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ABSTRACT In this paper, fractional-order calculus theory is used to investigate the geometric law for
intercepting an agile target. In order to overcome the challenges presented by the divergence of line of
sight rate (LOSR) of proportional navigation (PN), the fractional LOSR is used as a compensated term in
the proposed fractional differential geometric guidance law (FDGGL). By adjusting the navigation gain of
the FDGGL, the new proposed guidance law can be transformed into the traditional differential geometric
guidance law (DGGL) and PN. The average overload and ballistic stability of the FDGGL are analyzed
based on the fractional and control theory. Some analytical results about energy consumption and trajectory
variation of the FDGGL were obtained. The simulation results shows that, compared with PN and DGGL,
the FDGGL has better guidance performance when intercepting different maneuvering targets.

INDEX TERMS Missile guidance, differential geometric, fractional, relative motion, command.

I. INTRODUCTION
With advances in science and technology, high speed maneu-
vering targets have becomes a real threat, and intercept-
ing maneuvering targets is a challenging task [1], [2]. It is
difficult to meet guidance accuracy requirements with the
traditional guidance law, and so it is necessary to study new
guidance methods in order to deal with current threats from
the air. The proportional guidance method is widely used
in weapons systems because of its simple form and easy
implementation in engineering [3]–[5]. However, at the end
of interception, the proportional guidance method is prone
to overload saturation caused by the divergence of the line
of sight rate, which leads to full deflection of the actuator.
A number of researchers have improved this guidancemethod
by adjusting the proportion coefficient and compensating for
the acceleration of the target, which greatly improves guid-
ance performance [6]–[8]. Considering that the trajectories
of interceptors and targets are both curves when they are
engaged in space, and that differential geometry theory is just
the classical mathematical theory for studying curves and sur-
faces, research on interceptor trajectories by using differential
geometry theory provides a new perspective for guidance
law design [9]–[12]. In reference [9], differential geometry
theory is introduced into the guidance field for the first time.
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By establishing a line of sight coordinate system, it is bene-
ficial to the trajectory equation of the interceptor described
by curvature and torsion. Thus, the differential geometry
guidance law in three-dimensional space is derived and the
acquisition conditions of the differential geometry guidance
law are analyzed. However, the method of transforming the
guidance instructions from the arc domain to the time domain
is not given in this paper. In reference [12], based on the
theory of the involute in differential geometry, the involute of
the interceptor is deduced by supposing the virtual intercept
point, and then the trajectory of interceptor is obtained by
using the involute of target. The research mainly focuses
on non- maneuvering targets, and so can not be applied
to a maneuvering target, The capture conditions of design
guidance law are not further studied. Based on his research,
combined with Frey’s internal standard frame, Li et al. [13]
designed curvature guidance instructions and torsion guid-
ance instructions in a time domain, transformed the guidance
instructions into a control of attack angle and sideslip angle of
the interceptor, and analyzed the acquisition conditions of the
designed guidance instruction. In order to overcome the loss
of guidance information caused by three-dimensional space
decoupling, Peng et al. [14] designed a novel differential
geometry guidance law based on second-order sliding mode
control and differential geometry theory. The transformation
method of guidance instructions from arc domain to time
domain is given, and the acquisition characteristics of the
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guidance law are analyzed. The successful application of dif-
ferential geometry theory in the field of guidance has opened
new research perspectives for the research of guidance law.
The combination of differential geometry theory and modern
control theory has completed the transformation of guidance
instructions from the arc length domain to the time domain,
which has laid a theoretical foundation for the application of
differential geometry theory.

