
Received September 20, 2020, accepted October 12, 2020, date of publication October 19, 2020, date of current version October 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031964

A New Framework for Mobile Edge Caching by
Proposing Flexible User in Heterogeneous
Cellular Networks
PARISA ESLAMI1, (Member, IEEE), MOHAMMAD HOSSEIN AMERIMEHR 2,
AND SEYED POOYA SHARIATPANAHI 3
1Department of Electrical and Computer Engineering, Islamic Azad University, Tehran 1477893855, Iran
2ICT Research Institute (ITRC), Tehran 1439955471, Iran
3School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran

Corresponding author: Mohammad Hossein Amerimehr (mh.amerimehr@itrc.ac.ir)

ABSTRACT The bursting increase in requesting wireless data has caused several issues in network
peak-traffic duration. This negatively results in significant data delivery delay imposed on users that can
eventually impact the network’s quality of service and users’ quality of experience. In this research, regarding
mobile edge caching as a potential solution to decrease such delay, we propose a new framework in which
we introduce the concept of the flexible user where he requests for a set of multiple files from the library
with a unique feature, e.g., 5 movies within comedy genre from the library in the peak-traffic duration. The
satisfactory criterion for the flexible user is to receive any of the files within the requested set. This definition
of the flexible user indicates a new concept which captures interesting scenarios. In order to model this
concept, we generalize the conventional Zipf distribution to a multivariate one as the modeling method for
popular data. We formulate the problem of finding the optimal cache data placement, which minimizes the
average total delivery delay in the network while satisfying the helpers’ cache size constraints. To this end,
we derive the average delivery delay per user as well as the average total delivery delay in the network,
according to the new generalized Zipf distribution. Finding the optimal solution is proved to be NP-Hard.
We leverage on the problem property to propose an efficient approximation method, called greedy algorithm,
which performswithin a constant factor as good as the optimal solution. Afterwards, we propose an algorithm
called speedy-greedy to significantly reduce the computational complexity of the greedy algorithm while
achieving the same performance. Simulation results indicate that our proposed framework significantly
decreases the average total delivery delay of the system model that can help the network maintain its quality
of service in network peak-traffic duration.

INDEX TERMS Mobile edge caching, data delivery and management, delivery delay, femto-caching.

I. INTRODUCTION
Advances in telecommunications engineering - from old gen-
erations, 2G and 3G, to current generations, 4G, 5G and
beyond - allow wireless cellular networks to provide higher
security, speed, reliability and capacity in accessing data
pool [1]. These advances have resulted in a tremendous
increase in wireless data requisition by users [2]. It is esti-
mated that users request for almost one terabyte of wire-
less data by 2022 [3]. This burst in wireless data demand
imposes extremely high overhead to the network to process

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

and deliver the requested data to users in network peak-traffic
duration. In order for the network to be able to support such
a high demand for wireless data, it is mandatory to merge
some new technologies in communications such as internet
of things (IoT), massiveMIMO,mobile edge caching (MEC),
mobile cloud computing (MCC), etc. [4]–[6].

As a working principle for such a data call by users,
we have: when a user places a request for data, the network
first locates where the source of the requested data is in the
internet cloud or data centers [7]. Then, the requested data
is fetched from its source, and is transferred throughout the
forming elements of network such as data centers, backbone,
backhaul cables, routers, switches, base stations, etc., to be

188938 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9106-7988
https://orcid.org/0000-0003-2083-6115
https://orcid.org/0000-0001-6310-8965

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

FIGURE 1. Simplified illustration of working principal of a network from receiving data request up to delivering data.

delivered to the user [8]. The general view of this process
can be seen in Fig. 1. Although, the network elements have
high operating capacity, they are not capable to handle the
aforementioned explosive increase in data that ultimately
results in traffic congestion [9], [10]. Network’s backbone
and backhauls are the elements that are most likely to sig-
nificantly intensify traffic congestion due to their physical
limitations [11]. Accordingly, they are considered as net-
work bottlenecks [12]. Traffic congestion caused by back-
bone and backhauls increases network latency and results in
a notable delay in transferring data from one point to another
throughout the network. This eventually degrades not only the
network’s performance (Quality of Service -QoS-), but also
users’ Quality of Experience (QoE) [13], [14].

One solution to maintain the network’s high performance
in peak-traffic duration is to deploy a small-scale format of
a macro base station (MBS) under the supervision of main
MBS, as shown in Fig. 2. Small-scale MBSs, according to
their size of coverage area and applications, can be named
small-cell, pico-cell and femto cell [15]. From among these
small-scale MBSs, femto cells are known for large storage
capacity, flexibility and cost efficiency. That is the reason
why they are the most studied small-scale MBSs in the litera-
ture [16]. Additionally, the main idea behind proposing femto
cells was to bring users and terminal devices in the network
closer to one another, which makes femto cells be generally
beneficial with compensating poor cellular coverage, creating
network capacity wherever needed, and improving network
QoS by offloading traffic and overhead from the macro base
station [17], [18]. This makes cellular regions to be het-
erogeneous networks (HetNets) nowadays. One approach to
offload notable traffic and overhead from the network is to
store popular data closer to users. This technique is called
caching [19]. One advantage of using the caching technique
is to reduce the need for large bandwidth in peak-traffic
duration.

One particular application for which femto cells can be
utilized is to function as distributed storages throughout
the network. Thus, as of this functionality, these storages
cache the most requested or popular data within the macro
base station’s coverage region [19]. This technique is called
femto-caching [20]. In other words, what femto-caching

FIGURE 2. The considered system model in a heterogeneous wireless
cellular network.

contributes to is bringing popular data closer to users so
that the popular data will not be fetched and transferred
throughout the network every time a user places a request for
it.

On the other hand, femto-caching strongly assists with
decreasing data delivery delay, overhead from the net-
work, packet collisions and traffic congestion [21]. Other
locations where popular data can be cached in networks
elements are in the user equipment (UE) mostly in device-
to-device (D2D) and internet of thing (IoT) applications
[22]–[24], macro base stations (MBSs), small-cells and pico-
cells, relays and C-RANs (a novel proposed architecture for
5G cellular networks) [25]. In the literature, femto cells that
are used for femto-caching technique are usually referred to
as helpers [26]. Each femto cell, in this manner, consists of a
helper and cache storage as illustrated in Fig. 2.

VOLUME 8, 2020 188939

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

In this article, we generalize data requisition format in
MEC by considering that the user requests a set of data
(multiple data) from data pool or library. Due to the fact that
this generalization can provide significant flexibility to the
users, the user in this research is called flexible user. Our
contributions can be summarized as follows.
• We introduce the concept of the flexible user where the
user requests for a set of files with a unique feature
without having a preference on any of the files within
this set. This concept captures interesting scenarios such
as film genre and database features. A user may be
interested in watching a movie from a specific genre
(e.g., a user in the mood of watching a new comedy
movie). Another scenario includes requesting any data
from a database which has a specific feature.

• Considering the flexible user requests, the conventional
Zipf can no longer be used to model the users’ request
probability mass function. Hence, We generalize the
conventional Zipf distribution to a multivariate one to
devise a model for flexible user requests.

