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ABSTRACT Neural architectures have accelerated the advancement in various domains by enabling
automatic pattern detection, image classification, audio recognition, and face recognition etc. However,
they are computationally expensive to design and expert knowledge in various domains is required.
In this paper, a swarm intelligence algorithm is proposed to search for novel architectures without human
intervention that can achieve comparable performance to those of human-designed architectures. This work
is inspired by current neural architecture search approaches based on reinforcement learning and genetic
algorithm. However, not much attention is paid towards swarm intelligence metaheuristics-based neural
architecture search. A framework is proposed for automatically designing neural architectures based on
a swarm intelligence metaheuristic: Crow Search Algorithm. First, Crow Search Algorithm is integrated
with binary network representation. To make it compatible for Neural Architecture Search, the original
distance metric is replaced with hamming distance-based similarity measure. Second, the tuning parameters
of Crow Search Algorithm are reduced by replacing the static flight length parameter with our dynamic
flight length distribution algorithm. Third, the target selection method (random selection) is replaced by
tournament select method. The proposed framework is used to search for architectures on MNIST, CIFAR10,
and CIFAR100 datasets and achieved 0.18%, 3.48%, and 15.64% test error, respectively. Furthermore,
small-scale transfer experiments are conducted to search architectures for Tiny ImageNet and achieved
34.43% test error. Nonparametric statistical analysis is performed to validate the impact of each modification
in improving the quality of search space exploration. The proposed framework has achieved comparable
performance with the state-of-the-art approaches, with a comparatively simpler approach and minimum
human intervention. The proposed framework can be used to develop completely automated systems for
designing architectures for various data-based classification applications.

INDEX TERMS Neural architecture search, hyperparameter optimization, AutoML, crow search algorithm,
metaheuristic, image classification, deep learning.

I. INTRODUCTION

Deep learning models have solved various practical prob-
lems in a wide range of areas, such as image recogni-
tion, speech recognition, reinforcement learning and many
more. However, they are hard to design, mainly because
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of underlying complexities and their inherent dependency
on a bunch of hyperparameters. Currently, neural networks
are hand-engineered and then tested rigorously with several
values for the hyperparameters to get the best performance
on a given task. In the early days of machine learning, data
features were hand-engineered by experts to identify unique
patterns and structures which were then used to train models.
With the inception of neural networks, it became possible to
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let the algorithms decide which features are important for a
specific task. Neural networks extract features on different
abstraction levels depending upon the network depth. So,
it is not wrong to say that neural networks have paved a
path towards automating the machine learning to an extent.
Designing a neural network takes expert knowledge such as
high-level expertise in mathematics, statistics, and algorithm
design. Engineers are required to design an accurate and
computationally low-cost architecture for each classification
problem. After the design of Neural Network is finalized,
engineers iteratively experiment with cumbersome hyperpa-
rameter values to tune the model for best possible perfor-
mance. This practice of finding the optimal hyperparameters
for a specific model can be automated with the help of some
search algorithms, thus called Hyperparameter Optimization
(HPO). Previously, most widely used strategy for HPO was
a combination of grid search and manual search [1]. Later
Bergstra and Bengio [2] proposed random search for HPO,
which proved to be efficient and more plausible as compared
to grid and manual search. However, these approaches are
extremely expensive as they have small chance to just stumble
upon a set of hyperparameters that will work for a given prob-
lem. Also, it will spend a lot of time just wastefully training
on under-performing choices. Another technique explored
for HPO is Bayesian optimization [3], which outperformed
both manual and random search. It builds a probabilistic
model of the function mapping from hyperparameter val-
ues to the objective evaluated on a held-out validation set.
More recently, there are gradient-based approaches for HPO.
Maclaurin et al. [4] proposed to compute exact gradients of
cross-validation performance with respect to all hyperparam-
eters by demonstrating the applicability of gradient-based
HPO to high-dimensional problems. For example, simul-
taneously optimizing the parameter responsible for weight
initialization for each layer, the L2 penalty for each parameter
in logistic regression, the learning rate for each iteration and
each layer in a neural network. Franceschi et al. [5] proposed
a method for forward and reverse gradient based HPO. This
method uses a similar technique as [4] for reverse mode,
following a classical Lagrangian approach used to derive
backpropagation algorithm [6]. Furthermore, they propose
that the forward-mode procedure is suitable for real-time
hyperparameter optimization. Recent studies [7] on gradient
based HPO has shown robust performance and have outper-
formed previous Bayesian optimization techniques. However,
hyperparameter optimization alone is not a complete solution
for machine learning automation, as it still requires a human-
engineered network architecture to begin with.

For a Convolutional Neural Network (CNN), a typi-
cal neural network for image classification, it may take
a long time to iteratively design, train, test, validate and
finalize the model before applying any HPO technique.
So, there must be a method to automatically produce neu-
ral network architectures. This dates back to 1988 when
FernandoTenorio et al. [8] proposed self-organizing
neural networks (SONN) for the problem of model
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identification. SONN was a flexible structure capable of
adjusting its structure depending upon input data. Neural
Architecture Search (NAS) is a domain which specifically
aims to solve this problem by employing a technique to
generate architectures automatically. NAS methods mainly
comprise of (i) search-based, (ii) reinforcement learning-
based, or (iii) gradient-based methods to automate the design
of Neural networks. Elsken er al. [9] has categorized NAS
approaches based on three dimensions namely, (i) search
space, (ii) search strategy and (iii) performance estimation
strategy. The search space defines what kind of networks
are discoverable and directly translates to the architecture’s
complexity level. Some of the recent state-of-the-art archi-
tectures include complex blocks having unique and mod-
ern layers. ResNet [10] for instance, consists of Residual
block, which implements skip connections which have shown
to mitigate gradient vanishing. Then, there are Inception-
Net [11], SENet [12], etc. introducing further complex archi-
tectures. An architecture that can perform up to the par with
such architectures needs to be adequately complex. Such
an architecture can only be designed if the search space
is complex enough. Usually, search spaces are designed
to be as inclusive as possible which causes them to be
hyper-dimensional. An efficient yet effective search strategy
should be devised to traverse a hyper-dimensional search
space. This strategy revolves around the age-old exploration-
exploitation dilemma. Finally, there must be a performance
estimation strategy to evaluate the discovered architectures.
Usually, in the case of NAS, the evaluation strategy con-
sists of some machine learning metrics (validation loss
or validation accuracy etc.) as fitness function for search
algorithm.

A. SEARCH SPACE

The search space dictates the kind of architectures that can be
designed (generated) by the said NAS framework. A search
space includes a finite set of networks that can be generated.
A search space is defined such that a network N € d
dimensional search space.

Different kinds of networks can be categorized based on
their underlying design-complexity. A rather simple architec-
ture design is a sequential or chain-like architecture. In such
networks, layers are connected in a sequential manner such
that layer L; receives input from layer L;_; and sends output
to layer L;y1 as shown in Figure 1(a). Then, there are some
network architectures that are not as simple as chain-like
architectures. Most of the modern state-of-the-art architec-
tures have multiple paths as shown in the Figure 1(b). In order
to incorporate such modern designs in NAS, the search space
needs to be designed with consideration for modern design
elements like skip connections. Modern NAS methods use
search spaces capable of implementing modern design ele-
ments like skip connections, residual or identity blocks, etc.
In order to construct a search space which includes such type
of multi-path architectures, Genetic CNN [13] has proposed
a binary encoding scheme which will be discussed in later
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FIGURE 1. (a) Sequential (chain-like) Architectures. (b) Modern architectures can have multiple paths.

section. A search space which includes complex architectures
needs to be very complex, as a result such a space will be
very large to efficiently search for. One way to reduce search
space is to encode some information about what kind of
human-made architectures generally perform well. One such
example is constructing a meta-architecture by using cells or
motifs in a recursive manner [14]. Then the architecture for
these cells is searched for. However, this introduces human
bias which is a hindrance in automation of machine learn-
ing. Besides automation, this will simply divert the human
effort from basic architecture design to meta-architecture
design.

The intuition behind cell-based search space is that, almost
all well-performing human-engineered neural architectures
are usually constructed by repeating motifs or blocks. So,
instead of searching for full architectures, Zoph and Le [14]
proposed NASNet search space, which finds generic cells that
can be repeated in series and should also be scalable further to
larger datasets. Instead of searching for whole networks, they
search for two kinds of cells, (i) normal cell - that preserves
the spatial dimensions of input and a (ii) reduction cell -
that reduces the spatial dimensionality. Finally, they manu-
ally stack these cells in a predefined manner. Reinforcement
learning based search method is employed for finding such
generic cells. These cells can be constructed of convolution
layers, non-linearities, etc. Another approach could be to fix
the architecture of motifs and look for meta-architecture.
A recent work [15] proposed to find meta-architectures by
searching for configurations of fixed architecture blocks such
as VGG Block, Residual Block, Convolutional Block, etc.
However, as this study is aimed to progress the automa-
tion of machine learning, methods which include minimum
human intervention are explored. To enable the search algo-
rithms, traverse the search space, the search space needs to be
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represented in a structured way using a sophisticated encod-
ing scheme.