When we consider the memory effect of fractional cal-
culus, which is related to the state value of the system at a
past time, a fractional derivative has global characteristics.
The fractional derivative of the function shows the history
and dependent process of the function change of the control
system, while the conventional integral order only has the
local property, and the integral derivative is only related to
the state near to the derivative time [15], [16]. The differential
geometry guidance law designed in reference [17] contains
the first derivative of the guidance parameters, such as the
relative velocity of missile and target, the angular velocity of
the line of sight, etc. According to fractional calculus theory,
the integral differential or integral of the guidance parameters
only indicate the relative motion information of missile and
target at the current time. The above guidance laws do not
adopt historical information in the process of missile and
target rendezvous. If the integral calculus of guidance param-
eters is extended to fractional calculus, the designed guidance
law will contain more comprehensive rendezvous informa-
tion, which will directly affect the final guidance effect.
Reference [18] proposed a modified proportional guidance
law based on fractional calculus for the problem of missile
maneuvering target tracking. By selecting a Lyapunov-like
function, it was theoretically shown that the designed frac-
tional order guidance law can hit a maneuvering target with
time-varying normal acceleration. In order to improve the
robustness of intercepting the incoming target, Binfeng Pan
designed a PID type fractional order guidance law by combin-
ing finite time convergence theory and fractional order theory,
and verified the guidance performance of the designed frac-
tional order guidance law with a six degree of freedom simu-
lation [19]. However, this method involves the calculation of
the remaining flight time of interceptor, which will directly
affect the final guidance accuracy. Reference [20] combines
fractional order theory with the traditional PN shape, derives
a fractional order extended proportional guidance law in
three-dimensional space, and analyzes the average overload,
trajectory straightness, and robustness of the guidance law.
The simulation results show that the new fractional order
guidance law can effectively overcome the problem of termi-
nal overload divergence of the traditional guidance law, and
has better performance guidance accuracy. The above frac-
tional order guidance law, described in [18]–[20], is mainly
used in the time domain.

The fractional order theory has never been applied to
the arc length domain. If differential geometry theory is
combined with fractional order theory, the traditional frac-
tional calculus theory is extended to the differential geometry

guidance law, and the integral calculus of the guidance
parameters in the differential geometry guidance law is
extended to the fractional calculus, so as to make full use of
historical information in the course of the engagement. This
will significantly improve the guidance performance of the
differential geometry guidance law.

Based on differential geometry theory, this paper analyzes
the geometric relationship between the interceptor and target
engagement with the help of Frenet. It designs the velocity
direction expression of the interceptor when directly against
the maneuvering target. Considering that the first derivative
of the LOS angle is included in the designed guidance law,
the fractional subdivision of the LOS angle is introduced
to modify the designed guidance algorithm, Moreover, the
difference between the designed guidance law and the tra-
ditional proportional guidance law is analyzed in terms of
average overload and ballistic stability.

II. PRELIMINARY KNOWLEDGE
A. FRACTIONAL CALCULUS
The fractional order differential operators are defined as
follows:

αDλt =


dλ

dtλ
Re(λ) > 0

1 Re(λ) = 0∫ t
0 (dt)

−λ Re(λ) = 0

(1)

where λ is the order of fractional calculus, Re(λ)denotes the
real component of λ,α represents the initial time, αDλt express
the fractional order differential operation.
Definition 1: If the function can bf (t)e derivative of n order

in the domain of definition, here m − 1 ≤ λ ≤ m, and n is a
positive integer, the Caputo fractional calculus is defined as:

aDλt f (t) =
1

0(m− λ)

∫ t

0

f m(τ )
(t − τ )p−m+1

dτ (2)

where 0(x)represents the gamma function, α is the initial
time, and the general initial time in practical problems is 0,
Therefore, formula 2 is abbreviated as Dλf (t).
Definition 2: The fractional calculus of Grunwald-

Letnikov can be defined as follows:

αDλt f (t) = lim
h→0

1
hλ

[(t−a)/h]∑
j=0

ωλj f (t − jh) (3)

where

ωλj =
(−1)j 0(λ+ 1)

0(j+ 1)0(λ− j+ 1)
(4)

[x] represents the largest integer no greater than x. The cal-
culation of ωλj can be realized by recursion, i.e.