• We formulate the problem of optimal cache data place-
ment with helpers’ cache size constraints. In this regard,
we derive the average delivery delay per user as well as
the average total delivery delay in the network, accord-
ing to the new generalized Zipf distribution.

• Proving that the problem is NP-hard, we show that the
problem exhibits a property which enables us to pro-
vide an efficient approximate algorithm.More precisely,
wewill prove that the problem is in the form ofmaximiz-
ing a monotone submodular function subject to matroid
constraints.

• We invoke the problem structure to provide the greedy
algorithm which is guaranteed to performs within a con-
stant of 1

2 as good as the optimal solution.
• Furthermore, we leverage on the problem structure
to provide an algorithm called speedy greedy which
achieves the same performance as the greedy algorithm
in terms of delivery delay, while significantly reduces
the computational complexity.

The rest of the paper is organized as follows. A summary
of related works is presented in Section II. In Section III,
the system model of the proposed new framework is pre-
sented. In Section IV, we formulate the problem of obtaining
optimal popular data placement in helpers and investigate its
solutions. In SectionV,we propose greedy and speedy-greedy
algorithms to solve the formulated problem in Section IV.
In Section VI, we present the results from algorithms in
Section V. Eventually, we conclude the paper in Section VII.

II. RELATED WORKS
In [20], Shanmugam andGolrezaei mostly focused their work
on video streaming delivery delays. They developed the idea
of data placement in small base stations to minimize the total
average delivery delay of their system model. In their work,
the users request for only one data in the network peak-traffic
duration. In their system model, the network attempts to

deliver the only requested data to the user. Users’ requests
are assumed to be asynchronous meaning that users request
one data at different times. Additionally, users receive the data
from the helper offering the least delivery delay. This results
in users to experience the least delay in the network to receive
their requested data.

The work most close to our problem is [20]. We rely and
expand upon this work. Reference [20] assumed that each
user requests for a specific file, according to a single-variable
Zipf distribution. However, in our problem we assume that
each user has a preferred subset of files from which one the
files should be delivered. Thus, we are working with distri-
butions on subsets rather than single files. Hence, developing
new problem formulation and solution is more challenging
than [20].

A joint caching and processing framework for video
on-demand inMEC networks has been proposed in [27], [28].
MEC servers collaborate to cache and transcode different
chunks of one video content, in order to use the backhaul
and storage resources more efficiently and reduce the content
delivery delay.

Authors in [29] addressed collaborative service placement
for edge computing in small cell networks. They proposed
an efficient decentralized service placement algorithm based
on graph coloring on the small cell network. Li et al. [30]
studied optimal content allocation over a resilient caching
network, where each cache may fail under some situations.
They proposed a centralized algorithm which achieves a
(1 − 1

e)−approximation guarantee. Moreover, the authors
devised a distributed algorithm based on concave relaxation
of the objective function.

The goal of [31] is scheduling of downlink file trans-
mission with the assistance of wireless cache nodes. Two
scenarios are considered in this article: 1) the BS reactively
casts the data to the requesting user with associated cache
node, and 2) the BS proactively casts some data to the selected
cache node without request. Downlink transmission resource
minimization is formulated as a dynamic programming prob-
lem and approximated by a finite-horizon Markov decision
process (MDP) to reduce the computational complexity.

Ioannidis and Yeh in [32] studied optimal data placement
over a cache network where its topology and the demand rates
are unknown. Their objective is to determine the data place-
ment that maximizes the reduction of the routing cost due to
intermediate caching. To obtain their goal, they proposed a
distributed, adaptive algorithm that performs stochastic gra-
dient ascent on a concave relaxation of the expected caching
gain, and constructs a probabilistic content placement within
a factor from the optimal, in expectation.

Sermpezis et al. have built their research [33] on the
assumption that the requested data may not be cached in
the helper that the user is connected to. Then, the network
recommends other cached data to the user that have high
similarity with the requested data. If the user accepts one of
the recommendations, soft cache-hit occurs. They formulated
the optimal femtocaching problem with soft cache hit and

188940 VOLUME 8, 2020

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

TABLE 1. List of symbols.

proposed an efficient algorithm with provable performance.
It is worth noting that although other notations of flexibility
has been considered in [33], it is completely different from
our framework.

In cache networks, machine learning techniques can be
applied to predict content popularity and design accurate con-
tent request model [34]–[37]. This can help to identify suit-
able cache contents which results in higher cache hit ratio and
lower delivery delay. Unlike the works which exploit machine
learning techniques to evaluate the distribution statistics of
users’ requests, in our paper the statistics of users’ requests
are assumed to given by a known distribution (i.e., general-
ized Zipf function).

LIST OF SYMBOLS
For more readability of paper, below we provide the list of
symbols and some descriptions exclusively for our system
model in Table 1.

III. SYSTEM MODEL AND NETWORK TOPOLOGY
In this research, we study a heterogeneous cellular region
which includes an MBS capable of access to a library of F
files, i.e.,L = {w1,w2, . . . ,wF }. This region also contains N
femto cell stations or helpers. Each of these helpers is capable
of caching only M files, in network off-peak hours, due to
its storage limitations. This region, additionally, comprises
U users as shown in Fig. 2. All users, in this region, have
connection to the MBS. On the other hand, only those users
who are within the coverage range of a helper are able to have
a connection with that helper. This implies that a user can
have either zero, one or even more connections to helpers.
We focus on one-directional connection where users can
only receive files from MBS or helpers. The MBS is able
to provide requested files to the users with the largest delay
compared to the delays that helpers can provide the same files
if they have them already cached. If the helpers, connected
to the users, do not have the requested files cached, then
the users will have to experience the largest delay to receive

the files fromMBS. MBS’s long delay is considered to be the
same for all users. On the other hand, helpers have different
delays to provide the requested files to users. Therefore,
we need to determine if i th user (ui) has a connection with
j th helper (hj), and how much delay ui will experience by
receiving the requested file from hj. For the sake of simplicity,
we ignore all physical channels non-idealities such as inter-
ference and fading to avoid additional complexity. Hence,
a user can receive a file from a helper without error if there is a
connection between them. Due to the inherent complexity of
our problem, this assumption avoids additional complexity.
We define a matrix Z as the delay matrix, which its element
(zhj,ui) represent the delay between ui and hj.

Z =

zh0,u1 zh0,u2 · · · zh0,uU
zh1,u1 zh1,u2 · · · zh1,uU
zh2,u1 zh2,u2 · · · zh2,uU
...

...
. . .

...

zhN ,u1 zhN ,u2 · · · zhN ,uU

((N+1)×U)

Some remarks should be noted in this matrix as follow:
• We have: zhj,ui > 0, ∀ 1 6 j 6 N and 1 6 i 6 U .
• If zhj,ui = ∞, it means that there is no connection
between hj and ui.

• zh0,ui > 0, ∀ 1 6 i 6 U , where it represents the
connection delay between ui and the MBS.