1) ENCODING SCHEMES

To implement any metaheuristic algorithm, there are mainly
two pre-requisites, (i) a representation of the solution domain,
(ii) a heuristic or objective function (cost). In this section,
representation of the solution domain is discussed. Solu-
tion domain can be represented by employing an encoding
scheme. Genetic CNN [13] uses binary encoding scheme,
where a network structure is represented by a fixed-length
binary string. This scheme can be applied to network struc-
tures which can be divided into stages e.g. Deep Residual Net-
works [10] and VGG [16]. Furthermore, in each stage i, there
are several numbered nodes where each node corresponds to
a convolutional layer. There are two default nodes in each
stage i.e. input and output nodes. The input node receives data
from previous stage, performs convolution and sends to all
the nodes without a predecessor, and output node takes input
from all the nodes without any successor and passes on to the
next stage. Architecture of a single stage is shown in Figure 2.
The intermediate nodes and their underlying connections
are represented as a binary encoded string. Genetic CNN
explores the search space of binary strings to form a suitable
combination of connection between nodes. The connections
are only allowed from a lower-numbered node to a higher-
numbered node. Recently, Ahmad et al. [15], proposed an
encoding scheme based on a search space consisting of fixed
blocks most commonly used in modern CNNs e.g. residual
block [10], Convolution block etc. They fixed the structure of
individual blocks and formulated the search strategy to look
for architectures by discovering different configurations or
meta-architectures to arrange these blocks. This study follows
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FIGURE 2. A representation of a stage having n + 1 number of nodes. Connections among these nodes can be searched by using

Crow Search Algorithm or Genetic CNN.

the work of [13] and designs the search space by dividing
network architectures in multiple stages.

B. PERFORMANCE ESTIMATION STRATEGY

The performance estimation strategy evaluates the perfor-
mance of a possible CNN from its design. Performance
estimation strategy concerns about objective function to be
optimized. In the case of NAS, performance can be estimated
by using several machine learning (deep learning) metrics.
Most commonly used metrics are training accuracy, valida-
tion accuracy, training loss and validation loss. This work is
based on optimizing the search strategy using these typical
machine learning metrics.

C. SEARCH STRATEGY

A search strategy focuses on maximizing the heuristic func-
tion. A search strategy is directly dictated by the search
algorithm employed to find the solution. Some of the known
search strategies come under the umbrella of evolutionary
methods, reinforcement learning (RL) and gradient-based
methods.

1) EVOLUTIONARY ALGORITHMS BASED NEURAL
ARCHITECTURE SEARCH

Evolutionary search algorithms follow a process inspired
by the biological concept of evolution where they try to
evolve candidate individuals over several generations using
concepts like mutation and cross-over etc. These algorithms
have gained attraction for their proven efficiency for solv-
ing optimization problems. Some of the evolutionary meta-
heuristics are discussed in this section. Genetic Algorithm
(GA) [17], takes its inspiration from natural process of evo-
lution using basic operations such as mutation and cross-
over. With the help of these operations, good performing traits
are passed over to the next generations, eventually improving
the performance of overall population over a certain number
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of iterations. Particle Swarm Optimization (PSO) [18] is a
swarm intelligence algorithm, where the particles (poten-
tial solutions) move in the search space and improve their
position iteratively depending on their individual positions
as well as swarm’s overall position. PSO faces a problem
when several objectives are conflicting with each other. Many
Objective Particle Swarm Optimization (MOPSO) [19] tried
to solve this problem by using a set of reference points
dynamically determined depending upon the search process.
Harmony Search (HS) [20] is based on the concept of har-
mony in music, and its main parameters are memory, pitch
adjusting and randomization. Differential Evolution [21] is
a global numerical optimization metaheuristic based on the
mutation operation. Recently, there has been a trend of nature-
inspired metaheuristics to solve optimization problems in
various domains. De Souza et al. [22] proposed a modified
version of crow search algorithm for feature selection where
they reduce the continuous search space to discrete search
space by restricting the movement of crows to only discrete
locations. Jafar-Nowdeh et al. [23] proposed to use matrix
moth-flame algorithm for optimal reconfiguration of distri-
bution networks and placement of solar and wind renewable
sources. Jahannoosh et al. [24] proposed a new meta-heuristic
algorithm for reliable and cos-effective designing of energy
systems. Naderipour et al. [25] used grey wolf optimizer algo-
rithm for optimal energy system design. Firefly and harmony
search algorithms are also used for optimal power damp-
ing [26]. Genetic algorithm is proposed to optimize granu-
lar neural network parameters for pattern recognition [27]
such as bird swarm optimization [28] for heart-rate classi-
fication, firefly algorithm [29] for optimization of modular
granular neural networks and grey wolf optimizer [30] for
optimizing granular neural networks for human recognition.
Sanchez et al. [31] proposed to use particle swarm opti-
mization with its fuzzy dynamic parameter adaptation to
design modular granular neural network architectures. In the

VOLUME 8, 2020



M. Ahmad et al.: Image Classification Based on Automatic Neural Architecture Search Using Binary Crow Search Algorithm

IEEE Access

domain of NAS, Genetic CNN [13] uses an evolutionary
search strategy on a binary encoded search space such that
a set of candidate models are initialized in the form of a fixed
size binary string, either randomly or by using Bernoulli dis-
tribution. Then these candidate individuals undergo genetic
crossover by selecting a partner each and produce a child
individual. Based on crossover probability and crossover rate
child individual inherits a combination of genes from both
parent candidates. These individuals may undergo mutation
procedure based on mutation probability, which results in
randomly flipping the bits in individual’s genes in accordance
with the mutation rate. Finally, these individuals become
candidate for next generation and are evaluated for their
fitness for the objective function on a pre-defined dataset.
EENA [32] proposes to efficiently evolve populations by
modifying crossover and mutation operations of genetic algo-
rithm. Amoeba-Net was the first to outperform human design
networks on ImageNet. They apply a modified evolutionary
algorithm on NASNet [14] search space. LEMONADE [33]
is based on Lamarckian evolution and applies network mor-
phisms operations to produce offspring which help in reduc-
ing the training time of individual networks. Furthermore,
LEMONADE formulates the NAS as a multi-objective prob-
lem which simultaneously minimizes the test error and model
size.

2) REINFORCEMENT LEARNING BASED NEURAL
ARCHITECTURE SEARCH

Among Reinforcement learning based methods, NAS using
reinforcement learning [14] and NASNet [34] are popular
methods. In [14], it is proposed to use a RNN as controller
which can design a string to specify architectures, how-
ever, this requires extensive computational power. In order
to reduce the required computation, NASNet introduces a
new search space which also allows transferability from one
dataset to another. They achieve this by limiting the search
space to a cell. They search for two cells, namely, normal cell
and reduced cell. Normal cell maintains the dimensionality
across input and output while reduction cell reduces the
dimensionality. Furthermore, PNAS [35] utilizes the same
search space and propose a method to progressively search for
architectures in increasing order of complexity. Reinforce-
ment learning based methods aim to reduce the search space
by focusing on architecture search for small cells or units
which can be further repeated based on a meta-architecture.
The meta-architecture is designed manually depending upon
the dataset. Cell-based architecture search methods help
reduce the search space because they only search for cell
architecture. This also allows to re-use the cells for dif-
ferent architectures. However, cell-based architecture search
methods divert human effort from global architecture search
to meta-architecture search and thus cannot substitute fully
automated NAS. Reinforcement Learning based methods are
computationally demanding even though they have achieved
state-of-the-art performances.
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3) DIFFERENTIAL EVOLUTION BASED NEURAL
ARCHITECTURE SEARCH

Among Differential evolution methods, DARTS is quite
notable for its less computational requirement and simplic-
ity. Liu et al. [36] proposed a differentiable architecture
search (DARTS) method which can achieve up-to-the-par
performance with orders of magnitude less computational
resources. This method is also simpler than RL based meth-
ods as it does not involve controller. GDAS [37] proposes
to use a differentiable architecture sampler and applies it to
directed acyclic graphs (DAGs).

In an effort to reduce the search space both RL based meth-
ods and DARTS search for cell architectures. However, this
study emphasizes on reducing human effort by employing
search methods which look for complete architecture, not
only a block or cell which has to be arranged and placed in a
pre-defined manner. In this way, the problem is formulated to
improve the search strategy instead of reducing search space.

Among evolutionary algorithms, swarm optimization algo-
rithms are not yet explored in the domain of NAS. A swarm
intelligence algorithm named Crow Search Algorithm (CSA)
is proposed by Askarzadeh [38]. CSA is inspired by the
methodology used by crows for seeking, hiding their own
food, and stealing other’s food. CSA replaces concepts like
(i) mutation and (ii) crossover with (i) following the better
performing candidate (ii) flying to random locations. CSA
also incorporates a memory associated with individual crow
which also sets apart from other search algorithms. In GA,
in every generation new offspring are produced however,
in CSA, crows are produced once at the time of initialization.
Individuals update their memory as they explore the search
space.

CSA resembles some of the previous algorithms e.g. GA,
PSO and HS in many aspects. Some are briefly mentioned
here. It creates an initial population of seekers to explore the
search space. It is also not a greedy algorithm. Unlike GA,
CSA includes memory unit to keep track of well-performing
solutions found during exploration which is also the case with
PSO and HS. In order to keep a balance between exploration
and exploitation, CSA uses randomness and gradients [39].
CSA has only 2 decision parameters: flight length and aware-
ness probability as compared to 4, 3 and 6 decision parame-
ters required for PSO, HS and GA, respectively. This makes
it much easier to optimize CSA as compared to other search
algorithms.