ωλ0 = 1, ωλj =
[
1−

1
j
(α + 1)

]
ωλj−1, j ∈ N . (5)

The above two definitions are completely equivalent in
a mathematical sense. However, definition 1 involves
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high-order derivative and integral operations, which are usu-
ally used in theoretical analysis. Definition 2 uses the limit
sum to define the fractional calculus. If the appropriate cal-
culation step is selected, the fractional calculus of the function
can be easily calculated. Numerical calculation of fractional
order derivatives include Fourier series method, direct calcu-
lation method and frequency-domain filtering method. The
direct calculation method is used in this paper.

B. THEORY OF DIFFERENTIAL GEOMETRY
The theory of differential geometry is used to study change in
curve and surface in space. The flight path of the interceptor is
described by using knowledge of differential geometry, which
provides new ideas for the research of guidance methods.
Curvature and torsion are commonly used to describe the
degree of bending and the reverse of space curves in differen-
tial geometry theory. The relations among the tangent vector,
the normal vector, and the sub normal vector of point P on the
curve meet the following formula [17]: t′ = kn

n′ = −kt+ τb
b′ = −τn

(6)

where t is the tangent vector, nis the normal vector, and
bis the binormal vector. This set of formulas is also known
as the Frenet formulas. This group of formulas form the
basic formula of the space curve. Its characteristic is that the
derivative of basic vector t, nand b to arc length s can be
expressed by linear combination of t, nand b. The coefficients
of Frenet formula coefficients form an antisymmetric matrix
which can be expressed as follows: 0 k 0

−k 0 τ

0 −τ 0

 .
The above basic knowledge is the basis of the fractional
differential geometry guidance law.

FIGURE 1. The engagement relation of the missile and the target.

III. DESIGN OF THE FRACTIONAL ORDER DIFFERENTIAL
GEOMETRIC LAW
A. THE DIFFERENTIAL GEOMETRY MODEL OF RELATIVE
MOTION BETWEEN MISSILE AND TARGET
The engagement of the missile and target is shown in Fig. 1.
Where M represents the missile, T represents the target,

tt ,nt represents the unit tangent vector and the unit normal
vector of target motion, θt is the angle between the target tan-
gent vector and the OX axis. tm,nmrepresents the unit tangent
vector and the unit normal vector of missile motion, θm is the
angle between the missile tangent vector and the OX axis,
er , eθ represent the unit vector along the line of sight direction
and perpendicular to the line of sight direction. st , sm are
the arc length of the target and the missile respectively, and
the arc length s of the missile motion is taken as the natural
parameter.

In the course ofmissilemotion, tm,nm constitute the Frenet
frame of missile motion. Assuming the velocities of missile
and target are constant, the curve arc length sm of missile
motion is proportional to the curve arc length st of target
motion, that is

st = msm (7)

m = Vt
/
Vm (8)

where m is the ratio of the target and missile velocities.
According to the geometric relationship between the

missile and the target in Fig. 1, we have the following
formula:

rm = rt − r. (9)

According to the trajectory of the missile and target,
the velocity of the missile and target can be expressed as

Vm =
dsm
dt
,Vt =

dst
dt
. (10)

According to the Frenet frame, differential equation (9) on
both sides can be obtained as follows:

Vmtm = Vt tt − Vmr ′er − rVmθ ′eθ (11)

tm = mtt − r ′er − rθ ′eθ . (12)

The components of relative velocity along the er direction and
perpendicular to the er direction can be expressed as

r ′ = m cos θt − cos θm (13)

rθ ′ = m sin θt − sin θm. (14)

Differential equation (12) on both sides can be obtained as,

kmnm = m2ktnt − (r ′′ − rθ ′2)er − (rθ ′′ + 2r ′θ ′)eθ . (15)

Formula (15) can be obtained by decomposing along the line
of sight erdirection and perpendicular to the line of sight er
direction as follows:

r ′′ − rθ ′2 = m2kt (nt · er )− km(nm · er ) (16)

rθ ′′ + 2r ′θ ′ = m2kt (nt · eθ )− km(nm · eθ ) (17)

where km, kt represent the curvature of missile and target.

