tic information. In the second stage network, inpainting image
would be further processed to a clear image.

Our main contributions can be summarized as following:
• In this study, we have proposed a novel framework,
CCPGAN, for image inpainting in serial sections, focus-
ing on high fidelity of tissue structure. This method can
learn to recover image from the most relevant patches
from both damaged image and its neighboring image.

• We design a Serial Perceive Module (SPM), including
2-pathway deep learning networks with feature maps
concatenation, which could extract features from neigh-
boring image and damaged image. The features from
neighboring image could provide holistic and structured
characteristics to guide the refined generating network
to produce correct images.

• Our model was trained and validated on our N7 dataset,
then further validated on another image dataset of N5 to
assess its generalization. Furthermore, three histologists
were invited in our experiment to assess correctness of
our model and they valuated our model performed best
among image inpainting models.

II. RELATED WORK
Image restoration based on deep learning and generative
adversarial networks has developed rapidly and gained a lead-
ing position. Typical application of these methods in med-
ical image inpainting have been done in Sogancioglu et al.
[24], they tried some state-of-the-art methods, such as
context encoder, semantic inpainting and contextual atten-
tion, to repair the Chest X-ray images, and these kinds of
images.

A. CONTEXT ENCODER
Context Encoders [12], a convolutional neural network, was
trained to generate the contents of an arbitrary image region
conditioned on its surroundings. It would understand the
content of the entire image, as well as producing a plausible
hypothesis for the missing parts. Similar to auto-encoder,
it included an encoder-decoder pipeline, and a channel-wise
fully connected layer. The encoder, such as AlexNet [25],
took an input image with missing regions and produced a
latent feature representation of that image; then the decoder,
a series of five up-convolutional layers [26], took this fea-
ture representation and produced the missing image contents.
Channel-wise fully connected layer helped reduce the param-
eters sizes from m2n4 (m × n × n for both input and output

featuremaps) tomn4, whichwas followed by a stride 1 convo-
lution to propagate information across channels. GAN, as one
of the generative models, was used to determine the likeli-
hood that the images were from the training set or generating
set. When the generated images were consistent with ground
truth in content, the discriminator could not distinguish the
image from training set or not, the GAN models were opti-
mized. Discriminators in image inpainting were designed as
global and local discriminators [27] to assess the authenticity
of the global image and the continuity of the local repairing
region. Then, the perceptual model [17], Patch-Based GAN
[28] etc. were proposed to improve the performance in visual
effects; gated convolution [29] or partial convolution [30]
were added to fix any shape defects.

B. CONTEXTUAL ATTENTION
Contextual attention [17] was designed to extract the fea-
tures similar to the damaged patch from distant parts. This
method could synthesize an image utilizing a trained atten-
tion model with image features around as references, and
making better forecasts. First, a simple dilated convolutional
network was trained with reconstruction loss to rough out
the missing contents. Then, contextual attention used the
features of known patches as convolution filters to generate
patches. It was designed and implemented with convolu-
tion for matching generated patches with known contextual
patches and channel-wise softmax function was to weigh
patches similarity. Then the inpainting result was gener-
ated by deconvolution. The method has been shown promis-
ing visual results for inpainting images of faces, building
facades, and natural scenes. Earlier in the attention model
improvements, spatial transformer network (STN) [31] for
object classification tasks was proposed, but not suitable for
patch-wise attention model. Zhou et al. [32] introduced an
appearance flow to predict offset vectors but is not effective in
predicting a flowfield from the background region to the hole.
Dai et al. [33] and Jeon and Kim [34] proposed to
learn spatially attentive or active convolutional kernels, but
might still be limited in exacting features from the back-
ground. Recently, Zhu et al. [35] introduced lesion focused
SR (LFSR) and multi-scale methods to improve the percep-
tual quality of the super-resolved results for brain tumor MRI
images.