Among previous evolutionary algorithms as mentioned
before GA is well-explored in the NAS domain. Many studies
have suggested the use of CSA because of its characteris-
tics such as less parameter settings, easy implementation,
and relatively strong development capacity in the search
process [40]. It has already been applied to solve several engi-
neering problems. In [38], authors solved 6 constrained engi-
neering problems using CSA and it outperformed Genetic
Algorithm and Particle Swarm Optimization. In [41], CSA
was applied to power distribution network to find the opti-
mal position to place the capacitors and their sizes, and
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experiments show that solutions found by CSA were accu-
rate than other search methods. In computer vision domain
CSA is also used by [42] to find the threshold for image
segmentation. This helped in avoiding premature conver-
gence and achieving automatic MRI segmentation. Recently,
CSA is also applied for finding input weight of Extreme
Learning Machine (ELM) and finding the threshold val-
ues for hidden layers [43]. Qu and Fu [40] proposed and
improved CSA based on neighborhood search of non-inferior
solution set and applied on pressure vessel design prob-
lem and tension-compression spring. Han et al. [44] pro-
posed an improved CSA based on spiral search mechanism
and applied to engineering optimization problems. However,
Crow Search Algorithm (CSA) was not explored in NAS
domain until recently. In [45], Abdullah et al. proposed Crow-
search algorithm for hyperparameter optimization for image
classification on MNIST and CIFAR-10 datasets. According
to results, CSA outperformed GA with slightly improved
results and in a smaller number of total trainings.

This work aims to develop a neural network search frame-
work that is able to find complex architectures without need-
ing any meta-architecture. For this purpose, Crow Search
Algorithm (CSA) [38] is implemented on Binary encoded
search space proposed by Genetic CNN [13]. The adapta-
tion to binary search space to CSA has various constraints,
assumptions, and modifications. Therefore, this new variation
of CSA is named Binary CSA to distinguish it from original
implementation of CSA. This study suggests applying Binary
CSA on top of architecture search paradigm for complete
architecture design search. This paper will compare the per-
formance of two nature-inspired algorithms, Firstly, Genetic
Algorithm (GA), a well-renowned algorithm based on evolu-
tion mechanics where every generation tries to improve indi-
viduals. Secondly, Crow Search Algorithm, which is based
on lifestyle of crows, where they try to find food by following
other crows and memorize their location of finding the food,
eventually converging to the best possible location. Further-
more, some enhancements in Binary CSA are introduced for
better convergence rate, which are discussed in later sections.
In the next subsection crow search algorithm is discussed
from the viewpoint of neural architecture search.

D. CROW SEARCH ALGORITHM

Crow Search Algorithm (CSA) is a population-based swarm
intelligence algorithm, inspired by intelligent behavior of
crows for hiding their food and following other birds to steal
their food [38]. Crows watch other birds, observe where the
other birds hide their food, and steal it once the owner leaves.
The principles of CSA are listed as follows:

o Crows live in the form of flock (group).

o Crows hide their food at a good place.

o Crows memorize their hiding places.

o Crows follow each other to do the thievery.

« Crows use their experience to protect their catch.
o Crows memorize the hiding places other crows.
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As crows are thieves themselves, they know well the
behavior of a thief and act accordingly to avoid being the
victim. When a crow follows another crow there is a proba-
bility of target crow being aware of the fact that it is being
followed. This is addressed in algorithm with a parameter
named awareness probability AP. If the target crow knows it
is being followed then it changes its path to random location
instead of going to its hiding place, i.e. the best location
from its memory hence, introducing randomness which in
turn enhances the exploration of algorithm. If the crow being
followed does not know that it is being followed, the crow
finally lands to its hidden food location or in case of our
algorithm, location of the best solution achieved so far, from
its memory. As a result, the other crow will follow it and
will land to a nearby location (not exact location). This aids
to the exploitation capacity of the search algorithm. In the
first scenario, where the crow was not familiar that it is being
followed. The landing position of the follower crow depends
upon a parameter known as flight length fI. Depending on
the f1, follower crow can land before the followed crow’s loca-
tion or farthest from location as depicted in figure 3. If f is
shorter than the distance between current location of the thief
crow and the destination of target crow, the thief crow lands
before reaching the target crow’s food hiding location, hence
executing local search as shown in figure 3(a). Whereas,
if 1 is longer and crow lands farther away, hence resulting
in global search as shown in figure 3(b). The local search
and global search, both help exploring the solution space
by exploiting the experience of the target crow. However,
the randomness introduced by awareness probability, leads
to the exploration without regarding the experience of target
crow. Both of these two parameters provide a good balance
between exploration and exploitation.

Formally, Crow Search Algorithm can be described by
assuming that there is a d-dimensional environment having
N number of crows. The position of i crow at iteration iter
is defined by a vector x""" as shown in Eq. (1).

xi,iter (l — 1’ 2’ ..., N;iter = 1, 2, ey itermax) (1)

where,

Xi,iter — [xi,iter’ xé’,iter7 o xé’[,iter]

Here N is the total number of crows in the flock
and, iter;,; 1s the maximum number of iterations. The
d-dimensional space X" includes all possible locations
that can be explored by crow i in iteration iter. Crows traverse
this d-dimensional X" space by following other crows to
find out their hiding location, hence reaching to the best pos-
sible solution over multiple iterations. Each crow memorizes
only the best location they found during the search of hidden
food. The hiding location in the memory of crow i at iteration
iter is denoted as m"""¢". Now assume that crow j visits its
hiding location from its memory n#>"" and crow i decides to
steal from crow j, it will try to follow crow j at iteration ifer.
Now, based on the awareness probability of crow j two cases
may arise:
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FIGURE 3. (a) If the value of flight length (f/) is selected smaller than the
distance between current position x/-/t€" of crow i and hiding place
mb>iter of target crow j i.e. best known location in its memory. In that
case the next position of crow i is on the left side of the dash line
between x/i€r and m/-/ter resulting in Local Search. (b) If the value of f/
is selected larger than the distance between current position x/-/ter of
crow i and memory location m-/e" of target crow j, the next position of
crow i is on the right side of the dash line which results in Global Search.

Case 1: If crow j is unaware of the fact that it is being
followed by crow i, it will keep going towards its hiding
location n#-*" (hiding place) and crow i will reach a new
location x*#¢"*1 for next iteration as per Eq. (3).

ﬂi,iter — ttter Xﬂmax (2)
xi,iter+l _ l iter ﬂl iter (n,tj,iter _ xi,iter) (3)

where, fl,,,, 1s maximum flight length that a crow can fly.
This is a parameter that needs to be assigned a value at the
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initialization of the search. While r*#¢"is a random number

which can have a value between 0 and 1. This random number
dictates the flight length fI"#¢" of crow i at iteration iter
as shown in Eq. (2). For instance, if fI,,,, is set to 100,
depending on value of ¥’ the value of 1" may be
anywhere between 0 to 100. This way, each crow is assigned
a different flight length f1%*" in each iteration. Based on the
value of flight length f1%#¢" the crow i will reach a location
nearby the hiding place of crow;. If fler has higher value
than diff (m/"", x""") then crow i will move past the hiding
place of crow j as shown in figure 3 (a), hence conducting
global search. If fI" is smaller than the distance between
crow i and crow j then crow i will conduct local search as
shown in figure 3 (b).

Case 2: If crow j is aware of the fact that it is being followed
by crow i, it will divert its path and go to a random location in
space d. In effect, crow i will also be led to a random location,
as a result it will explore a new location that may be very
far from current area of search, hence increasing exploration.
Both cases are expressed in the Eq. (4).

xt,lter +ﬂl’lter- (rn],zler _xl,lter)’ ap],lle}’ ZAP

arandompostion,

chiter+1 _

otherwise
4

where, AP is the awareness probability defined at the time
of initialization and ap/"" is a random number within the
range (0, AP) that represent the awareness score of crow j at
iteration iter. Whether or not ap"’ is higher than the AP
determines if crow j is aware of being followed or not. The
exploration-exploitation trade-off can be tuned using these
two parameters i.e. flight length and awareness probability.
This following mechanism of crows is further explained in
section II and its implementation for specific case of Neu-
ral Architecture Search. The pseudo code for original crow
search algorithm is shown in table 1.

1) LIMITATIONS OF CROW SEARCH ALGORITHM

This section describes the limitations of employing original
crow search algorithm on neural architecture search problem.
First of all, previously CSA has been applied to engineer-
ing optimization problems where the goal is to find some
optimal values for specific parameters. While in a previ-
ous work [45], CSA was used to search for four hyperpa-
rameters i.e. number of layers, layer width, optimizer and
activation function. In such cases various distance formulae
can be applied trivially to natural numbered values. How-
ever, CSA was not designed to find solutions in complex
search spaces such as required by Neural Architecture Search
(NAS). Because distance between two solutions as used by
CSA cannot be computed directly in case of Neural Archi-
tecture Search. If the distance among neural architectures is
to be computed, a scheme should be devised to interpret the
differences among architectures as distances. As discussed in
previous section, a neural architecture can be represented as
a binary string using binary encoding scheme. This way the
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TABLE 1. Pseudo code of original crow search algorithm.