VOLUME 8, 2020 192023



J. Ye et al.: Research on a DGGL Based on Fractional-Order Theory

B. DESIGN OF THE DIFFERENTIAL GEOMETRY GUIDANCE
LAW
The differential geometric guidance law is proposed stem-
ming from the idea of zeroing the rate of LOS. If there is
a virtual pointing velocity Vmp, when the missile flies to
the target along the virtual pointing velocity Vmp(the angle
between the direction of Vmp and the X axis is θmp), the LOS
rate can be guaranteed to be zero [9]. Then, according to the
position relationship between the missile and the target in
space, we can know that

m sin θt − sin θmp = 0. (18)

When the LOS rate θ ′ is zero, Eq. (15) can be denoted as

kmp = m2kt cos(θt − θmp)− r ′′ sin θmp. (19)

From Eq. (16), we have

r ′′ = m2kt sin θt − km sin θmp. (20)

By substituting Eq. (13) and Eq. (20) into Eq. (19), we can
find the following expression:

kmp = m2kt

(
1+

r ′

cos θmp

)
. (21)

The differential of Eq. (18) gives us the following expression:

θ ′mp

θ ′t
=
m cos θt
cos θmp

. (22)

According to r ′mp = m cos θt − cos θmp,Eq. (22) can be
expressed as

θ ′mp

θ ′t
=

r ′mp
cos θmp

+ 1. (23)

The relation of the angle of the missile and the target can be
denoted as

θ ′mp = −θ
′
− kmp (24)

θ ′t = −θ
′
− mkt . (25)

According to Eq. (21), Eq. (22), Eq. (23), Eq. (24), and
Eq. (25), we have

kmp =
r ′mpθ

′

cos θmp
+ mkt

(
r ′mp

cos θmp
+ 1

)
. (26)

According to Eq. (26), We can see that the guidance com-
mands contain two items. The first is related to the relative
velocity and the LOSR, the second is directly related to the
maneuverability of target, and both are related to the virtual
pointing angle of the target. If there is a proportionality
coefficient A in the first term, the guidance instruction can
be described using the following expression:

km =
Ar ′mθ

′

cos θm
+ mkt

(
r ′m

cos θm
+ 1

)
. (27)

The new differential geometry guidance law can be regarded
as an extension of the traditional proportional guidance law.

The curvature command tries to adjust the velocity direc-
tion of the missile in each step, so that it can meet the
zero-effort intercept triangle state as much as possible and
minimize the rotation rate of the line of sight. The guidance
performance of the DGGL has been deeply analyzed and
simulated in reference [9],and will not be discussed here.
However, the first item contains the integral order information
of the LOSR. It mainly uses the guidance information at
the current time, but not the historical guidance information.
In order to give full value to the guidance information in
the whole interception process, the fractional compensation
term of LOSR is added to the traditional DGGL to further
improve the guidance performance of the proposed guidance
law.

Considering the advantages of fractional calculus, the new
fractional differential geometry guidance law (FDGGL) can
be expressed as follows:

km =
Ar ′m
cos θm

(θ ′ + αDλt θ )+ mkt

(
r ′m

cos θm
+ 1

)
. (28)

The new guidance law includes the first order integral deriva-
tive term of the LOSR and fractional order term of the LOSR
αDλt θ , which contains the history information of the LOSR in
the whole interception process. If λ equals zero, the FDGGL
can be transformed into the DGGL.

IV. PERFORMANCE ANALYSIS OF THE fdggl
A. QUALITATIVE ANALYSIS OF THE AVERAGE OVERLOAD
PERFORMANCE OF THE FDGGL
The average overload of the guidance law reflects energy con-
sumption in the interception process and in a sense represents
the capability demand for the actuator. The FDGGL contains
the interceptor’s velocity and angle information, the target’s
angle information, velocity, maneuverability, and other infor-
mation. According to the relationship between the trajectory
curvature and the overload in differential geometry, the aver-
age overload is the integral of the overload to time in the time
domain, while the average curvature command is the integral
of curvature instruction to arc length in differential geometry.
Next, we analyze the characteristics of the mean curvature
command.