Contextual attention, simulating the attention mechanism
of the brain, picked up the critical features from a variety
of information. Images were split into patches with different
weights indicating the similarity of the mask. Contextual
attention focused on searching the input image to find useful
information with higher weights related to the damaged part,
in order to improve the efficiency and accuracy of processing
visual information and reduce the computing cost. The frame-
work, such as encoder, could learn a variety of relationships
between patches and represented them.

C. GLOBAL AND LOCAL CONSISTENT
Consistency was another challenge in medical image inpaint-
ing. The globally and locally consistent image inpainting
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network [27] for image restoration tried to make the missing
part keep consistent with the original in part and whole.
It consisted of an encoder network and two auxiliary context
discriminator networks that were used as global discriminator
and local discriminator merely in training stages. The global
discriminator network took the whole image as input to assess
similarity of the entire image; whereas the local discriminator
network took only the restored area as input to assess if the
generated content was similar enough.

The methods mentioned above could restore natural
scene image with state-of-the-art performance, but they
doesn’t focus on the high fidelity restoration for medi-
cal images. In serial sectioning images, the neighboring of
damaged image could provide abundant information that
would be helpful in completing the missing parts. Therefore,
we designed our framework to restore image utilizing both
damaged image and its neighbouring image.

III. METHOD
A. SERIAL PERCEIVE MODULE
To extract and learn features from damaged image and its
neighboring image simultaneously, Serial Perceive Mod-
ule (SPM) was proposed with two concurrent pathways. The
first pathway utilizes the damaged image as input, called
damaged net Nd ; the second pathway uses the neighboring
image as input, called referenced net Nref . Each pipeline
follows the encoder-decoder mode, consisting of 17 convolu-
tional layers, including downsampling, dilated convolution,
and upsampling layers and the features could be extracted
from both damaged image and its neighboring image in
encoder process and reconstructed image with learned infor-
mation in decoder process. Dilated convolutions [27] are
adapted instead of ordinary convolutions in this module is to
extend receptive fields without resolution loss and computa-
tion increasement, which are helpful in multi-level restoring
the border areas. It could be denoted as follows:

yu,v = σ (b+
k ′h∑

i=−k ′h

k ′w∑
i=−k ′w

Wk ′h+i,k
′
w+jXu+ηi,v+ηj)

k ′h =
kh − 1

2
, k ′w =

kw − 1
2

(1)

where (u, v) represents any position in the layer matrix, and
xu,v and yu,v are the pixels in the input and output layer;σ (.) is
a component-wise non-linear transfer function; W is weight
convolution kernel, and b is a layer bias vector, w and h are
the width and height of dilation kernel (odd number), η is
the dilation factor, when η = 1 the equation becomes the
standard convolution operation.

Our inputs of module are followed as [27]. In the damaged
net, an original image with white pixels filled in the damaged
part and a binary mask with the white pixels indicating the
size and location of the damaged part; in the referenced
net, the neighboring image will be fed as input, while the
neighboring image is selected from the previous or next one,
as shown in Fig. 2. Generally, most of the inpainting nets

FIGURE 2. Serial sectioning images with breakage. (a) neighboring image
(b) damaged image

recently will search relevant pixels from its surroundings to
restore the damaged parts, but the features extracted in Nref
can be also leveraged to guide the restoration. During the
reconstructing process inNref , the featuremaps are connected
to Nd after every upsampling step in Nd , thus, Nd can obtain
the features from both damaged image and its neighboring
image in deconvolution process. The result of 2-pathway
networks would finally be fused with max operation before
it outputs the coarse result.

B. REFINED GENERATING NETWORK
The refined generating network is designed to fine-tune the
roughly repaired result from SPM to be a more realistic
and correct image. This network consists of 2-pathway net-
works. The first pathway contains context perceive layer
and the second pathway contains dilated convolution layers.
The context perceive layer learns to search which places
are needed to pay attention for restoring in the background
image (the unmasked patches) and the neighboring image;
while the dilated convolution module continues to extract
and learns features among the coarse result to acquire
deeper semantic information. These features are then merged
into one path decoder to reconstruct in the following deep
network.