Entries of matrix Z are dependent on users’, helpers’ and
MBS’ locations (Cartesian coordinates {x, y}) in the cellular
region. More precisely, we have:

zhj,ui =

{
Ctj(dα(hj, ui)) , if d(hj, ui) 6 rj
∞ , if d(hj, ui) > rj

(1)

where C and α are two constants. Distance between hj and ui
is defined as:

d(hj, ui) ,
√
(x(hj)− x(ui))2 + (y(hj)− y(ui))2 (2)

In (1), we drive tj as below where it shows the number of
connected users to each helper:

tj =
U∑
i=1

1(d(hj, ui) 6 rj) (3)

where 1(.) is the indicator function, tj is introduced because
the bandwidth of each helper is shared among the users
connected to it. Now that connections and delays between
users and helpers in the cellular region are defined, we need
to investigate the cached files in helpers. Consequently,
we define a matrixQ as the cached content placement matrix,
such that its element qwf ,hj indicates if f

th file (wf) is cached
in hj.

Q =

qw1,h1 qw1,h2 · · · qw1,hN
qw2,h1 qw2,h2 · · · qw2,hN
...

...
. . .

...

qwF ,h1 qwF ,h2 · · · qwF ,hN

(F×N)

VOLUME 8, 2020 188941

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

If wf is cached in hj, then: qwf ,hj = 1; otherwise, qwf ,hj = 0.
As it is usually considered in the literature, when the user
requests for only one file wf , file’s popularity distribution
follows the univariate Zipf distribution [16], [38]. This dis-
tribution is defined as follows:

Pr(wf) =
(rank(wf))−λ

F∑
f=1

(rank(wf))−λ
, wf ∈ L (4)

where the rank(wf) shows each file’s popularity rank in the
library. Next, we add flexibility to users’ requesting format
to propose the ides of flexible users.

A. FLEXIBLE USER: IDEA AND IMPLICATIONS
We herein present the idea of flexible user in addition to one
of its characteristics. Moreover, we relate this concept to QoS
and QoE.
Definition: A user in a wireless network is defined as a

flexible user where it requests multiple data with a common
feature, from which the user is interested in receiving any-
one. This creates a subset of multiple data from the library.
We refer to this subset as a preferred subset. In this manner,
a flexible user would be satisfied even if it receives only one
of the requested data from his preferred subset. As in a higher
level of analysis, this simply increases the probability of one
of the requested data to be delivered to a flexible user, which
increases the QoE. Consequently, this constructively impacts
QoS. Associated with this idea, we define the flexibility index
where it shows the number of requested data by a flexible
user i.e. preferred subset size, Let R(K) denotes the set of
flexible requests (preferred subsets) that contain exactly K
files. In other words, R(K) , {Sl |Sl ⊆ L, |Sl | = K }. The
following example will more clarify this concept.
Example:We illustrate the application of flexible user con-

cept with two important scenarios. The first scenario happens
where a flexible user requests for some movies within the
comedy genre. Meanwhile, other movies’ factors are not
important, e.g., the director, stars etc. This creates a preferred
subset withmultiplemovies with a common feature, the genre
of being comedy. Through an example, we later on statis-
tically show that requesting for multiple data will increase
the probability of one of the requested data to be cached in
helper. The second scenario exemplifies a database where any
data including a specific feature is of interest. For instance,
a group of researchers who are conducting a research on the
human genome. They are intending to use samples of people’s
DNA stream with a specific lung disease. For this research,
the record of these people’s age (people between the ages
of 60 and 65) is important for their analysis. On the other
hand, other factors such as the city of residence, place of
birth, geographical area, and type of treatment do not play
a notable role. This is where the definition of flexible user
can help categorize the data. A clear intuition can be seen
in Fig. 2 where u1 and u2 request for sets of {w4,w8,w10} and
{w6,w9,w12}, respectively. u1 is connected to both h1 and h2,

which have w8 and w10 cached, respectively. u1 receives w8
from h1 since h1 offers a smaller delay compared to what h2
offers. This way, u1 is satisfied since it has received one of
the requested data with a smaller delay. The same procedure
applies to u2 with one difference; that is, u2 is only connected
to h2. The delay offered by h2 is much smaller than MBS.
Thus, u2 receives w6 from h2.
Our motivation to provide multi-variable Zipf distribution

is that the flexible user requests a subset of files rather than
a single file. Thus, we are working with distributions on
subsets rather than single files. We are inspired by [39] to
extend single-variable Zipf distribution (4) to generalized
Zipf distribution (5). We generalize the distribution in (5)
in order to model the popular data with a flexible user’s
format of the request. In order to accomplish this, we propose
the following probability mass function (PMF) of flexible
requests. It is worth noting that this generalized distribution
is also a power-law distribution based on the sum of the ranks
of files in each subset.

Pr (Sl) =

(
∑
wf ∈Sl

rank(wf))−λ

∑
Sl∈R(K)

(
∑
wf ∈Sl

rank(wf))−λ
, Sl ∈ R(K) (5)

where rank(wf) = f . The above equation represents a PMF,
since every entity is positive and sums up to one. It should be
noted that if flexibility index is K = 1, the distribution in (5)
reduces to the normal Zipf distribution in (4). In other words,
the univariate distribution as defined in (4) corresponds to the
special case where the subset size is equal to 1.
Example: Let L = {w1,w2,w3,w4} and K = 3. R(3)
has four elements including: S1 = {w1,w2,w3}, S2 =

{w2,w3,w4}, S3 = {w1,w3,w4} and S4 = {w1,w2,w4}. For
instance, the probability that the flexible user requests S2 is
obtained by Pr(S2) =

(2+3+4)−λ
B , where B = (1+ 2+ 3)−λ+

(1+ 2+ 4)−λ + (1+ 3+ 4)−λ + (2+ 3+ 4)−λ.

IV. PROBLEM SETUP
In this section, we formulate the problem of finding the
optimal data placement in helpers, minimizing the average
total delivery delay. Then, we analyze the complexity of the
optimization problem.

A. DERIVATION OF AVERAGE DELIVERY DELAY PER USER
In order to derive the average total delivery delay per user,
we consider a system model where all the parameters defined
in the previous section such as placement matrix Q, network
topology and files’ popularity distribution are known. Then,
we derive the average delivery delay per user. Equation (6),
as shown at the bottom of the page shows the average delay
of the network for delivering all the requests. Next we discuss
its derivation.

As mentioned in the system model, a user might have a
connection to more than one helper. Therefore in order to find
the helper with the least delay, the user sorts out the helpers

188942 VOLUME 8, 2020

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

based on their delivery delay in ascending order (Fig. 3)
and downloads from the helper with the least delay which
meets its request. The ascending order results in H(ui) =
{hI (1, ui), hI (2, ui), . . . , hI (βui , ui)}, where βui is the number
of helpers plus the base station. By default, all users in
the cellular network have a connection to MBS, which is
characterized by the largest delivery delay. Therefore, MBS
holds the last position in the sorting order H(ui). Let assume
hI (m, ui) is the helper with the minimum delay which con-
tains at least one of the files within its requested set of files
Sl . The term (7) shows the indicator function for the case that
the helper hI (m, ui) contains at least one of the files within
the request Sl . Also, the term (8) indicates that none of the
files requested by the user is cached in a helper that has less
delivery delay compared to hI (m, ui).