In order to simplify the analysis process, the guidance
curvature command is expressed as

km = N1θ
′
L + N2Dλt θ + F(kt ) (29)

where N1 =
Ar ′m
cos θm

,N2 =
Aλr ′m
cos θm

,F = mkt
(

r ′m
cos θm

+ 1
)
.

According to the definition of average overload, the aver-
age overload of the designed guidance law can be expressed
as

ūFDGGL =
1
sf

sf∫
0

kmds =
1
sf

sf∫
0

(N1θ
′
+ N2Dλt θ + F(kt ))ds

(30)
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For convenience, the average curvature instruction can be
expressed as follows:

u1 = 1
sf

sf∫
0
N1θ
′ds

u2 = 1
sf

sf∫
0
N2Dλt θds

u3 = 1
sf

sf∫
0
F(kt )ds

.) (31)

The subscripts O and F in Eq. (30) and Eq. (31) represent
the initial arc length and end arc length of the integral. After
integrating u1 and u2, according to the Eq. (3), we can get the
following results:

u1 =
1
sf

sf∫
0

N1θ
′ds =

N1(θf − θ0)
sf

(32)

u2 =
1
sf

sf∫
0

N2Dλt θds

= lim
h→0

N2

sf

sf∫
0

h−λ
[s/h]∑
j=0

ωλj θ (s− jh) ds

= lim
h→0

N2

sf
h−λ

[s/h]∑
j=0

ωλj

sf∫
0

θ (s− jh) ds

≈
N2h−λ

sf

[s/h]∑
j=0

ωλj
(
θf − θ0

)
(33)

The term u2of the FDGGL can be expressed as

u2 ≈
N̄2

sf

(
θf − θ0

)
. (34)

where N̄2 ≈
N2h−λ
sf

[s/h]∑
j=0

ωλj , the mean curvature can be written

as

ū =
(
N1 + N̄2

) (θf − θ0)
sf

+
1
sf

sf∫
0

F(kt )ds. (35)

According to the same method, the mean curvature of the
DGGL and PN can be calculated as [20]

ūDGGL = N1
(θf − θ0)

sf
+

1
sf

sf∫
0

F(kt )ds (36)

ūPN = NPN
(θf − θ0)

sf
(37)

where NPN is the proportional coefficient of the traditional
PN guidance law. According toEq. (35), Eq. (36), and
Eq. (37), it can be found that the average overload of the
newly designed FDGGL is closely related to the change of
line of sight angle in thewhole interception process.When the

line of sight angle becomes larger or smaller, the direct aver-
age overload will also become larger or smaller. By adjusting
the ratio coefficients N1 and N2, the FDGGL can be trans-
formed into DGG and PN, and a reasonable ratio N2 can be
set to adjust the average overload of interceptors, so as to
ensure that the average overload changes more smoothly in
the whole interception process.

B. ANALYSIS OF BALLISTIC STABILITY OF THE FDGGL
Another index to evaluate the performance of the guidance
law is ballistic stability. The change in ballistic angle in
missile flight reflects the fluctuation of the trajectory, so it
can represent the quality of the designed guidance law. The
ballistic front angle is the angle between the missile velocity
direction and the line of sight, which can be expressed as

ηm = θ − θm. (38)

In differential Eq. (38), we have

η′m = θ
′
− θ ′m. (39)

According to the previous analysis, we know that the change
of missile velocity angle can be expressed by curvature
expression. We have

θm =

∫ sf

0
kmds. (40)

The expression of ballistic angle can be obtained by analyzing
Eq. (39) as follows:

ηmf = ηm0 + (1− N1)(θf − θ0)− N2

sf∫
0

Dλt θds−

sf∫
0

F(kt )ds

= ηm0 + (1− N1)(θf − θ0)− N2h−λ

×

[s/h]∑
j=0

ωλj
(
θf − θ0

)
−

sf∫
0

F(kt )ds (41)