(1). Input: the refence Dataset D, number of iterations T, the number of
crows in the flock N, the awareness probability AP, maximum
flight length f1,,,0.

(2). Initialization: Generate a flock of N crows with randomly assigned
locations with memory mem = current;,cqsion

(3). Evaluation: Evaluate all crows for recognition accuracy of the
corresponding networks

(4). while iter < iteryg,

(5). fori=1:N

(6). crow; = flock(i)

. crow; = random(flock)

(8). ap”*e" = randrange(100)

9). if ap/iter > ap

(10). crow;. locipers1 = fallaw(crowj. memiger, Crow;. lociter)
(1. else

(12). crow;. locier+1 = generate_random_location()

(13). fori=1:N
(14). crow; = flock(i)

(15). crow;. fitness = eval(crow;.loc;ier11)
(16). if crow;. fitness > crow;. bestsimegs
(17). Crow;. bestyiess = crow;. fitness
(18). Crow;. MeM;pr = CTOW;. l0Citer 41

(19). Output: Flock with memory of best locations they explored

distance between architectures may be considered as a binary
string comparison problem. Additionally, new solutions in
search space may not be computed using simple arithmetic
of CSA as shown in Eq (4).

In order to make this CSA mechanism work for the case
of NAS, a new Binary Crow Search Algorithm (BCSA)
is proposed to overcome the limitation of CSA. To mea-
sure the difference between two architectures being repre-
sented by binary strings, first a distance metric needs to
be employed which is capable of comparing binary strings.
There exist various binary distance metrics such as Leven-
shtein distance, Longest common subsequence (LCS), Ham-
ming Distance, and Jaro distance. All these metrics have their
own string operations and limitations. For instance, Leven-
shtein distance allows deletion, insertion and substitution,
longest common subsequence (LCS distance) allows inser-
tion and deletion, Jaro distance allows only transposition,
Damerau-Levenshtein distance allows insertion, deletion,
substitution, and the transposition operations, whereas ham-
ming distance allows only substitution. Given the require-
ment of given task, two strings (architectures) need to be
compared such that, compute the difference among them
and substitute some bits in a string such that its distance
can be reduced as compared to the other string. Levenshtein
distance and its variants have the capability to fulfill the said
requirement however, a more simplistic approach would be
ideal. Therefore, hamming distance is employed to measure
distance between binary representations of neural networks
which is explained in detail in section II.

Furthermore, as explained in the section I.D. originally
CSA uses random selection method for target solution. How-
ever, this introduces too much randomness which makes
it harder to converge to optimal solutions even over mul-
tiple iterations. In BCSA, a selection method based on
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tournament-selection is proposed which helps in faster con-
vergence to optimal solution. Furthermore, in CSA the maxi-
mum range of flight length is provided as algorithm parameter
but in case of a binary string the maximum possible changes
are equal to the total length of binary string. So, the maximum
flight length cannot exceed the length of binary string. Addi-
tionally, a constant range of flight length is not an optimal
choice, because if a crow is already too close to a target,
making a random choice for flight length may lead astray
from the possibly optimal solution. Therefore, it is crucial
that the choice of flight length is made within an optimal
range. Finally, the fixed flight length parameter is replaced
by dynamic flight distribution which not only ensures that the
flight range remains in optimal range but also eliminates one
tunable parameter. A summary of our main contributions to
solve all these problems is as follows:

(1). Crow Search Algorithm [38] is proposed to discover
complex and novel CNN architectures for the first time.

(2). Binary Crow Search Algorithm is proposed to solve
NAS problem in Binary Encoded Search Space.

(3). Target selection method is improved by introduc-
ing Tournament Select in baseline implementation of
Binary CSA.

(4). Flight Length selection range fI,,,, is computed auto-
matically, hence leaving only one tunable parame-
ter named awareness probability AP, which makes it
suitable for automation of neural architecture search
problem.

(5). Based on distance of a crow i in iteration ifer, from tar-
get crow j, a scaled range of the Flight Length fIi:ir g
introduced intermediately to improve the convergence
rate.

(6). Finally, it is demonstrated that Binary Crow Search
algorithm outperforms previous Neural Architecture
Search strategies by achieving comparable perfor-
mance in significantly smaller number of trainings.

All these modifications resulted in a novel algorithm which
has all the good qualities of CSA and is compatible with
complex search spaces suitable for NAS. The paper presents
this new algorithm as Binary Crow Search Algorithm.

Il. PROPOSED APPROACH

This section presents the Crow Search Algorithm for search-
ing state-of-the-art neural architectures. Initially, experiments
are performed on popular datasets such as MNIST [46] and
CIFAR10 [47] datasets etc. After initial evaluation on MNIST
and CIFARI1O0 datasets, results are provided on large-scale
datasets such as CIFAR100 and Tiny-ImageNet. The authors
followed the work of Genetic CNN [13] for network rep-
resentation such that a binary string is used to represent
an architecture as mentioned in section I. Binary Network
Representation and basic operations used by Binary Crow
Search Algorithm are explained in this section. Technical
details, limitations of methods and some examples are also
provided in this section.
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A. BINARY NETWORK REPRESENTATION

In this work, binary network representation scheme as pro-
posed by [13] is used to represent our search space. The
string length depends upon the number of stages S and
number of nodes K, (ne{1,2,...,S}) in each stage. The
authors experimented with two settings, S = 2, and § = 3,
having (K{,K>) = (3,5) and (K{,K?,K3) = (3,4,5)
nodes respectively. The network shown in figure 4 can be
represented by a string consisting of binary numbers such
as "az1a31a32b21b31b32b41b42b43b51b52b53b54" which can be
divided into parts for the sake of clarity. The string is divided
into two parts as per the number of stages i.e. "azjaziasz"
and "b21b31b3yb41ba2ba3bs1bs52bs53bss" representing encod-
ing of stage 1 and 2, respectively. In the first stage there are
3 nodes named Al, A2, A3 and 5 nodes i.e. Bl, B2, B3, B5
in the second stage. Here "azjazjazy” can be further split
node wise i.e. "az;—azjazp"”. The first bit "ar;" of this 3-bit
string represents the connection of A2 with A1, second bit
“a31” represents the connection of A3 with Al and third bit
“azy” represents the connection of A3 with A2. If a bit is
“set”, it represents a connection in respective nodes. The first
stage of figure 4(a), gets the final string as “1-11”. It is to
be noted that the indexing of string starts from the second
node of the respective stage i.e. A2 and B2 for stages 1 and 2,
respectively. By having a closer look at stage 2 string, it can
be seen that B2 is connected with Bl so "by;" = “1” on first
location. The node B3 which is not connected toB1 and B2
hence, b31 = 0, b3, = 0, respectively. The node B4 which
gets input from B2 but is disconnected with B1 and B3 hence,
ba1 = 0,b4p = 1, bs3 = 0. Finally, BS is not connected to
any of the nodes but directly with input node hence the string
for node B5 comes out to be 0000. The resultant length of the
binary string can be calculated by Eq. (5).

N

length of binary string = Z Z i—1 &)

n=1 i=1

where, S is the total number of stages and K, is the number
of nodes in the n” stage. For § = 2, (K1,K?) = (3,95),
the string length will be 13 and for S = 3, (K1, K, K3) =
(3, 4, 5), the string length will be 19. Alongside these nodes,
there are two default nodes in each stage, i.e. input node and
output node. These nodes are fixed by default such that, input
node will perform convolution and feed forward to any nodes
without predecessor. While output node will receive inputs
from all the nodes without successor. As, seen in figure 4, it is
possible that search algorithm may come up with different
configurations commonly found in state-of-the-art architec-
tures such as skip connections, multiple streams, merging of
streams, etc. Depth of each stage may also vary depending
upon connections. In this study experiments are conducted
with two settings as mentioned above. Furthermore, the num-
ber of stages as well as number of nodes in each stage can be
modified.

Using aforementioned settings, it is possible to imple-
ment many popular architectures such as VGGNet [16],
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ResNet [48] and DenseNet [49]. However, for fair compar-
ison with Genetic CNN [13], only pooling and convolutional
operations are used as nodes.

B. BINARY CROW SEARCH ALGORITHM

This section explains the basic operations performed by the
binary crow search algorithm. Some of these operations are
briefly explained in section I, as per original algorithm pro-
posed by [38]. Here, the operations are explained for the
specific case of Neural Architecture Search domain. Fur-
thermore, some improvements are proposed to the original
algorithm as shown in the table 2. These improvements are
thoroughly explained in this section. A summary of the differ-
ences between CSA and Binary CSA is provided as follows:

TABLE 2. Comparison between crow search algorithm and binary crow
search algorithm.

Operations Crow Search Binary Crow

and Algorithm Search Algorithm

Parameters

Distance Simple subtraction Binary selection and

Formula (Not possible for Binary substitution

Encoded Solutions)

Target Random Tournament Select

Selection

Max Flight flnax @ parameter of flnax is set to be

length 1., algorithm that needs to equal to total length
be fine-tuned. of bits in a solution

Number of 2 i.e. Flight Length, 1 i.e. Awareness

tuning Awareness Probability Probability

parameters

Max Flight Constant fliiter i

length in (fl;;glir = flnax) dynamically

Iteration iter computed based on

Distance from
Target (Eq. (6)).