After 6 convolution operations, the feature maps generated
from the coarse result are fed up into the context perceive
layer. These feature maps multiply by mask to generate the
foreground. Feature maps from undamaged part and neigh-
boring image are concatenated as background. We extract
3 × 3 patches from background and reshape them as con-
volution kernels. Then we measure the similarity between
damaged parts {fx,y} and its surroundings {bx ′,y′} in the rest of
damaged image and its neighboring image with the indicator
of normalized inner product

Sx,y,x ′,y′ =

〈
fx,y∥∥fx,y∥∥ , bx ′,y′∥∥bx ′,y′∥∥

〉
(2)

where Sx,y,x ′,y′ represents similarity of damaged part and its
surroundings. To select the most similar patches, softmax
function S ′x,y,x ′,y′ = softmax(Sx,y,x ′,y′ ) is employed to acquire
attention scores. The patches with the highest scores will
be used as the deconvolution filters to make deconvolution
operation to restore the image.
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FIGURE 3. The framework of CCPGAN. It consists of Serial Perceive Module, Refined Generating Network, Multi-scale
discriminators. This framework receives both damaged image and its neighboring image as input and Serial Perceive
Module generates the coarse result with the features from the two images. The dotted lines represent combination of
two images and the results of Nd and Nref are fused as a coarse image. The refined generating network divided two
parts, coarse result and neighboring image are sent to the perceive module network to reconstruct with attention and
the dilated convolution network will reconstruct image with features extracted from the coarse result. The refined
generating network will generate the final inpainting image. The loss of our generator is the sum of auto encoder loss
LAE , L1 loss, and GWGAN loss. The loss of our discriminator (LD) is the sum of global WGAN-GP loss (LDG) and local
WGAN-GP loss (LDL).

C. LOSS FUNCTION
The original image is the ground truth for validating the
generative image. In our model, both generative loss and
discriminative loss are designed. The generative loss is the
indicator of similarity between generated image and ground
truth image in generator, which is the sum of auto encoder
loss LAE , L1 loss, and GWGAN loss. The discriminator loss
(LD) is the sum of global WGAN-GP loss (LDG) and local
WGAN-GP loss (LDL), which is designed to ensure global
and local consistency of inpainting results. The LDG is used
to discriminate the generated images and ground truth; while
LDL is used to ensure the local correctness of generated
images. When the sum of LDG and LDL reaches a global
minimum, the generated images would be the results of good
visual effects and correct microstructures content.

LG = Ey∼Pg log[1− D(y)] (3)

Auto Encoder loss consists of the mean distance between
coarse result and ground truth image and the mean distance
between generated image and ground truth image.
L1 loss is the L1 regulation in reconstruction progress,

which is defined as

L1 = ‖M � y−M � x‖ (4)

where,M denotes the undamaged area (unmasked) in images,
x is original image, y is inpainting image, � is pixelwise
multiplication [27], ‖.‖ is the Euclidean distance. L1 loss is
used in both generator and discriminator.

Both global WGAN-GP loss and local WGAN-GP loss are
defined as in [15]. Wasserstein distanceW (Pr ,Pg) defined as
in (5) is adopted for comparing the distributions between the
generated images and ground truth images.

W (Pr ,Pg) = inf
γ∼

∏
(Pr ,Pg)

E(x,y)∼γ [‖x-y‖] (5)

where Pr and Pg are the distribution of generated images and
ground truth images.

∏
(Pr ,Pg) is the set of all possible joint

distributions, γ is any possible distribution. x and y are pixels
in the ground truth and the inpainting results. Here, we use the
improved gradient penalty of WGAN-GP instead of WGAN,
avoiding the strict constraint of Lipschitz continuity. In the

damaged region to restore,

Ld = −Ex∼Pr [D(x)]+ Ey∼Pg [D(y)]

+λEx̂∼Px̂(
∥∥Ox̂D(x̂)� (1− m)

∥∥
2 − 1)2 (6)

where D is a set of 1-Lipschitz functions, x̂ is sampled from
the straight line between points sampled from distribution Pr
and Pg, x̂ = tx + (1 − t)y, t ∼Uniform[0,1],the mask value
is 0 for missing pixels and 1 for elsewhere.