[1−
∏
wf ∈Sl

(1− qwf ,hI (m,ui))] (7)

[
m−1∏
j=1

∏
wf ∈Sl

(1− qwf ,hI (j,ui))] (8)

[

βui−1∏
j=1

∏
wf ∈Sl

(1− qwf ,hI (j,ui))] (9)

Additionally, the term (9) is also an indicator where points to
those requested files that are not cached in which any helpers
connected to the user. As a result, the user needs to receive
the file form MBS. Finally, Dui is the average delay for i th

user.

B. PROBLEM FORMULATION
The minimization of the total average data delivery delay
by finding the optimal data placement in helpers can be
expressed as Problem 1.
Problem 1:

maximize
Q

U∑
i=1

(zh0,ui − Dui) (10)

subject to
F∑
f=1

qwf ,hj 6 M , ∀hj (10-a)

Q ∈ {0, 1}F×N (10-b)

Constraint (10-a) expresses the helpers’ cache sizes limita-
tions. The other constraint (10-b) points to the binary value

FIGURE 3. Sorted helpers {H1 → Hj → Hβui
} based on their delivery

delay to user ui , where Hj is short form of hI(j,ui).

of matrix Q, which indicates if a file is cached in a helper.
As discussed later, the problem structure enables us to provide
an efficient solution, despite finding the optimal solution is
computationally intractable.

C. COMPLEXITY ANALYSIS
The optimal solution for Problem 1 provides the data place-
ment in helpers which minimizes the total average data deliv-
ery delay. The optimization problem is an integer program-
ming as all the variables are binary integers. This problem is
NP-complete as stated below.
Lemma 1: Problem 1 is proved to lie within NP-complete

problems.
Proof: In the case of K = 1, Problem 1 reduces to the

one considered in [20]. Since the problem in [20] is proven to
be NP-complete, thus, Problem 1 is also NP-complete.

V. APPROXIMATION SOLUTIONS
As we proved that Problem 1 is an NP-complete problem,
the exhaustive search algorithm as the optimal solution for
problem 1 can be applied only to small-scale networks.
On the other hand for practical scales, we need to utilize
approximation solutions. One of the approximation solutions
is called greedy algorithm. The Greedy algorithm is an algo-
rithm paradigm that builds up a solution by making the local
optimum choice at each iteration with the intention of finding
the global optimum. There is no convergence guarantee in

Dui =

βui−1∑
m=1

zhI (m,ui),ui
∑

Sl∈R(K)

{[1−
∏
wf ∈Sl

(1− qwf ,hI (m,ui))][
m−1∏
j=1

∏
wf ∈Sl

(1− qwf ,hI (j,ui))] · Pr (Sl)}

+ z0,ui
∑

Sl∈R(K)

[

βui−1∏
j=1

∏
wf ∈Sl

(1− qwf ,hI (j,ui))] · Pr (Sl) (6)

VOLUME 8, 2020 188943

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

general. However, if the problem has a submodular struc-
ture with matroid constraints, the greedy algorithm performs
within a constant factor as good as the optimal solution [40].
In the following, we will prove that Problem 1 has this prop-
erty and the greedy algorithm guarantees an approximately
optimal solution. Moreover, as discussed later, we invoke the
submodular structure of the problem to provide an algorithm
called speedy greedy which performs exactly the same as the
greedy algorithm but significantly reduces the computational
complexity. There are three steps in proving this [41]. Each
following lemma and theorem will explore the steps in our
work, and their corresponding proofs are provided right after
them. First, we provide the definition of matroid:
Definition: A matroid is a structure that generalizes the

notion of independence in linear algebra [42]. The most sig-
nificant matroid’s concept in vector space is the expression of
independent sets so that the matroid is defined as a pair (V, I)
consisting of a finite ground set V and I. I is a collection of
independent subsets of V satisfying the following properties
[40]:

• A ⊂ B ⊂ V and B ∈ I implies A ∈ I.
• A,B ∈ I and |B| > |A| implies ∃ e ∈ B \ A such that
A ∪ {e} ∈ I.

Lemma 2: Problem 1 constraints, (10-a) and (10-b), are in
the form of matroid constraints.

Proof: Since Problem 1 constraints are identical to
constraints of the problem considered in [20], it can be thus
concluded that the provided proof in [20] can also prove that
Problem 1 constraints, (10-a) and (10-b), are in the form of
the matroid.
Lemma 3: The objective function of Problem 1 has mono-

tonicity property.
Proof: Since by adding a new file to cache placement,

it is more likely to download the request with less delay, the
value of objective function cannot decrease. As a result, the
objective function is monotone.
Theorem 1: The Problem 1 objective function is a sub-

modular one.
Proof: The proof procedure is similar to [20] but details

are different due to the flexibility of user request. If V is a
finite ground set, a submodular function is a set function f :
2V → R, if for all sets A,B ⊂ V with A ⊂ B and every
x ∈ V\B, we have f (A ∪ {x}) − f (A) ≥ f (B ∪ {x}) − f (B).
First we define a ground set V comprised of elements xwf ,hj
denoting the placement of file wi into the cache of helper hj,
i.e., V = {xw1,h1 , xw2,h1 , . . . , xwF ,hN }. LetQ ⊂ V denotes the
placement set corresponding to matrix Q such that xwf ,hj ∈
Q if and only if qwf ,hj = 1. We consider the set function
Gui (Q) , zh0,ui − Dui and prove the submodularity of Gui .
To this end, we will show that if the placement setQ becomes
larger, marginal gain value (the amount of increase in Gui)
of adding a new file to a helper decreases. We consider two
placement sets Q and Q′ where Q ⊂ Q′ ⊂ V . Consider
adding a file wf to both placement sets in helper hj and focus
on user request Sl which contains wf . Let 1Q′ , Gui (Q′ ∪

FIGURE 4. Possible states of j th helper placement in two sets of different
combinations of how files can be cached in helpers.

{xwf ,hj}) − Gui (Q′) and 1Q , Gui (Q ∪ {xwf ,hj}) − Gui (Q).
Also, hI (n,ui) and hI (n′,ui) denote the helper with the least delay
that user ui is able to retrieve at least one file from request Sl ,
for the file placementQ andQ′, respectively. SinceQ ⊂ Q′,
we infer zhI (n,ui) ≥ zhI (n′,ui) (i.e., due to the larger set of files
placed in helpers for the file placementQ′, user ui can retrieve
the request with less delay).

By adding wf to both placement sets, two cases are
considerable:

1) zhI (n′,ui) < zhI (j,ui) : as illustrated in state 1 in Fig. 4,
we deduce that according to placementQ′, user ui can down-
load the request from a helper with lower delay compared to
huij , i.e., 1Q′ = 0. if zhI (n,ui) < zhI (j,ui) , as illustrated in state
2 in Fig. 4, we also infer 1Q = 0. Otherwise, by adding wf
to file placement Q, user ui is able to decrease the download
delay by downloading the file from the helper hj. In this case,
1Q = Pr(Sl){zhI (n,ui) − zhI (j,ui)}. Obviously, 1Q ≥ 1Q′ .