Flight Length

iter

f l iiter
for crow; Liter

fli,iter
= random(flye) Liter

= random(flmax )

« Introducing tournament select method for faster conver-
gence

o Bound fI,,,, by total length of bits in solution, hence
having only algorithm parameter i.e. awareness proba-
bility AP

o Dynamic range of fI,,,, hence avoiding large flights
when close to the target

o Translation of flight formula into binary selection and
substitution operations.

These contributions are explained in detail as follows:

1) INITIALIZATION

Initially a flock of N crows is created where each crow is
initialized with a given list of nodes (K1, K3, K3, .., K;) per
stage S. Each stage is then represented by a binary string
as explained in previous section. In first iteration the binary
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Stage 1

1-11

1-00-010-0000

(d)

(@

0-10-110-0011

(c)
1-10-010-0010

(e)

FIGURE 4. (a) A schematic diagram representing two-stage (S = 2) network produced from the binary string “1111000100000". First
Stage has 3 nodes, whereas second stage has 5 nodes. (K;, K;) = (3, 5). (b), (c), (d), and (e) show some example configurations with
their respective binary strings. (b) and (c) combine to form the binary string “1010101100011". (d) and (e) combine to form the binary

string “0111100100010".

string is generated randomly to represent a random location
in search space. However, in order to compare the results with
fellow algorithms the initial locations may be assigned from
a pre-populated list.

2) INITIAL EVALUATION

All crows are then evaluated by decoding the binary net-
work representation and creating the corresponding neural
networks as shown in figure 4. Recognition score on a given
dataset is used as primary evaluation criteria.

Memory of each crow represents the location of the best
performing architecture in the search space. In first iteration
since there is no prior performance data, the current location
is considered the best location and assigned to the crow’s
memory. The recognition score is also stored as the best
achieved performance.
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3) TARGET SELECTION

In the original CSA, in each iteration, for each crow; in the
flock, a target crow; is randomly selected to follow. This
induces too much randomness and higher converging time.
However, our aim is to gradually improve the performance of
the crow in every iteration. Therefore, the selection process
is modified to aid in achieving our goal. Instead of selecting
the crow; randomly, it should be selected such that it leads
to convergence. One approach could be selecting the best
performing individual in every iteration. However, this can
cause CSA to converge to sub-optimal solution. So, the best
performing crow cannot be selected naively from the flock
to be followed by each crow, because it will lead them all
to converge in a local region in an iteration. Therefore, tour-
nament select procedure was followed where a small subset
of flock is selected randomly for each crow. Among these
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_[90%] 4
,(r \
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' // CTOW]-
crow; crow;

/Ll e

(a)

(b) (c)

FIGURE 5. Tournament Select illustration for selecting target crow. (a) shows a flock of 20 crows in iteration iter. (b) a pool of 5 crows selected
randomly from flock for crow; in iteration iter. (c) best performing crow is selected as target crow; from pool set.

randomly selected crows, the individual with best perfor-
mance is selected as target crow i.e. crow;. Tournament select
method is performed for every individual in the flock once
per iteration as shown in figure 5.

4) FOLLOWING

Once a target crow; is selected for a given crow; in an iter-
ation. There might be two cases as explained in section I.
In one case the target may be aware that it is being followed,
while in other case it may not be aware. To simulate this
phenomenon, the algorithm is initialized with an awareness
probability AP. At the time when a crow is following its
target, a random number is generated in the range of 1 to
100. If that number is smaller than the awareness probability,
the target (crow;) is considered to be aware of being followed
by the crow;. Otherwise if that number is greater than or equal
to the awareness probability the target (crow;) is considered
to be unaware of being followed by the crow;.

In the first case the target crow tries to mislead the fol-
lowing crow by going to a random location in search space.
Therefore, the final location of the crow i that is following
the target is also a random location in search space, which
may be generated randomly just like it was done at the time
of initialization.

In the second case the following operation is carried out as
per Eq. (4). The distance on the current location of crow; and
memory n¥-" of the target crow; is computed as hamming
distance hamﬁ;’er in binary strings as shown in figure 6(a).
It measures the number of bitwise substitutions required to
match both strings. N

The set of different bits are represented as diff ;.. Each
substitution in these different bits makes it one step closer to
the target string. The total number of substitutions done in
each flight is defined by the flight length f1%7*" As shown
in Figure 6(b), 3 bits were substituted, hence resulting in new
location x"#"+1 3 steps closer to the target. If the flight
length smaller than the hamming distance the f-" number
of bits are randomly selected from the different bits diff .’

iter
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hamming distance (x"1te7*1, miiter) = 2
(©)
FIGURE 6. (a) Flight distance is calculated as hamming distance between
binary strings. (b) If flight length f/’-€" is smaller than the hamming
distance, the final location is not too far from origin thus resulting in
local search. (c) If flight length fI’-/€" is bigger than hamming distance

than final location maybe even farther than the target hence, resulting in
global search.

for substitution. This will result in local search as explained
earlier in section 2, figure 3. However, if flight length is
greater than the hamming distance, extra bits will be selected
randomly from whole binary string in addition to the different
bits. This will cause excessive substitution and may result
in final location x»#¢"*! to be even farther than the target’s
destination m/"¢" as shown in figure 6 (c).
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Originally crow search algorithm is initialized with the
maximum allowed flight length f7,,,.. However, in case of
binary network representation the maximum flight length
S e can only mean maximum number of changes possible,
that is equal to the total length of binary string. Also, in the
original crow search algorithm, the flight length fI»¥" of
a crow i in iteration ifer is selected within the range of 1
to fl,.ax- However, there is a huge probability of the flight
length fI%" to be very big even when the target is very close.
The red line in figure 7 shows the flight length of original
CSA. Using the fixed range of flight length (1 : f7,,,,) will
make the agent to go far from solution as soon as it comes
near to convergence. Therefore, a method is proposed to
scale the maximum flight length f7,,,,, based on the hamming
distance between a crow and its target in current iteration.
Therefore, the maximum flight length /157" allowed for crow

max
i in iteration ifer can be computed as shown in Eq. (6).

ihiéir — \/ﬂmax x Ham (xi,iter’ mj,iler) —k (6)

Flight Length Normalization

Flight Length
i
o
1

12 3 456 7 8 9 101112 13 14 15 16 17 18 19
Hamming Distance
FIGURE 7. Scaling of maximum flight length fl;pqx into ﬂ,’,;:ff’ based on

hamming distance using Eq. (6). Red line shows the maximum flight

length fImax based on original CSA while blue line shows the scaled

distribution of fI;ifer

5) EVALUATION

Similar to the initial evaluation, corresponding locations for
all crows are decoded and used to build and compile the
neural network models. These networks are trained on given
dataset and their evaluation score is used as the fitness of the
crow on current location.

6) MEMORY UPDATE

The recognition score achieved for each crow in current
iteration is compared with their respective best performance
achieved so far. If a crow’s current performance is better
than its prior best achieved performance, then its memory
is assigned the current location of the crow. Best perfor-
mance of the crow is also updated by its current recognition
score.
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7) ITERATE

Steps from 4 to 7 are repeated until the last iteration. After
final iteration, a flock of crows is obtained which have
explored the search space and memorized the location repre-
senting the top performing neural network architecture. The
crow with highest achieved recognition scores has the final
binary encoded solution in its memory.

Table 3 shows the pseudocode for Binary Crow Search
Algorithm. The pseudo code for the follow() method used
by binary crow search algorithm is represented in table 4.
Furthermore, flowchart of BCSA is provided in the appendix,
figure 14.

TABLE 3. Pseudo code of binary crow search algorithm.

(1). Input: the refence Dataset D, number of iterations T, the number
of crows in the flock N, the awareness probability AP,
tournamentSize

(2). [Initialization: Generate a flock of N crows with randomly
assigned locations with memory mem = current_location

(3). Evaluation: Evaluate all crows for recognition accuracy of the
corresponding networks

(4). while iter < iteryax

(5). fori=1.N

(6). crow; = flock(i)

(7). crow; = tournamentSelect(rand(flock, tournamentSize))
8). ap’*e” = randrange(100)

9). if ap’iter > AP

(10). crow;. lociters1 = fallaw(crowj.memiter, crow;. loci[e,,)
(11). else

(12). crow;.loc;er 1 = random_location()

(13). fori=1:N

(14). crow; = flock(i)

(15). crow;. fitness = eval(crow;.loc;ter41)

(16). if crow;. fitness > crow;. bestyiess

(17). CTow;. bestsitness = crow;. fitness

(18). Crow;. MeMjzer = CToW;. l0C;ori1

(19). Output: Flock with memory of best locations they explored

lll. EXPERIMENTS

Training is performed on a cluster of 10 computers (clients)
with GTX 1080 Ti, such that the search algorithm runs
on the server and clients are responsible for training and
evaluation. Server passes the binary string representation to
each client which is then decoded into a CNN architec-
ture. After training and evaluation are done on the clients,
the results are sent back to the server. Based on these evalua-
tion results, server performs Binary CSA operations and com-
putes new binary strings which are sent to the clients for next
iteration.