Let Ñ2 = N2h−λ
[s/h]∑
j=0

ωλj . The angle between the missile

velocity direction and the line of sight can be denoted as

ηmf = ηm0 + (1− N1 − Ñ2)(θf − θ0)−

sf∫
0

F(kt )ds (42)

Thus the change of ballistic angle can be expressed as

θf − θ0
∣∣
FDGG =

ηmf − ηm0 +

sf∫
0
F(kt )ds

1− N1 − Ñ2
. (43)

From the traditional DGGL, we know that the change of
ballistic angle is

θf − θ0
∣∣
DGG =

ηmf − ηm0 +

sf∫
0
F(kt )ds

1− N1
. (44)
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As we know the proportional coefficient in traditional guid-
ance ismore than 1, comparing Eq. (43) and Eq. (44) we know∣∣θf − θ0∣∣DGG > ∣∣θf − θ0∣∣FDGG . (45)

According Eq. (45), we know that the change of ballistic
angle using the DGGL is bigger than that using the FDGGL.
This means that the trajectory of the FDGGL is flatter than
that of DGGL. The major factor is the fractional order term
modifying the trajectory and reducing the change of ballistic
angle. And so, the designed FDGGL law will consume less
energy and the actuators can be easier to control.

V. NUMERICAL SIMULATION
The In this section, some simulation results are presented to
prove the effectiveness of the FDGGL. In order to illustrate
the guidance effect of the designed guidance law in detail,
four cases of target maneuvering are used for simulation
and comparison. The simulation results are presented in this
section together with a comparison of the traditional DGGL
and PN. The initial parameters of the missile and target
are listed in Table 1. According to the method of ergodic
optimization [20], the order of fractional calculus is 1.5.
Here, the proportional coefficient is 3. In the present context,
we assume that the rate of line of sight is contaminated with
uncertainty during the terminal guidance phase. The test error
of the seeker is 0.01 0/s.

TABLE 1. Initial states of missile and target.

The four cases are respectively as follows:
Case 1, Assuming the target makes an S-shaped escape

maneuver, the acceleration of the target is

at = -10sign
(
sin
π t
12

)
m
/
s2.

Case 2. Assuming the target makes an S-shaped escape
maneuver, the acceleration of the target is

at = -20sign
(
sin
π t
12

)
m
/
s2.

Case 3. Assuming the target makes a circular escape maneu-
ver, the acceleration of the target is 10m/s2.
Case 4. Assuming the target makes a circular escape

maneuver, the acceleration of the target is 20m/s2.
In order to compare the performance of the FDGGL,

the DGGL and PNmore intuitively in this paper, the guidance

parameters of the interceptor are transformed from the arc
length domain to the time domain. According to the rela-
tionship between the curvature command and overload in
reference [17], the curvature command of the interceptor is
transformed into the overload. By the definition of a relative
velocity coordinate system in reference [21], the relative
trajectory performance of different guidance methods is com-
pared and analyzed as well.

The comparison of the interception performance between
the FDGGL and the DGGL is presented in a Monte Carlo
sense and is listed in Table 2, where Miss is the minimum
distance between the interceptor and the target. Mean_Am
denotes the mean miss distance, T is the intercept time, and
Max_Am denotes the maximum absolute load.

TABLE 2. Comparison of interception performance.

As indicated in Table 1, regardless of the type of target, all
the guidance schemes perform well. The interception time of
the four cases with the FDGGL, the DGGL and PN are close.
However, the FDGGL performs better than the DGGL and
PN. Just as in case 3, the interception time of the FDGGL
is 32.11 seconds, compared with 32.39 seconds for the tra-
ditional PN guidance law and 32.58 seconds for the DGGL.
The interception time of the guidance law designed in this
paper is significantly shorter, which means that the missile
can destroy the target earlier. It is also interesting to note that
the miss of the FDGGL is nearly 100% better than traditional
DGGL and PN guidance, which indicates that the FDGGL
greatly improves guidance accuracy. We can observe that
the FDGGL has superior performance to the DGGL and PN
in mean acceleration, which demonstrates that the FDGGL
demands less control effort. The maximum acceleration of
the FDGGL is larger than that of the DGGL, and smaller than
that of PN, which means that the FDGGL needs to adjust
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the state of the interceptor more quickly than the DGGL.
Moreover, the FDGGL overcomes the acceleration saturation
of traditional PN guidance.