D. NETWORK ARCHITECTURE
The overview of our framework is presented as Fig. 3,
consisting of Serial Perceive Module, refined generating net-
work, and global and local discriminators. Popular image
inpainting methods usually try to detect similar or relevant
features within the damaged image and restore the missing
parts, such as face repairing etc.; but it is not effective in
processing medical images as these textures are too similar
to predict the original patches with various contents. Here,
we assume that the neighboring images after registering are
similar enough in tissue structure to restore the corresponding
part in damaged image and can provide specific features.
In order to restore the correct content with tiny differences,
SPM utilizes the features from the neighboring image; while
typical GAN-based methods detect features information only
within the damaged image.

The SPM proposed in this study utilizes information from
both damaged image and corresponding damaged part in the
neighboring image, and detects the features in a large scale,
merges the features after upsampling processes and fuses the
results to generate a coarse repaired image, which is used
to guide the following generating procedures. The coarse
result is compared with original image with loss LAE and
L1 in training process. Then, in refined generating network,
context perceive layer extracts patches from its surroundings
and assesses the similarity between missing part in the coarse
result and the patches, then reconstruct image with the fil-
ters reshaped by extracted patches. The dilated convolution
layers in refined network further extract features with larger
receptive fields and obtain deeper semantic information for
restoring image with more details. These 2-pathway encoder
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networks combine the features into one pathway to recon-
struct a realistic result. The generator is guided by optimizing
the loss function LAE and L1 and penalizing the difference
between generated and original patches. Comparing with L2
loss, our model with L1 loss could provide an image that is
more similar to the ground truth, and cost less computing
consumption in training process [36].

The discriminators used in our model are binary classifiers
[37]. The discriminators are used to distinguish a real image
from a generated one in order to improve the generated image
quality. Both global discriminator DG and local discrimi-
nator DL have the same structure of CNN, consisting of
4 convolution layers and a fully connected layer. The global
discriminator distinguishes a genuine image from a generated
one in the scale of whole image to make the generated image
more consistent with surrounding parts; while the local dis-
criminator distinguishes a genuine patch from a generated
one in the scale of the masked part of image to make the
generated contents correct. Both of the loss functions of
discriminators are added up together avoiding one of which
are over processed.

Before our model is trained, the neighboring image is
selected from previous or next image in the stack according
to peak signal to noise ratio (PSNR). Then, the mask m is
generated randomly and the damaged image xd is generated
with the mask by xd = x � m. Next, the damaged image,
neighboring image and themask are fed into our SPMmodule
to obtain coarse result ys. ys and the feature maps fnei from
Nref in SPM are sent into the attention module pathway and
ys is sent into another feature extractor containing dilated
convolution layer to generate the inpainting result yo together.
All the input images are normalized in [−1, 1]. The detail of
whole procedure is shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS
A. DATASETS
In this experiment, 2 sets of serial sectioning images were
used to validate the algorithm we proposed. These serial sec-
tions were originally used for kidney research via a method
of 3-D visualization of microstructures, therefore there were
no animals sacrificed intended for this experiment [38]. The
mice were provided by Animal Experimental Department
of China Medical University. Serial sectioning images were
carried out following a standard procedure: (1) tissue blocks
were removed a few minutes after animal anesthesia, and
were further fixed for 1h in fixation buffer; (2) the fixed tissue
blocks were embedded in Epon 812 (for electronmicroscopy)
or paraffin (for light microscopy); (3) after shape correc-
tion, it was cut into serial semi-thin or ordinary thickness
(2.5 - 30µm approx.) using amicrotome; (4) These serial sec-
tioning images were stained and scanned by using a pathol-
ogy slide scanner or a microscope. The experiments were
approved by theMedical Ethics Committee of ChinaMedical
University.