2) zhI (n′,ui) > zhI (j,ui) : as illustrated in state 3 in Fig. 4, Hence,
1Q′ = Pr(Sl){zhI (n′,ui) − zhI (j,ui)}, similarly, as illustrated in
state 4 in Fig. 4, we have 1Q = Pr(Sl){zhI (n,ui) − zhI (j,ui)}.
Noting that zhI (n′,ui) ≤ zhI (n,ui) , we infer that 1Q ≥ 1Q′ .

Hence, we have proved the submodularity of Gui . Since
the objective function of Problem 1 is summation of Gui , and
the summation of submodular functions is also submodular,
the proof is complete.
Now we have proved that Problem 1 is in the form of max-

imizing a monotone submodular function subject to matroid
constraints. In this case, the greedy algorithm performswithin
a constant factor of 1

2 as good as the optimal solution [41],
[43]. Hence, we have the following lemma:
Lemma 4: Greedy algorithm 1 achieves a 1

2−

approximation solution for Problem 1.

A. GREEDY ALGORITHM
As we proved in the previous section the problem has a nice
property which allows us to efficiently exploit the greedy
algorithm. This algorithm initially starts off working over
an empty placement set (A = ∅). In each step, a file with
maximum marginal value is added to the placement set while
considering the feasible solutions for the Problem 1. Let Ah
denote the subset ofA which is placed in the cache of helper
h. Vh denotes the set of all files that might be cached in helper
h. Also, F(A) denotes the feasible set of elements (files)
which can be added to placement set A, while satisfying the
helper cache size constraints. i.e., F(A) = {x ∈ V\A |
|({x} ∪ Ah) ∩ Vh| ≤ M ,∀h}. This algorithm starts off from

188944 VOLUME 8, 2020

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

Algorithm 1 Greedy Algorithm for Proposed System Model
Input: V
Output: A

1: Initialize
2: A← ∅
3: while CacheContent (A, hj) ≤ M for some j do

4: x∗← argmax
x∈F (A)

U∑
u=1

(Gu(A ∪ {x})− Gu(A))

5: A← A ∪ {x∗}
6: end while
7: function CacheContent(A, hj)
8: t ← 0
9: for all xi,wf ∈ A do

10: if i = hj then
11: t ← t + 1
12: end if
13: end for
14: return t
15: end function

where there is no file cached in helpers. Thus, users will
need to request their preferred set of files from MBS. This
results in the initial delivery delay to be the largest one.
In each iteration, the greedy algorithm adds one element
with the maximum marginal value to the placement set while
maintaining the feasibility of the solution. In other words,
at each iteration a feasible file placement that maximizes the
reduction in total average delivery delay (compared to the
previous iteration) is selected and added to the placement
set. This algorithm continues until each helper cache size
is filled. Due to the submodularity property of the problem,
the marginal value of each file in the placement set decreases
while more files are added toA. Algorithm 1 summarizes the
greedy method.

B. SPEEDY-GREEDY ALGORITHM
In this subsection, we propose a faster greedy algorithm,
called speedy-greedy, which achieves the same performance
as the standard greedy algorithm (Algorithm 1). Our pro-
posed algorithm is based on the accelerated variant of the
greedy algorithm which was originally proposed by Minoux
et. al in [44]. This method leverages on the monotonicity
and submodularity of the objective function in order to avoid
unnecessary calculation in the selection process of the cache
placement. Since the speedy greedy algorithm only elimi-
nates the unnecessary calculations, the final solution of the
speedy greedy exactly coincides with the standard greedy
algorithm.

Let 1x(A) denote the marginal value of adding element
x to the placement set A, i.e., 1x(A) =

∑U
u=1(Gu(A ∪

{x}) − Gu(A)). The key idea is that as the placement set
grows, the marginal value 1x can never increase. In other
words, if A(k) and A(k ′) denote the placement set at iteration
k and k ′, respectively (k < k ′) then, since A(k)

⊂ A(k ′)

Algorithm 2 Speedy Greedy Algorithm for Proposed System
Model

Input: V
Output: A

1: Initialize
2: A← ∅
3: k ← 0
4: ρ(x)←∞ ;∀x ∈ V
5: while CacheContent (A, hj) ≤ M for some j do
6: k ← k + 1
7: if k = 1 then
8: ρ(x)← 1x(A) ; ∀x ∈ V
9: x∗← argmax

x∈V
ρ(x)

10: A← A ∪ {x∗}
11: else
12: x̃ ← argmax

x∈F (A)
ρ(x)

13: ρ(x̃)← 1x̃(A)
14: X ← {x | x ∈ F(A), ρ(x) ≥ ρ(x̃)}
15: ρ(x)← 1x(A) ; ∀x ∈ X
16: x∗← argmax

x∈X
ρ(x)

17: A← A ∪ {x∗}
18: end if
19: end while
20: function CacheContent(A, hj)
21: t ← 0
22: for all xi,wf ∈ A do
23: if i = hj then
24: t ← t + 1
25: end if
26: end for
27: return t
28: end function

it holds that 1x(A(k)) ≥ 1x(A(k ′)) for all x ∈ V; There-
fore, we maintain an upper bound ρ(x) (initially set to ∞)
on the marginal value of all elements sorted in decreasing
order. In the first iteration, similar to the standard greedy
algorithm, we set A(0)

= ∅ and calculate the element with
the largest marginal value (x∗) to construct A(1). We also
calculate ρ(x) for all the elements. In the next iterations, say
iteration k , we calculate the feasible element at the top of
the list, i.e., x̃ = argmax

x∈F (A(k−1))
ρ(x). We then update the upper

bound for x̃, i.e., ρ(x̃) = 1x̃(A(k−1)) If after the update
ρ(x̃) > ρ(x) for all feasible element x 6= x̃, submodularity
guarantees that x̃ is the element with the largest marginal
value. Therefore, A(k)

:= A(k−1)
∪ {x̃}. Hence, instead of

computing 1x(A(k−1)) for every feasible element, we only
need one calculation, which significantly reduces the compu-
tational complexity. On the other hand, if ρ(x̃) is not larger
than all the other elements ρ(x), we just need to update ρ(x)
for the elements that are above ρ(x̃), due to submodularity.
In other words, in general, instead of calculating1x for every
feasible elements, we just need to calculate 1x for those

VOLUME 8, 2020 188945

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

ones that are above the threshold determined as ρ(x̃). This
leads to a significant reduction in computational complexity,
since usually the recalculation is necessary only for a small
fraction of the elements. This algorithm continues until each
helper cache block is filled. This procedure is summarized in
Algorithm 2.

In conclusion, speedy greedy algorithm invokes the prob-
lem structure to eliminate unnecessary calculations and
reduce computational complexity. Based on the above dis-
cussion, speedy greedy algorithm (like the standard greedy
algorithm) provides 1

2−approximation solution for Problem 1
(lemma 4).

C. PIPAGE ROUNDING ALGORITHM
Calinescu et. al. provide a randomized algorithm for maxi-
mization of a general monotone submodular function sub-
ject to matroid constraints [41]. This algorithm consists
of two steps. First, the integral problem is turned into a
continuous problem using multilinear extension. Second,
using the pipage rounding technique, the fractional solu-
tion is converted to an integral solution. This algorithm
achieves a (1 − 1

e)−approximation. It is worth noting that
although this algorithm gives a better performance guaran-
tee than the greedy solution, its computational complexity
is very high which makes it inappropriate for implemen-
tation especially when the size of network grows. Specif-
ically, running time of the pipage algorithm is O((NF)8).
On the other hand, for the greedy algorithm, running time
is O(F2 N 2 U) [20]. Consequently, greedy solution is
more suitable in general, since the size of problem is
typically large.