Results are compared with Genetic CNN [13] and for
fair comparison the same initial population is used for both
methods. Furthermore, the authors experimented with two-
stage S = 2,(K1,K2) = (3,5) and three-stage S = 3,
(K1, K2, K3) = (3,4, 5) network representations for popular
image classification datasets including MNIST, CIFARI10,
CIFAR100 and Tiny-ImageNet. MNIST is a well-known
handwritten optical character recognition dataset containing
10 classes, each class representing one decimal number.
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TABLE 4. Pseudo code of follow ( crowjmemiq,., crow; .Iocite,) method
used by Binary crow search algorithm.

(1). diffigr = Compare(grawj.memiter, crow;.lociter)
(). haml,, = len(dif ;)

3). fluax = len(crow;.locie,)

@ [l = [flmax X hamyl, —k ~ Eq.(6)
(5). fliter = randqm(range(flf,’féir))

6). if fl¥*" > ham;’ :

iter"

). for count = 1: fI""" — ham;!

8). extra_mile = random(indexes(crow;.loci,))
). dif f,;)..append (extra_mile)

(10). elif fI4*" < ham;’,:

(11). for count = 1: ham;'tjer — fluiter B

(12). extra_mile = random(dif ;)

(13). dif f,i)..remove(extra_mile)

(14). haml} = len(diff,),)
(15). assert(fI1¥" == ham;},,
(16) CrUWi-lUciter+1 = []

(17). for index in indexes(crow;.loc;;e,):

(18). if index in dif ;)

(19). crow;. 10Cier41. append (crow;. meme,, [index])
(20). else:

21). crow;. loCirer i1 append (crow;. locye, [index])

(22). return_crow;. loc;per 41

There are total 60,000 training images and 10,000 test
images. CIFAR10 and CIFAR100 are popular image classi-
fication datasets. CIFAR10 contains 10 object classes with
6000 images per class. Out of 60,000 total images, 50,000 are
used for training while 10,000 are used as test images.
CIFAR100 contains 100 classes of common objects with
600 images per class. Out of total 60,000 images, 50,000 are
used as training and 10,000 are used as test images. Tiny-
ImageNet contains 200 image classes, with a training split
of 100,000 images, validation split of 10,000 images and
test split of 10,000 images. For MNIST, CIFAR10 and
CIFAR100, 10% of training images are used as validation
split. Small-scale datasets are used to evaluate our algo-
rithm as it will be very time-consuming to evaluate search
algorithms on large datasets. The number of filters and
kernel sizes are also fixed to match the scope of exper-
iment in Genetic CNN [13]. For instance, for MNIST,
the number of filters is fixed to 32 and 64 whereas, for
CIFARI10 and CIFAR100, 32, 64 and 128 (for three stage
architectures) are used. The kernel of size (3, 3) is used
in all experiments. The dense units are also fixed as 512,
1024, 2048 and 4096 for MNIST, CIFAR10, CIFAR100 and
Tiny-ImageNet experiments. However, these hyperparam-
eters may also be encoded in the search space and then
searched using Binary CSA as demonstrated in [37]. Fur-
thermore, the ablation experiments are performed to study
the impact of tournament select method over random selec-
tion and our proposed dynamic flight length distribution
flliter (Bq. 6) over static flight length fl,,,, as used in

max

original CSA.
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A. MNIST EXPERIMENTS

In the first phase of experiments, the proposed approach
is validated on MNIST dataset. The two-stage S = 2,
(K1, K2) = (3,5) binary representation is used with 3 and
5 nodes for stage 1 and 2, respectively. Results are shown in
table 5 and figure 8.

Performance Over lterataions

0.9982 { — Memory
0.9981
0.9980 ] —2- Max

0.9979 { —&_ Min

Cross Validation Accuracy

oxeil | ¢ ¢ 9 t 1

0 2 4 [ 8 10 12 14 16
Number of Iterations

FIGURE 8. MNIST results using Binary Crow Search Algorithm using
two-stage representation S = 2, (K, K;) = (3, 5). The orange and purple
bars here represent the difference of baseline accuracy with maximum
achieve accuracy in an iteration and minimum accuracy in an iteration,
respectively. While the blue line shows the progress of best achieve
performance over the experiment.

TABLE 5. Recognition accuracy on the MNIST Dataset (test split). Settings
used are S = 2, where (Kq, K;) = (3, 5).

Iteration Memory Max Min Average ggﬁ;ﬁ
0 0.9962 0.9962  0.9962 0.9962 0.0003
2 0.9971 0.9971  0.9961 0.9970 0.0002
4 0.9971 0.9969  0.9961 0.9965 0.0003
6 0.9976 0.9976  0.9961 0.9966 0.0003
8 0.9978 0.9978  0.9967 0.9976 0.0003
10 0.9978 0.9972  0.9961 0.9968 0.0003
12 0.9981 0.9981  0.9962 0.9975 0.0002
14 0.9982 0.9982  0.9971 0.9976 0.0003
16 0.9982 0.9973  0.9965 0.9971 0.0003

B. CIFAR10 EXPERIMENTS

For CIFAR10, experiments were performed with two differ-
ent settings with § = 2 and S = 3. For 2-stage experiment,
the number of nodes per stage were identical to the MNIST
experiments i.e. (K1, K2) = (3,5). Results for two-stage
experiment are shown in figure 9 and table 6. Furthermore,
experiments are conducted with three stage networks i.e.
S = 3 and number of nodes as (K|, Ky, K3) = (3,4,5)
for stages 1, 2, and 3, respectively. The experiments with
Tournament Select and impact of Flight Length are discussed
further in subsection C and D.
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TABLE 6. Recognition accuracy on the CIFAR10 Dataset (test split).
Settings used are S = 2, where (K, K, ) = (3, 5).

. . Standard
Iteration Memory Max Min Average Deviation
0 09134 0.9134  0.9000  0.9041 0.0038
1 0.9134 0.9098 0.9000  0.9043 0.0037
2 0.9144 0.9144  0.9000  0.9048 0.0046
3 0.9144 0.9128 0.9000  0.9048 0.0044
4 0.9154 09154  0.9019 0.9075 0.0039
5 0.9154 0.9144  0.9000  0.9091 0.0048
6 09154 0.9138 0.9000  0.9094 0.0044
7 0.9155 0.9155 0.9000  0.9099 0.0049
8 0.9155 0.9142 0.9000  0.9102 0.004
9 0.9155 0.9152 0.9000  0.9088 0.005
10 0.9155 0.9145 0.9000  0.9086 0.0052
11 0.9157 0.9157 0.9000  0.9095 0.0052
12 0.9157 0.9146 0.9000  0.9087 0.005
13 0.9157 0.9147 0.9000  0.9101 0.0046
14 0.9157 0.9151 0.9020  0.9103 0.0037
15 0.9157 0.9141 0.9000 0.9101 0.0042
16 0.9157 0.9142 0.9000  0.9091 0.0046
17 0.9178 0.9178 0.9001 0.9099 0.004
18 09178 0.9155 0.9000  0.9105 0.0044
19 09178 0.9157 0.9000  0.9098 0.0042

Performance Over Iterataions
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FIGURE 9. CIFAR10 results using Binary Crow Search Algorithm using
two-stage representation S = 2, (K, K;) = (3, 5). The orange and purple
bars here represent the difference of baseline accuracy with maximum
achieve accuracy in an iteration and minimum accuracy in an iteration,
respectively. The blue line shows the progress of best achieve
performance over the experiment. While green line shows that progress
of average performance of each iteration.

C. TOURNAMENT SELECT

In order to select the target crow j, the original CSA algorithm
randomly selects a crow from entire population, and it is
assigned to a crow i.
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However, as the experiments are conducted with different
configurations, it is noted that this favors to the exploration
and reduces the exploitation capability of CSA, hence con-
vergence time increases. For target selection, tournament
select method is used which is described in section II.B.3.and
figure 5. The tournament select method is configured such
that, a pool of 5 crows is randomly selected from the entire
population and among them the best performing individual
is selected as target crow i.e. crow j. Now, crow 7, will
follow crow j and perform all the Binary CSA operations.
This intuitively introduces a balance between exploration
and exploitation such that it keeps randomness along with
prioritizing well-performing individuals. Figure 12 (c) shows
the search results of Binary CSA performed with tournament
select method. When compared with vanilla Binary CSA
(figure 12(b)), it shows improvement in the form of early
convergence as well as improved accuracy for final solution.
This improvement can be credited to slight improvement in
exploitation, due to tournament-based target selection.

D. DYNAMIC FLIGHT LENGTH DISTRIBUTION

As discussed earlier, the original implementation of CSA uses
afixed range of flight length fl,, .., and each crow in each iter-
ation choses a flight length f1%/*¢" within this range. While our
proposed method introduces a dynamic distribution for range
of flight length fI-i%" shown in Eq. (6). The 3-stage experi-
ments are conducted with these two configurations. Empirical
results have shown an improvement in accuracy and decrease
in convergence time as shown in the figure 12 (d). Binary
CSA along with dynamic flight length distribution have out-
performed genetic algorithm, vanilla Binary CSA and Binary
CSA with Tournament Select as shown in figure 12 and
figure 13.