We assessed our model and its generalization ability on
the datasets with different sectioning or staining protocols:

Algorithm 1 Procedure of Our Proposed Framework
Input: X (x1 . . . xn): consecutive sample images;

m: mask indicating damaged part;
Output: yo: generated image;
1: while inpainting network has not converged do
2: Select neighboring image xnei from previous or next of

x;
3: Generated damaged image xd = x � m;
4: for Iterations do
5: In the SPM module, (xd ,m)

Nd
−→ ym, (xnei,m)

Nref
−−→

ya, ys = max(ym, ya), fnei represents feature maps
before dilated convolution operation in Nref ;

6: Calculate l1, lAE losses between ys and x;
7: Feed ys and fnei into context perceive layer network,

ys into dilated convolution module network and out-
put yo;

8: Calculate adversarial losses between yo and x;
9: Update the inpainting network weights with pan-

elty;
10: end for
11: end while

in N7 dataset, there were 1145 images (embedded with Epon
812 and stained with toluidine blue); and in N5 dataset
there were 413 images (embedded with paraffin and stained
with hematoxylin-eosin). Their volume resolutions were
1.84 × 1.84×2.5 µm/pixel for N7 dataset, and 1.84 ×
1.84×5µm/pixel for N5 dataset. Masks were manually
labeled on the damaged parts. These images were aligned as
in [39] and were cropped into the size of 512 × 512 pixels
in these experiments due to the limitation of GPU memory
size. In order to train our model, 275 images were selected
from N7 dataset only, masks were randomly placed in repre-
sentation of partial damage in sections. Then the model was
assessed with 164 images from N7 dataset in Experiment 1,
and with 116 images from N5 dataset in Experiment 2. The
algorithm above was implemented in Python 3.7 and ran on
a workstation (Dell Precision T7920, CPU Intel Xeon Silver
4110 × 2, RAM 32GB, GPU NVidia Titan RTX).

B. EVALUATION METRICS
1) QUANTITATIVE EVALUATION
We performed the quantitative evaluation using 5 metrics
on testing datasets: Structural similarity index (SSIM) [40],
Multi-scale structural similarity (MS-SSIM) [41], Feature
Similarity Index (FSIM) [42], Peak signal-to-noise ratio
(PSNR) [43] and Learned perceptual image patch similarity
(LPIPS) [44].

SSIM is a full reference metric to estimate the global
similarity between two images from 3 aspects of brightness,
contrast and structure, as in (7). The value of SSIM is between
0 and 1, and SSIM=1, if the two images are identical.

SSIM =
(2µxµy + c1)(2σxy + c2))

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(7)
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FIGURE 4. Evaluation for iterations. (a) Qualitative evaluation for visual effect, it could be considers that our model could provide a
restored image after 150000 epochs of training. (b)Quantitative evaluation, iterations with PSNR metric and training computing
consumption.

where,

µx =
1
MN

M∑
i=1

N∑
j=1

X (i, j)

µy =
1
MN

M∑
i=1

N∑
j=1

Y (i, j)

σ 2
x =

1
MN − 1

M∑
i=1

N∑
j=1

(X (i, j)− µx)2

σ 2
y =

1
MN − 1

M∑
i=1

N∑
j=1

(Y (i, j)− µy)2

σxy =
1

MN − 1

M∑
i=1

N∑
j=1

(X (i, j)− µx)(Y (i, j)− µy)

c1 = (K1 · L)2, c2 = (K2 · L)2

where, X (i, j) denotes the original image, and Y (i, j) denotes
the inpainting image. Usually, set K1 = 0.01, K2 = 0.03,
L = 100 as in [40].

MS-SSIM is an improved version of SSIM for incorpo-
rating the variations of viewing conditions, which is more
effective in multi-scale structure similarity evaluation, as in
(8). The value of MS-SSIM is also between 0 and 1.

MS − SSIM = [lM (x, y))]αM ·
M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj (8)

where,

l(x, y) =
2µxµy + c1
µ2
x + µ

2
y + c1

c(x, y) =
2σxσy + c2
σ 2
x + σ

2
y + c2

s(x, y) =
σxy + c3
σxσy + c3

c1 = (K1 · L)2, c2 = (K2 · L)2, c3 =
c2
2

We set β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 =
γ3 = 0.3001, β4 = γ4 = 0.2363 and α5 = β2 = γ2 =

0.1333 as in [41].