It should be noted that a low complexity deterministic algo-
rithm which provides a (1 − 1

e)−approximation is available
for the special case where the delay to receive the requested
data from helpers is equal for all users, i.e., zhj,ui for all
hj ∈ βu−i − 1 and ui ∈ U equates z1,1 and also z1,1 < zh0,ui .
In this case, the Problem 1 is simplified as Dui is derived
as:

Dui = z1,1
∑

Sl∈R(K)

{[1−
∏
wf ∈Sl

(1− qwf ,hj)] · Pr (Sl)}

+ z0,ui
∑

Sl∈R(K)

[
∏
wf ∈Sl

(1− qwf ,hj)] · Pr (Sl) (11)

This deterministic algorithm involves solving a linear
relaxation problem and pipage rounding [45]. We refer the
interested reader to [20] for further details. The running time
of the algorithm tends toO((U+N)3.5F3.5). Despite the sim-
plicity of the algorithm, it is not interesting for our scenario
as we assume that delay to receive the requested data from
helpers depends on their distance (eq (1)).

VI. NUMERICAL RESULTS
In this section, we illustrate our system model and evalu-
ate the performance of the proposed algorithms. We first
build a cellular region as depicted in Fig. 5. In this region,

FIGURE 5. This network area represents one of the simplified system
model defined in section III. In this area, there are 15 users (U = 15),
4 helpers (H = 4), and a MBS.

TABLE 2. Fixed parameters in greedy and speedy-greedy analysis.

the MBS’s and helpers’ coverage ranges are 100 and 35
meters, respectively. Users’ and helpers’ locations are first
randomly determined and then set to be fixed for compar-
ison purposes. Fixed parameters in modeling the popular
data based on generalized Zipf are as in Table 2. Users’
delay for receiving data from either MBS or helpers are
calculated from (1). In order to investigate the performance
of the greedy algorithm (and speedy greedy), we com-
pare the results with the exhaustive search, which leads
to the optimum data placement. This comparison can be
observed in Fig. 6. As explained before, exhaustive search
algorithm can only be applied to small-scale networks, and
has no practical applications. Hence, we only conduct a
preliminary comparison with the greedy algorithm for a
given scenario.

Fig. 6 shows the total average delivery delays for all users
where the horizontal axis shows the impact of the value of
the exponent characterizing the generalized Zipf distribution.
As λ increases, the popularity of the first file approaches 1.
This is where the performance of the two algorithms tends to
merge. Moreover, We expect that the average delivery delay
decreases while the popularity of requested data increases.
That is because as the popularity of a file increases, caching
the file is beneficial to a larger number of users. This can
eventually result in more notable decrease in the total average
delivery delay.

188946 VOLUME 8, 2020

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

FIGURE 6. Delivery delay decrease comparison for exhaustive search and
greedy algorithms to find the optimal data placement. In this comparison,
we have set U = 10, K = 2 and M = 2.

A. GREEDY ALGORITHM ANALYSIS
In order to comprehensively evaluate the performance of
this algorithm, we investigate the impact of the follow-
ing important factors on the total average delivery delay
in the cellular region. Moreover, in order to compare our
results with one of the prominent existing works in literature,
we set K = 1 to represent the system model provided
in [20].

1) FLEXIBILITY INDEX EFFECT
Fig. 7a shows the effect of flexibility index on the total
average delivery delay. By increasing the flexibility index,
the total average delivery delay notably decreases. This
implies the fact that if the size of the flexible requested data
set is larger, it is more likely that the user is satisfied with
the data cached in a nearby helper, instead of downloading its
request from theMBS or a distant helper. Our systemmodel’s
experiment shows decrease in average delivery delay in the
curves where M = 2, M = 4 and M = 6 by 15%, 14% and
11%, respectively for the points where K > 1 compared to
K = 1 (i.e. the result in [20].)

2) CACHE SIZE EFFECT
The effect of cache size on total average delay is illustrated
in Fig. 7b. This figure shows that increasing the helper’s
cache size will more drastically affect on decreasing total
average delivery delay. Based on the greedy algorithm’s
operation, we know that as the number of iterations of the
algorithm increases, it more closely reaches to optimal result
where it minimizes the average delivery delay. For example,
the curves for K = 4 and K = 6 indicate lower average
delivery delay by 18% and 26%, respectively compared to the
curve where K = 1. On the other hand, our defined system
model in this experiment decreases the average delivery delay
by 22%. Increasing the cache size allows us to cache a larger
number of popular files in the helpers. Hence, users can

FIGURE 7. Greedy algorithm’s performance with the effect of different
parameters of the system model.

download their requests with a smaller delay. It should be
noted that increasing the cache size induces the storage cost.
Therefore, we are allowed to increase it up to a particular
limit.

3) NUMBER OF HELPERS EFFECT
The Number of helpers is one of the most important factors
on total average delivery delay. It is clear that as the number
of helpers increases, the total average delivery delay will
decrease because the network will be capable to cache more
popular data and cover more number of flexible users. Fig. 7c
shows how drastically number of helpers will affect the total
average delivery delay. In this figure, the curves whereK = 4
and K = 6 show lower average delivery delay by 23% and
31%, respectively compared to the curve where K = 1.
Hence, we can say that this experiment decreased the system
model’s average delivery delay by 27%.

4) NUMBER OF FLEXIBLE USERS EFFECT
It is important to evaluate how the number of flexible users
will affect the total average delivery delay based on the flexi-
bility index. Fig. 7d shows the increase of total average deliv-
ery delay when number of flexible users increases. It is clear
that by randomly adding flexible users in the cellular region,
the number of requested data increases. This can finally result
in increasing the total average delivery delay. Even though
increasing the number of flexible users increases the average

VOLUME 8, 2020 188947

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

FIGURE 8. Computational complexity comparison of greedy and
proposed speedy-greedy algorithms where H = 15, M = 4, U = 60, F = 15
and K = 5.

FIGURE 9. Computational complexity comparison of greedy and
speedy-greedy algorithms with number of helpers and their cache sizes
as variables in system model.

delivery delay, increasing the flexibility index contributes to
lower average delivery delay for a certain number of users.
To be specific, the curve where K = 4 and K = 6 indicates
lower average delivery delay by 9% and 15%, respectively
compared to the curve where K = 1.

B. SPEEDY-GREEDY ANALYSIS
As mentioned earlier, speedy-greedy algorithm achieves the
same performance as the standard greedy algorithm with less
computational complexity. We herein compare the computa-
tional complexity of the speedy-greedy and standard greedy
algorithm. In order to have a fair comparison with the greedy
algorithm’s performance, we set the variable parameters of
both algorithms to be the same. The purpose of this com-
parison is to show how much less computational complexity

FIGURE 10. Computational complexity comparison of greedy and
speedy-greedy algorithms where K = 1.

is required by the speedy-greedy algorithm. Fig. 8 shows a
general computational complexity comparison of the greedy
and speed-greedy algorithm in terms of the required number
of iterations for a given scenario.