To further analyze the results, in-depth data is recorded
about crow travel history during the complete run. The dis-
tance between the follower crow i and target crow j is mea-
sured at every iteration ifer and then computed the distance
they actually travelled as shown in figure 10.

This analysis showed that if the range of flight length is
fixed, the crow i may fly a very long distance even when
it is already very near to the target crow hence, missing the
optimal solution. In an ideal scenario, the chosen flight length
for a crow i should not be too long when the distance between
follower and target crow j is small. Otherwise it will just
keep bouncing between locations instead of converging to an
optimal solution.

The impact of both choices for range of flight length on
the test accuracy is also recorded. For this purpose, the over-
all average improvement in accuracy was computed for all
crows in all iterations at various distances from their targets.
Figure 11 shows improvement in accuracy along the y-axis
for each choice of flight range at given distances. It is evident
from figure 10 and 11 that for a given distance from the target,
a crow may choose a different flight length based on the
selected range of flight lengths. Eventually, they may land on
different solutions and their results could be quite different.

VOLUME 8, 2020



M. Ahmad et al.: Image Classification Based on Automatic Neural Architecture Search Using Binary Crow Search Algorithm

IEEE Access

Average Distance Moved
12

10

8
4
o M

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Distance from Target

Distance covered
(<]

B Dynamic Flight Range M Constant Flight Range

FIGURE 10. Comparison between constant range of flight length and
dynamic range of flight length distribution (Eq. 6) of actual distance
moved by crow; against the distance from target crow; on CIFAR10 using
two-stage configuration S = 3, (K;, K;, K3) = (3, 4, 5).
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FIGURE 11. Impact of the choice of Flight Range on average improvement
in test accuracy using constant flight length and dynamic flight
length (Eq. 6).

It may be concluded that employing dynamic range of flight
length as per Eq. (6) has enhanced the performance of Crow
Search Algorithm.

IV. RESULTS AND DISCUSSION

The proposed approach is tested on MNIST, CIFAR and Tiny
ImageNet datasets. On the MNIST dataset, our algorithm was
able to find the best possible architecture in 15 iterations.
In the first iteration, the maximum performing architecture
achieved 99.62% accuracy. The maximum accuracy achieved
on the 15th iteration was 99.82%. Although, experiments
were conducted for more iterations, but CSA could not find
any better architecture after 15th iteration as shown in fig-
ure 8. This is also evident in the Figure 8, that binary CSA
is not greedy search like GA and PSO. When it finds a
good architecture, it still explores other possible solutions
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that may have low performance but because of memory mod-
ule, it remembers the best-found architectures and does not
diverge while exploring. Table 5 shows that in every iteration,
CSA is keeping track of best-found architectures in memory
while it keeps exploring the search space. As it finds better
performing architectures, memory is updated duly.

In the case of CIFARIO, the results are presented for
two experiments. One with 2-stage architecture space i.e.
S = 2, (K1, Kz) = (3,5), which is identical to the settings
used for MNIST. Cross validation accuracy is shown in fig-
ure 9. Second with 3-stage architecture space i.e. § = 3,
(K1.K2,,K3) = (3,4,5). In the 2-stage experiments, the
convergence is achieved in the 18" iteration as shown in
figure 9. The architectures found in the first iteration had
satisfactory performance. The best-performing architecture
in the first iteration achieved 91.34% accuracy while the min-
imum was at 90% accuracy which stayed same throughout the
experiment except 4™ and 15™ iteration.

These results show that better-performing architectures
may not exist in 2-stage search space. To verify this conclu-
sion, further experiments were conducted for 50 iterations,
but CSA did not find better performing architectures (loca-
tions). 2-stage experiment results for CIFAR10 are summa-
rized in table 6 and 3-stage experiment results in table 7.
To solve this problem, the search space is increased by
using three-stage architecture space which allowed us to
generate further deeper architectures. Experiment results for
3-stage configuration are shown in figure 12. It can be seen
that the accuracy improved significantly by increasing the
depth of the search space. Figure 12 (a) shows the cross-
validation accuracy of 93.75% achieved by applying genetic
algorithm on the CIFAR10 dataset while keeping the same
configuration as Binary Crow Search Algorithm. The binary
CSA outperformed genetic algorithm significantly, in terms
of higher accuracy and faster convergence. It is shown
in Figure 12 (b), that Binary CSA surpassed the GA in 26"
iteration and achieved final architecture with cross-validation
accuracy of 94.88%. Extensive experiments were conducted
with tournament select method and dynamic flight length
distribution to verify that both modification work well with
each other. Figure 12 (c) shows even faster convergence due to
better selection of more promising targets to be followed. The
Binary CSA with Tournament Select found an architecture
that outperformed the final solution found by GA only in 13®
iteration whereas, it found an architecture that outperformed
the solution by vanilla Binary CSA only in 28™ iteration.
The final solution found by Binary CSA with Tournament
Select achieved 96.25% accuracy. As discussed in the paper,
our proposed distribution of flight length ensures that every
flight made in the direction of target finds a solution in the
vicinity of the target solution. This addition in the algorithm
resulted in even faster convergence. The final version of
Binary CSA that uses both tournament select and dynamic
flight length outperformed GA only in 7™ iteration, while
it outperformed vanilla Binary CSA in 27" iteration and
outperformed the Binary CSA with Tournament Select only
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FIGURE 12. Comparison of cross-validation accuracy on CIFAR10 using (a) Genetic Algorithm (b) Binary CSA (c) Binary CSA with Tournament Select
and (d) Binary CSA with Tournament Select and Dynamic Flight Distribution. All above used three-stage configuration S = 3, where the number of

nodes per stage are (K;, K;, K3) = (3, 4, 5). The orange and purple bars here represent the difference of baseline accuracy with maximum achieve
accuracy in an iteration and minimum accuracy in an iteration, respectively. The blue line shows the progress of best achieve performance over the

experiment. While green line shows that progress of average performance of each iteration.

TABLE 7. Comparison results on CIFAR-10.

Algorithm Test Error  Evaluation Time (GPU Days)  Model Size
Genetic CNN [13] 6.25 16.6 156 M
CNAS [50] 4.23 1 295 M
LEMONADE I [33] 3.50 56 3.98M
Darts random [36] 349 - 3.16 M
Darts [36] 2.83 4 34M
Binary Crow Search Algorithm (Ours) 5.12 6.41 8M
Binary CSA with Tournament Select (Ours) 3.75 5.16 8.8 M
Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours) 3.48 3 8§ M

in 33" iteration by achieving 96.52% accuracy and sustained
this performance until the final iteration. Comparison results
of different versions of Binary CSA along with Genetic Algo-
rithm are summarized in table 8 and figure 13, such that

189906

the iteration number at which each algorithm surpasses the
highest achieved accuracy of rest of the algorithms is men-
tioned. Comparison results of some previous NAS methods
on CIFAR10 are presented in the table 7. While table 8 shows
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TABLE 8. Comparison results of Genetic CNN along with different versions of Binary CSA based on iterations to outperform the preceding algorithm.

Algorithm GA Vanilla BCSA BCSA-TS
(Iter — Max ACC) (50 - 93.75 %) (41 - 94.88 %) (44 - 96.25 %)
Vanilla BCSA 26-93.78 % 41-94.88 % -
BCSA with TS 13-93.88 % 28-94.92 % 44-96.25 %
BCSA with DFL 07 -93.81 % 27-95.26 % 33-96.52 %
TABLE 9. Comparison results on CIFAR-100.

Algorithm Test Error  Evaluation Time (GPU Days)  Model Size
Genetic CNN [13] (transferred from CIFAR10) 25.12 - 156 M
CNAS [50] 22.24 1 3.67M
Darts [36] 2322 12 3.03M
AmoebaNet-BC [51] 15.80 3150 349M
Large-scale Evolution [52] 23.70 2600 404 M
NASNet-A [34] 16.03 1800 509M
PNAS [35] 17.63 225 32M
NAONet [53] 14.75 200 128 M
Neuro-Cell-based Evolution [54] 21.74 1 53 M
GDAS(FRC) [37] 18.13 0.17 25M
EENA [32] (transferred from CIFAR-10) 17.71 - 849 M
Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours) 15.64 4.166 10M

Convergence Rate Comparison
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FIGURE 13. Comparison of convergence rate of different versions of
Binary CSA along with GA. The colored dot represents the iteration
number at which an algorithm outperformed other algorithms. For
example, a blue dot on green line represents the iteration at which
vanilla CSA outperformed the best accuracy of GA. It can be seen that
Binary CSA DFL found GA equivalent architecture in 7 iterations which
shows a significant improvement in convergence rate.

the results based on the number of iterations each method
took to outperform other variations. Binary CSA has shown
better performance in terms of test error as compared to
previous methods. However, CNAS [50] has achieved similar
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performance with less number of parameters. Binary CSA
can achieve better results in the terms of a smaller number of
parameters as well if applied to a more efficient search space.
For now, search space is the bottleneck of our algorithm as it
is not possible to find an architecture if it does not exist in the
search space.