FSIM metric considers the phase congruency (PC) and the
image gradient magnitude (G) as the significance features
for gray level images. The FSIM index can be extended
to FSIMc by incorporating the chromatic information in a
straightforward manner. FSIMc index is used in this study to
evaluate feature similarity. Its range is between 0 and 1.

FSIMc =

∑
xε� SL(x) · [SC (x)]

λ
· PCm(x)∑

xε� PCm(x)
(9)

where,

SL(x) = SPC (x) · SG(x)

SC (x) = SI (x) · SQ(x)

SPC (x) =
2PC1(x) · PC2(x)+ T1
PC2

1 (x) · PC
2
2 (x)+ T1

SG(x) =
2G1(x) · G2(x)+ T2
G2
1(x) · G

2
2(x)+ T2

SI (x) =
2I1(x) · I2(x)+ T3
I21 (x) · I

2
2 (x)+ T3

SQ(x) =
2Q1(x) · Q2(x)+ T4
Q2
1(x) · Q

2
2(x)+ T4

I and Q are In-phase and Quadrature-phase in YIQ color
space, � represents the whole image; We set λ = 0.03,
T1 = 0.85,T2 = 160,T3 = 200 and T4 = 200 as
in [42].

PSNR is used as consistent quality metric, as in (10), which
directly measures the difference in pixel levels. The higher
value means the better image quality. Usually, it could be
considered as same as the original image, if PSNR > 40. Due
to the ignorance of the character of human visual frequency
response, PSNR evaluation differs from subjective perception
of human sometimes.

PSNR = 10lg

{
2552

1
MN

∑M
i=1

∑N
j=1(X (i, j)− Y (i, j))2

}
(10)

where, X (i, j) denotes the original image, and Y (i, j) denotes
the inpainting image.

LPIPS metric is based on deep convolution neural network
to calculate visual similarity and has been proved to correlate
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FIGURE 5. Completion results under different mask sizes. (a) neighboring images. (b) original images (Ground Truth). (c)-(j) random masks with different
sizes (Left) and inpainting results (Right, red boxes highlight the restoration patch). (c) mask size of 32 × 32 pixels. (d) mask size of 48 × 48 pixels.
(e) mask size of 64 × 64 pixels. (f) mask size of 96 × 96 pixels. (g) mask size of 128 × 128 pixels. (h) mask size of 256 × 256 pixels. (i) mask size of
384 × 384 pixels. (j) mask size of 448 × 448 pixels. The restoration areas are in red boxes.

well with perceptual judgments. The lower value of LPIPS
mean the better quality and the higher value of other metrics
mean better. [45]

2) QUALITATIVE EVALUATION
Medical images are usually acquired under standardized pro-
cedures, therefore, variations are very little between images.
Researchers pay more attention to the accuracy of image
contents rather than visual results or quantitative scores in
medical image inpainting comparing daily life image inpaint-
ing. In this study, 3 experienced histologists are invited to
evaluate the visual quality in aspects of color consistency,
structure and texture accuracy, border continuity of patch,
and correctness of morphology in different sizes or places of
masks.

In the following, we present both quantitative and qualita-
tive evaluation of our model, and the comparison with recent
popular image inpainting methods with Contextual Attention
(CA) [17], Globally and Locally Consistent Image Com-
pletion (GLC) [27] and Pyramid-Context Encoder Network
(PEN) [46].

C. EXPERIMENT 1
In this experiment, we first performed and demonstrated
the assessment of our method in training iteration, mask
sizes and then compared with the popular methods. A total
of 275 images from N7 dataset, which were compact in

microstructure, were selected randomly as training data, and
164 images as testing data.

We have conducted an experiment to evaluate the
performance when the number of iterations increased,
the result suggested that the performance enhancements of
our model almost stopped after 130000 iterations. Therefore,
iterations of 150000 was a balance between training cost and
the model performance, as shown in Fig. 4. We also tested
the performance with 100 images (512 × 512) and got the
computing consumption of 52.3±1.9ms per image.