Two of the factors that significantly affect the compu-
tational cost are number of helpers and their cache size.
Therefore, we investigate the required number of iterations
for different values of these factors in Fig. 9.

As can be seen, the speedy-greedy algorithm reduces the
computational cost by 70% where H = 10 and M = 4.
Similarly, the computational cost is reduced by 64% for the
speedy-greedy algorithm with the same number of cache
sizes while H = 30. On the other hand, by changing the
value of the helper’s cache size, the computational cost for
speedy-greedy algorithm is reduced by 77% and 55% where
M = 3 andM = 6, respectively with H = 20.

In order to compare our work with existing works in this
area, we set K = 1 to represent the system model provided
in [20]. This speedy greedy algorithm achieves the same per-
formance as the greedy algorithm provided in [20]. However,
as depicted in Fig. 10, the computational complexity of our
proposed speedy-greedy algorithm is 74% and 63% lower
in Fig. 10a and Fig. 10b, respectively.

VII. CONCLUSION
In this research, we proposed the concept of the flexible user
where it requests a preferred subset of data in the library and is
satisfied by receiving any data within this subset. We derived
the generalized Zipf distribution in order to model the users’
request probability. We addressed the problem of optimal
cache placement in order to minimize the total average deliv-
ery delay. We showed that although finding the optimal solu-
tion is an NP-hard problem, but the problem exhibited sub-
modularity property that can be leveraged to provide an effi-
cient approximated algorithm (greedy) with provable perfor-
mance. We also proposed another algorithm, speedy-greedy,
which significantly reduces the computational complexity
while achieving the same performance. According to our
numerical results, the computational complexity is reduced
by at least 50% for different flexibility indexes greater than
2. This algorithm reduces computational complexity by at
least 60% where the flexibility index equals 1. Numerical
results indicate that our proposed ideas of flexible user will

188948 VOLUME 8, 2020

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

end up decreasing the average data delivery to users by 19%
in comparison with works in the literature. This will result
in more flexibility at users’ side as well as requesting for
multiple files. All of these benefits together increases users’
QoE in the peak-traffic duration of a HetNet utilizing mobile
edge caching.

REFERENCES
[1] A. Kiani and N. Ansari, ‘‘Edge computing aware NOMA for 5G net-

works,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 1299–1306, Apr. 2018.
[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,

and J. C. Zhang, ‘‘What will 5G be?’’ IEEE J. Sel. Areas Commun., vol. 32,
no. 6, pp. 1065–1082, Jun. 2014.

[3] M. Agiwal, A. Roy, and N. Saxena, ‘‘Next generation 5G wireless net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 1617–1655, 3rd Quart., 2016.

[4] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and
N. Venkatasubramanian, ‘‘Mobile cloud computing: A survey, state
of art and future directions,’’ Mobile Netw. Appl., vol. 19, no. 2,
pp. 133–143, Apr. 2014.

[5] N. Chalaemwongwan and W. Kurutach, ‘‘Mobile cloud computing:
A survey and propose solution framework,’’ in Proc. 13th Int. Conf.
Electr. Eng./Electron., Comput., Telecommun. Inf. Technol. (ECTI-CON),
Jun. 2016, pp. 1–4.

[6] J. Yao, T. Han, and N. Ansari, ‘‘On mobile edge caching,’’ IEEE Commun.
Surveys Tuts., vol. 21, no. 3, pp. 2525–2553, 3rd Quart., 2019.

[7] X. Sun and N. Ansari, ‘‘Latency aware workload offloading in the cloudlet
network,’’ IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484, Jul. 2017.

[8] T. Minh Nguyen, W. Ajib, and C. Assi, ‘‘Designing wireless backhaul
heterogeneous networks with small cell buffering,’’ IEEE Trans. Commun.,
vol. 66, no. 10, pp. 4596–4610, Oct. 2018.

[9] L. Li, G. Zhao, and R. S. Blum, ‘‘A survey of caching techniques in
cellular networks: Research issues and challenges in content placement
and delivery strategies,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 1710–1732, 3rd Quart., 2018.

[10] E. Bastug, M. Bennis, and M. Debbah, ‘‘Living on the edge: The role of
proactive caching in 5Gwireless networks,’’ IEEE Commun. Mag., vol. 52,
no. 8, pp. 82–89, Aug. 2014.

[11] Y. Cui and D. Jiang, ‘‘Analysis and optimization of caching and multicast-
ing in large-scale cache-enabled heterogeneous wireless networks,’’ IEEE
Trans. Wireless Commun., vol. 16, no. 1, pp. 250–264, Jan. 2017.

[12] K. Hamidouche, W. Saad, M. Debbah, J. B. Song, and C. S. Hong,
‘‘The 5G cellular backhaul management dilemma: To cache or to serve,’’
IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 4866–4879, Aug. 2017.

[13] M. Alreshoodi and J. Woods, ‘‘Survey on QoEQoS correlation models
for multimedia services,’’ 2013, arXiv:1306.0221. [Online]. Available:
http://arxiv.org/abs/1306.0221

[14] H. J. Kim, D. H. Lee, J. M. Lee, K. H. Lee, W. Lyu, and S. G. Choi,
‘‘The QoE evaluation method through the QoS-QoE correlation model,’’
in Proc. 4th Int. Conf. Netw. Comput. Adv. Inf. Manage., vol. 2, Sep. 2008,
pp. 719–725.

[15] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed,
‘‘Femtocells: Past, present, and future,’’ IEEE J. Sel. Areas Commun.,
vol. 30, no. 3, pp. 497–508, Apr. 2012.

[16] M. Newman, ‘‘Power laws, Pareto distributions and Zipf’s law,’’ Contemp.
Phys., vol. 46, no. 5, pp. 323–351, Sep. 2005.

[17] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, ‘‘Caching as a service:
Small-cell caching mechanism design for service providers,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 10, pp. 6992–7004, Oct. 2016.

[18] D.Malak,M. Al-Shalash, and J. G. Andrews, ‘‘Optimizing content caching
to maximize the density of successful receptions in device-to-device
networking,’’ IEEE Trans. Commun., vol. 64, no. 10, pp. 4365–4380,
Oct. 2016.

[19] M. A. Maddah-Ali and U. Niesen, ‘‘Fundamental limits of caching,’’ IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[20] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire,
‘‘FemtoCaching: Wireless content delivery through distributed caching
helpers,’’ IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413,
Dec. 2013.

[21] X. Sun and N. Ansari, ‘‘EdgeIoT: Mobile edge computing for the Internet
of Things,’’ IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[22] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gunduz, ‘‘Wireless
content caching for small cell and D2D networks,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1222–1234, May 2016.

[23] K. Zahoor, K. Bilal, A. Erbad, and A. Mohamed, ‘‘Service-less video
multicast in 5G: Enablers and challenges,’’ IEEE Netw., vol. 34, no. 3,
pp. 270–276, May 2020.