The simulation diagrams for case 2 and case 3 are shown
respectively from Fig. 2 to Fig. 11.

FIGURE 2. The three dimensional engagement.

FIGURE 3. Relative motion trajectory.

FIGURE 4. Time history of the LOSR.

The trajectories of interceptors guided by the FDGGL,
DGGL, and PN are shown in Fig. 2 and Fig. 7, when the
target makes a circle or S maneuver. The trajectory of the
FDGGL is smoother than that of DGGL and PN guidance.
Referring to Fig. 3 and Fig. 8 in the relative motion diagram,
the FDGGL has better ballistic performance than the other
two guidance laws. It can be seen from the LOSR diagram
in Fig. 4 and Fig. 9 that the FDGGL can make the line of
sight rate approach zero in a limited time, which is similar to
the change in the line of sight rate of the DGG, and overcomes

FIGURE 5. Time history of missile acceleration.

FIGURE 6. Time history of ballistic angle.

FIGURE 7. The two dimensional engagement.

FIGURE 8. Relative motion trajectory.

the disadvantage of the divergence of the line of sight rate at
the end of PN. This means that the FDGGL consumes less
energy at the end of the interception, and greatly reduces the
design requirements for the actuator of the missile.
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FIGURE 9. Time history of the LOSR.

FIGURE 10. Time history of missile acceleration.

FIGURE 11. Time history of ballistic angle.

As illustrated in Fig. 5 and Fig. 10, the acceleration of the
FDGGL is larger than that of the DGGL and PN at the early
stage of interception, and the acceleration of the FDGGL
drops rapidly as the interception goes on. The main reason
for this is that the fractional order item of the FDGGL plays
the role of filter, which improves the control precision and
stability of the LOSR. The FDGGL enables the missile to
adjust its attitude with a large overload at the early stage of
interception, which ensures that the flight trajectory is smooth
and avoids the surge of the overload at the moment of the
encounter, thus greatly cutting down the design difficulty of
the actuator. This phenomenon is identical to the idea of the
designed guidance law in this paper.

As can be seen from Fig. 6 and Fig. 11, the FDGGL has the
slowest change of ballistic angle among the three guidance
laws. It shows that the trajectory of the FDGGL is straighter.

This is consistent with the theoretical analysis of ballistic
stationarity in this paper.

It is obvious that, compared with the PN and DGGL,
the FDGGL designed in this paper has better guidance per-
formance. The main reason is that the FDGGL solves the
problem of LOSR estimation by a fractional differential term.
The fractional differential term contains some information
about the previous LOS angle rate, which is more conducive
to LOS control accuracy and the stability of the guidance
system in the interception process. In short, the FDGGLkeeps
the advantages of the DGGL and avoids the disadvantages of
the traditional PN guidance law in some sense.

VI. CONCLUSION
In this paper, a novel differential geometric guidance law is
presented that aims to improveguidance performance based
on the fractional order theory. The interception model of mis-
sile and target is established based on the differential geom-
etry theory. The guidance performance of the FDGGL, such
as curvature command and ballistic stability, are theoretically
analyzed. Compared with the DGGL and PN guidance, the
proposed FDGGL algorithm is more effective in controlling
the line of sight, and has a shorter intercept time and smoother
trajectory. The FDGGL adjusts the missile’s altitude at the
beginning of the intercepting trajectory, so that its overload
saturation is avoided during the encounter. Some simulation
results demonstrated that the designed new guidance law has
satisfactory guidance characteristics when utilized against
maneuvering targets.
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