The sizes and locations of masks were further validated
effects of the performance in our model and we wished to
identify the reliability of our model. In this study, 8 kinds
of square masks were used, the side length of which were
from 32 pixels to 448 pixels, equivalent to coverage area
of 0.39% to 76.56%. As shown in Fig. 5, our model could
repair the masked images with information learned from the
corresponding parts of neighboring images. In the situation
of small-sized missing patch (Masks 1-4, missing area ≤ 5%
image area), the shapes and details of glomeruli, vessels
and renal tubules were well restored comparing with the
original images; in the situation of median-sized missing
patch (Masks 5-6, 5% image area < missing area ≤ 25%
image area), similar results were shown; as the missing area
increased (Masks 7-8, missing area > 25% image area), most
of structures were also well restored, but at the boundary of
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FIGURE 6. Multiple damaged validation: (a) neighboring image. (b) original image (Ground Truth). (c) result with multi-mask. (d)-(e)
results with arbitrary shape. The restoration areas are in red boxes.

FIGURE 7. Section completion results of different mask types on the N7 dataset. From the fourth line to the seventh line are the results of different
methods of repairing. These images, from left to right, are random block (side length 32, 48, 64, 96, 128, 256 pixels) and left block and center block
(side length 384,448pixels) masked images. As the mask becomes larger, our result is more effective. The restoration areas are in red boxes.

the mask, some of contours of the microstructures did not
have good continuity.

The location and count of masks was another issue that we
concerned about. The images with 4 masks, 20% coverage
area in total, were tested, which showed a similar result
to the images with one single mask as shown in Fig. 6.
Furthermore, different shapes of masks, such as polygon and
circle, were also tested in our study. The experiment on real
defect image could not be evaluated due to the lack of ground
truth, so we draw a mask similar to real condition as shown
in Fig. 6 (e). We could conclude that our model was suitable
for the restoration of serial sectioning images and irrelevant
to the number, size or shape of missing areas.

Then we compared our model with CA, GLC and PEN,
as shown in Fig. 7. Qualitative evaluation suggested that:

(1) In the situation of small-sized missing patch (Masks 1-4,
missing area ≤ 5% image area), CA, PEN and ours could
provide pretty good visual results, results from GLC were
acceptable in overall appearance. (2) All of the 4 methods
provided shapes and details of glomeruli, vessels and renal
tubules in visual effect, but only the results from ours were
correct in content comparing with the original images. (3) In
the situation of median-sized missing patch (Masks 5-6, 5%
image area < missing area ≤ 25% image area), restorations
from CA and GLC were blurred or distorted as there was
less effective information available around the masks, PEN
was only effective in visual effects; but our performance was
still robust. (4) in the situation of large-sized missing patch
(Masks 7-9, missing area > 25% image area), our method
could still provide valuable information. We could conclude
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FIGURE 8. Quantitative evaluation between GLC, CA, PEN and our model on the N7 dataset. (a) Masks.
(b) SSIM evaluation. (c) MS-SSIM evaluation. (d) FSIMc evaluation. (e) PSNR evaluation. (f) LPIPS evaluation.

TABLE 1. The quantitative evaluation on N7 dataset.

that our model was more effective in both visual effects and
providing correct details and microstructures of complicated
tissue with any size of damaged areas.

The quantitative evaluation was carried out using 5 indica-
tors: SSIM, MS-SSIM, FSIMc, PSNR and LPIPS. We chose
9 different-sized and placedmasks, as shown in Fig. 8. Table I
showed the inpainting results and the paired t-test. T-test
suggested significant difference between our method and

popular inpainting methods. SSIM/MS-SSIM are sensitive to
structural similarity [40] and the results showed our model
performed higher than the best of other methods. SSIM:
2.59% (missing size ≤ 128 × 128), 17.41% (256 × 256 ≤
missing size≤ 256×512),19.07% (384×384≤missing size
≤ 448×448); MS-SSIM: 1.50% (missing size≤ 128×128),
21.45% (256 × 256 ≤ missing size ≤ 256 × 512),52.54%
(384× 384 ≤ missing size ≤ 448× 448). FSIMc is sensitive
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FIGURE 9. Section completion results of different mask types on the N5 dataset. From the fourth line to the seventh line are the results of different
methods of repair. These images, from left to right of, are random block (side length 32,48,64,96,128,256 pixels) and left block and center block (side
length 384,448pixels) masked images. As the mask becomes larger, our result is more effective. The restoration areas are in red boxes.