[24] B. Liu, K. Poularakis, L. Tassiulas, and T. Jiang, ‘‘Joint caching and routing
in congestible networks of arbitrary topology,’’ IEEE Internet Things J.,
vol. 6, no. 6, pp. 10105–10118, Dec. 2019.

[25] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, ‘‘A survey on
low latency towards 5G: RAN, core network and caching solutions,’’ IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 3098–3130, 2018.

[26] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, ‘‘Femtocaching
and device-to-device collaboration: A new architecture for wireless video
distribution,’’ IEEECommun.Mag., vol. 51, no. 4, pp. 142–149, Apr. 2013.

[27] E. Baccour, A. Erbad, K. Bilal, A. Mohamed, and M. Guizani, ‘‘PCCP:
Proactive video chunks caching and processing in edge networks,’’ Future
Gener. Comput. Syst., vol. 105, pp. 44–60, Apr. 2020.

[28] K. Bilal, E. Baccour, A. Erbad, A. Mohamed, and M. Guizani, ‘‘Collab-
orative joint caching and transcoding in mobile edge networks,’’ J. Netw.
Comput. Appl., vol. 136, pp. 86–99, Jun. 2019.

[29] L. Chen, C. Shen, P. Zhou, and J. Xu, ‘‘Collaborative service placement
for edge computing in dense small cell networks,’’ IEEE Trans. Mobile
Comput., early access, Oct. 7, 2019, doi: 10.1109/TMC.2019.2945956.

[30] J. Li, T. Khoa Phan, W. Koong Chai, D. Tuncer, G. Pavlou, D. Griffin,
and M. Rio, ‘‘DR-cache: Distributed resilient caching with latency guar-
antees,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018,
pp. 441–449.

[31] B. Lv, L. Huang, and R. Wang, ‘‘Joint downlink scheduling for file
placement and delivery in cache-assisted wireless networks with finite
file lifetime,’’ IEEE Trans. Commun., vol. 67, no. 6, pp. 4177–4192,
Jun. 2019.

[32] S. Ioannidis and E. Yeh, ‘‘Adaptive caching networks with optimality guar-
antees,’’ IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 737–750, Apr. 2018.

[33] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, ‘‘Soft
cache hits: Improving performance through recommendation and deliv-
ery of related content,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 6,
pp. 1300–1313, Jun. 2018.

[34] J. Shuja, K. Bilal, E. Alanazi, W. Alasmary, A. Alashaikh, and
A. Y. Zomaya, ‘‘Applyingmachine learning techniques for caching in edge
networks: A comprehensive survey,’’ 2020, arXiv:2006.16864. [Online].
Available: http://arxiv.org/abs/2006.16864

[35] G. Plastiras,M. Terzi, C. Kyrkou, and T. Theocharidcs, ‘‘Edge intelligence:
Challenges and opportunities of near-sensor machine learning applica-
tions,’’ in Proc. IEEE 29th Int. Conf. Appl.-Specific Syst., Architectures
Processors (ASAP), Jul. 2018, pp. 1–7.

[36] S. Bommaraveni, T. X. Vu, S. Chatzinotas, and B. Ottersten, ‘‘Active
content popularity learning and caching optimization with hit ratio guar-
antees,’’ IEEE Access, vol. 8, pp. 151350–151359, 2020.

[37] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo, and
M. Dianati, ‘‘Popularity-based video caching techniques for cache-enabled
networks: A survey,’’ IEEE Access, vol. 7, pp. 27699–27719, 2019.

[38] P. G. Sankaran, N. U. Nair, and P. John, ‘‘A family of bivariate Pareto
distributions,’’ Statistica, vol. 74, no. 2, pp. 199–215, 2014.

[39] K. V. Mardia, ‘‘Multivariate Pareto distributions,’’ Ann. Math. Statist.,
vol. 33, no. 3, pp. 1008–1015, Sep. 1962.

[40] A. Krause and D. Golovin, ‘‘Submodular function maximization,’’
Tractability, Pract. Approaches Hard Problems, vol. 3, no. 19, pp. 71–104,
2012.

[41] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, ‘‘Maximizing a mono-
tone submodular function subject to a matroid constraint,’’ SIAM J. Com-
put., vol. 40, no. 6, pp. 1740–1766, Jan. 2011.

[42] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimiza-
tion, vol. 55. Hoboken, NJ, USA: Wiley, 1999.

[43] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, ‘‘An analysis of approx-
imations for maximizing submodular set functions—II,’’ Math. Program.
Study, vol. 8, no. 1, pp. 73–88, 1978.

[44] M. Minoux, ‘‘Accelerated greedy algorithms for maximizing submod-
ular set functions,’’ in Optimization techniques (Lecture Notes in
Control and Information Sciences). Berlin, Germany: Springer, 1978,
pp. 234–243.

[45] A. A. Ageev and M. I. Sviridenko, ‘‘Pipage rounding: A new method of
constructing algorithmswith proven performance guarantee,’’ J. Combinat.
Optim., vol. 8, no. 3, pp. 307–328, Sep. 2004.

VOLUME 8, 2020 188949

http://dx.doi.org/10.1109/TMC.2019.2945956

P. Eslami et al.: New Framework for MEC by Proposing Flexible User in Heterogeneous Cellular Networks

PARISA ESLAMI (Member, IEEE) received the
M.Sc. degree from Islamic Azad University,
Tehran, Iran, in 2020. During her graduate study,
she specifically worked on modeling, evaluation,
and analysis of literature approaches for mobile
edge caching in heterogeneous networks along-
side with proposing a new framework of delivery
data in mobile cache computing. She is currently
working on employing new methods of machine
learning, such as LSTM-DNN and Residual NN,

queuing theory, and coded caching to improve the proposed framework.
She has researched on frequency-domain array signal processing to decrease
BER in spatial-multiplexing MIMO systems.

MOHAMMAD HOSSEIN AMERIMEHR rece-
ived the B.Sc. degree (Hons.) in electrical
engineering from the Isfahan University of Tech-
nology, Isfahan, Iran, in 2005, and the M.Sc. and
Ph.D. degrees in electrical engineering from the
Sharif University of Technology, Tehran, Iran,
in 2007 and 2014, respectively. He was a Vis-
iting Researcher with the Department of Elec-
trical and Computer Engineering, University of
Toronto, Toronto, ON, Canada, from July 2011 to

March 2012. Since 2016, he has been a Faculty Member with the ICT
Research Institute (ITRC), Iran. His research interests include wireless
communications, analytical modelling of communication networks, and
network optimization.

SEYED POOYA SHARIATPANAHI received the
B.Sc., M.Sc., and Ph.D. degrees from the Depart-
ment of Electrical Engineering, Sharif Univer-
sity of Technology, Tehran, Iran, in 2006, 2008,
and 2013, respectively. He is currently an Assis-
tant Professor with the School of Electrical and
Computer Engineering, University of Tehran.
Before joining the University of Tehran, he was a
Researcher with the Institute for Research in Fun-
damental Sciences (IPM), Tehran. His research

interests include information theory, network science, wireless communica-
tions, and complex systems. He was a recipient of the Gold Medal at the
National Physics Olympiad, in 2001.

188950 VOLUME 8, 2020