FIGURE 10. Quantitative evaluation between GLC, CA, PEN and our model on the N5 dataset. (a) Masks. (b) SSIM
evaluation. (c) MS-SSIM evaluation. (d) FSIMc evaluation. (e) PSNR evaluation. (f) LPIPS evaluation.

to low-level boundary features [42] and its results showed the
best among the methods: 0.38% (missing size ≤ 128× 128),
6.70% (256 × 256 ≤ missing size ≤ 256 × 512),13.36%

(384 × 384 ≤ missing size ≤ 448 × 448). PSNR only
calculates pixel values but not structural features and the
results showed: 9.71% (missing size ≤ 128 × 128), 13.20%
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TABLE 2. The quantitative evaluation on N5 dataset.

(256×256≤missing size≤ 256×512),13.50% (384×384≤
missing size≤ 448×448). LPIPS calculates visual similarity
by comparing the deep structure and deep features between
images, which is more consistent with human visual effect
and sensitive to nuances of images in human perception.
Our model generated better results and obtained lower values
among all the methods: 19.94% (missing size ≤ 256× 512),
46.43% (384 × 384 ≤ missing size ≤ 448 × 448). The
indicators above suggested our model performed best among
all tested models. The reason was that our method could
utilize features from its neighboring image. All the methods
performed well in small and even median size condition.
As the mask size became larger, our method showed a greater
advantage than other methods. When the mask size became
extremely large, other methods invalidated.

Our model was further applied to 230 damaged images
in N7 dataset. Three histologists invited in our experi-
ment assessed correctness of inpainting region individually
and they valuated our model performed best among image
inpainting models.

D. EXPERIMENT 2
The performance of generalization of our model has also
been assessed in this experiment. Notably, no new model was
trained in this section, the model in previous experiment was
directly verified with another dataset N5. As shown in Fig. 9,
Fig. 10, and Table II, similar quantitative conclusions could

be drawn from these results. Most of the results showed sig-
nificant difference, but results of images with 448× 448 size
mask in SSIM suggested P > 0.05 because much information
of neighboring image was referred and the inpainting image
would be more similar to neighboring image than the ground
truth. The model was further applied to 75 damaged images
in N5 dataset and experts gave the same evaluation as in
Experiment 1.

Experiment 2 also suggested that our model was still
effective in the dataset of N5, although there was no further
training.

V. CONCLUSION
In this study, we proposed a novel Consecutive Context Per-
ceive Generative Adversarial Networks (CCPGAN) for serial
sections inpainting in medical study. The framework is com-
posed of an SPM, a refined generating network, and two dis-
criminators. To our knowledge, it is the first time to introduce
2-pathway deep learning networks in image inpainting field,
which could detect histological and structured characteristics
from both the damaged images and its neighboring images.
Concatenation is employed during the upsampling operation
to combine the features to reconstruct more details. Qualita-
tive comparison and quantitative comparison suggest that our
method could complete the damaged area to acquire desir-
able measurements and visual effects, keeping both global
and local consistency, as well as generating correct objects,
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such as an individual glomerulus sporadic distributed in the
sectioning. The quality of inpainting image is irrelevant to
mask location or the staining method. For the medical image
analysis, the correctness of the result is much more important
than consistent with visual effects and our method utilizes
neighboring image as a reference so that more information
and details can be learned for restoration. There is a limita-
tion when the damaged patch became extremely large. The
restored region will be more similar to the neighboring image
as little surrounding and much neighboring information is
used; although this situation scarcely occurs.
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