Search results on CIFAR-100 are presented in table 9,
where Binary CSA has outperformed previous algorithms by
a significant margin however, the model size of architecture
searched by Binary CSA is approximately 3 times larger
than the one found by CNAS which again is the limitation
on the end of search space. Table 10 presents medium-
scale transfer experiments. For medium-scale transfer exper-
iments on Tiny ImageNet, the BCSA population is initial-
ized with the 20 best performing individuals found in the
last iteration of CIFAR100 search experiments. This helped
in saving many GPU hours. Searching for architectures on
small datasets and then instead of re-using them as previous
methods have done, it is proposed to initiate the popula-
tion using already searched top-performing architectures. The
results are comparable to state-of-the-art however, the pro-
posed approach does not involve any meta-architecture as
required by other state-of-the-art methods. Finally, the test
error rate results are presented on all the datasets as shown
in table 11. In the future, Binary CSA can be integrated with
a more sophisticated search space to generate more efficient
architectures.
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TABLE 10. Comparison results on Tiny ImageNet.

Algorithm Test Error  Evaluation Time (GPU Days)  Model Size
CNAS [50] 36 3.5 3.67M
Darts [36] 38.6 3.75 3.03M
Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours)” 34.43 3 13M

+ top performing architectures on CIFAR100 were used to populate the first generation

TABLE 11. Classification error rate for binary crow search algorithm on different datasets.

Dataset Architecture Test Error (%) Evaluation Time (GPU Days) Model Size
MNIST* 'S 1:'100','S 2" '010000' 0.18 0.8 &M
CIFAR-107 'S_1'010",'S_2"'011010", 'S_3": '1000000010' 3.48 3 &M
CIFAR-100" 'S_1'101','S_2"'001100",'S_3"'0111010001" 15.64 4.166 10M
Tiny-ImageNet™ 'S 1:'111%'S 2"'100111','S 3" '1010100110' 34.43 3 13M

* 2-stage network representation, 1 3-stage network representation, + top performing architectures on CIFAR100 were used to populate the first generation

Such a system can be implemented to provide completely
automated Al solutions for various applications such as auto-
matic Al system training from data collection by users of
mobile applications. The data may belong to a wide range
of applications such as plant disease classification, accidental
car damage attribution, used furniture and appliances condi-
tion evaluation etc.

The central system for each application may automatically
construct a deep learning model that suites the data pro-
vided by users e.g. labeled pictures of leaves, car scratches
and damaged furniture. Hence no technical knowledge of
machine learning and artificial intelligence will be required
to deploy each time a new application is required. The binary
crow search algorithm will automatically find a deep learning
model that best suites the data-based application.

V. RESULT ANALYSIS

Our proposed approach was able to find comparable architec-
tures to other NAS methods. However, there is one thing to
be noticed that the size of models found by our approach is
larger than some of the NAS approaches. It is to be noted
that the number of parameters (model size) or the type of
model that can be produced is solely dependent upon the
search space design. As far as the comparison of parameters
is concerned, our approach uses the same search space as
used by Genetic CNN. Models found by BCSA have signif-
icantly small number of parameters, i.e. the model found for
MNIST data has only 8 million parameters whereas Genetic
CNN achieves the best accuracy with 156 million parame-
ters, similarly for CIFAR10, CIFAR100 and Tiny ImageNet,
BCSA outperforms Genetic CNN in terms of accuracy, model
size and faster convergence to optimal solution. As for the
other NAS methods, such as Darts and CNAS, our method
achieves slightly better accuracy, but the model size is larger.
Figure 13 presents the amount of trainings required by one
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approach to outperform the other approaches. It is clear that,
BCSA with flight length distribution algorithm along with
tournament select significantly outperforms BCSA with orig-
inal flight length and target selection methods. Moreover,
to validate the performance of BCSA and its variants, a sta-
tistical analysis is provided in the next section.

A. EFFECT OF TOURNAMENT SELECT AND DYNAMIC
FLIGHT LENGTH

In order to validate the results, several experiments were per-
formed to conduct statistical analysis about the improvement
in positive changes of the fitness for candidate solutions in
an experiment compared to another. For this purpose, differ-
ence in improvement is computed for each individual/crow in
each generation/iteration in different experiments as shown
in table 12.

Then each experiment is compared to another and counted
the solutions explored in the search space with better and
worst fitness in a pairwise manner to roughly estimate the
effects of choosing each variation over another according to
the statistical results. The overall effect of choosing each
algorithm and its operations is summarized in table 13. In
order to verify the significance of each action, i.e. BCSA is
significantly better than GA, Tournament Selection is better
than using Random Selection and, Dynamic Flight Length
improves the performance of BCSA, two tailed Wilcoxon
Signed Rank tests were performed, a nonparametric statistical
analysis on our experiment results. The null and alternative
hypotheses for these tests are:

Test 1 (GA vs BCSA Vanilla):

Hy: The new solutions computed using follow oper-
ation of BCSA do not show significant improvement
compared to overall exploration done using crossover
and mutation operations of GA.
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TABLE 12. Improvement in fitness of each individual in the final iteration
(iter = 20) of each experiment.

Individual /

Crow GA __ |BCSA (Vanilla)|BCSA (TS)| BCSA (Dynamic FL)
0 0.0096 -0.0016 -0.003 0.0038
: 0.0072 0.0011 0.004 0.003
2 0.0044 -0.0005 0.0069 -0.0006
3 -0.0038 0.0012 -0.0008 0.001
4 -0.0106 -0.0007 0.003 0.0002
> -0.0033 0.0009 0.0067 0.002
6 0.0121 0.0015 0.0075 0.001
’ 0.0027 0.0014 0.0063 0.0018
8 -0.0009 0.0005 0.0119 0.0044
? -0.0003 0.0006 0 0.0024
10 -0.0017 0.0008 -0.002 -0.001
1! 0.0004 -0.0008 0.0025 0.0064
12 0.0135 0.0005 0.0066 0.0012
13 0.0041 0.0025 0.0079 0.0014
14 0.0042 0.0004 0.0032 0.0046
15 0.0027 0.0022 -0.0007 -0.0002
16 -0.0023 -0.0003 0.0027 -0.0006
17 -0.0095 0.0003 -0.0028 0.0002
18 -0.0066 -0.0007 0.0041 0.0038
19 -0.0049 -0.0012 0.0033 -0.0004

TABLE 13. Effects of choosing BCSA and its each variation against GA and
each other in terms of total count of Better and Worst changes in the
fitness of all individuals/crows in all the generations/iteration of the
experiment.

Comparison Pair Better Worst

GA — BCSA (Vanilla) 236 (59.0 %) 164 (41.0 %)
BCSA Vanilla— BCSA TS 244 (61.0 %) 156 (39.0 %)
BCSA TS — BCSA Dynamic FL. | 246 (61.5 %) 154 (38.5 %)

TABLE 14. Wilcoxon Signed Rank test results show that in each
comparison pair the latter introduces significant improvement in the
performance. Here W+ is the total rank score of the positive changes,
W- is the total rank score of the negative changes.

Tests W+ w - Zgar p-value Result
46316 -33884 2.686 0.0491 [Reject Hy
48165 -32035 3.485 0.0471 [Reject Hy
48373 -31827 3.575 0.0487 [Reject H

Hi: BCSA’s follow operation demonstrates signifi-
cant improvement for overall explored search space
locations.
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Test 2 (Random Select vs Tournament Select):

H): Target selection using Tournament Select in BCSA
has no impact on the likeability of reaching a better
location as compared to the Random Select.

Hj: Target selection using Tournament Select in BCSA
significantly improves the likeability of reaching a bet-
ter location as compared to using Random Select.

Test 3 (Fixed Flight Length vs Dynamic Flight Length):

Hy: Choosing a range of flight length dynamically
based on the distance from target has no impact on the
likeability of reaching a better location as compared to
a fixed range of flight length.

Hi: Choosing a range of flight length dynami-
cally based on the distance from target significantly
improves the likeability of reaching a better location as
compared to using a fixed range of flight length.

The results for these tests are shown in table 14. Zgy,, is
computed using large-sample approximation formula Eq. (7)
for Wilcoxon Signed Ranked Test. The p-value is calculated
using the normal approximation. The null hypothesis Hy is
rejected if Zgq > 1.96 and p-value is less than « = 0.05.

n'(n'+1)
Ztat = W- "3
stat = ————
[0 @' +1)2n'+1)
24

VI. CONCLUSION

The study presented in this paper suggests the use of
Binary Crow Search Algorithm for Neural Architecture
Search. In this study, it is shown that Binary CSA based neural
architecture search can achieve comparable accuracy in sig-
nificantly smaller number of trainings. Furthermore, statisti-
cal analysis is performed using Wilcoxon signed rank test and
the performance of BCSA with GA and variants of BCSA is
compared. The results of Wilcoxon signed rank test prove that
the improvement introduced by BCSA and its variants is sig-
nificantly better than other alternatives as shown in table 14.
Current NAS approaches do not use any domain knowledge
for finding optimal solution. A search method which exploits
domain knowledge will intuitively perform better than a blind
method which does not use any domain knowledge. In future,
this problem can be addressed by introducing guided search
methods instead of blind search. The algorithm responsi-
ble for searching for neural networks should understand the
impact of hyperparameters, layers, blocks, different types of
activation functions, and architectural choices prior to train-
ing and evaluating them. Moreover, NAS can be formulated
as a multi-objective optimization problem, which can mini-
mize error and model size simultaneously. BCSA can be used
with other more sophisticated search spaces such as NASNet
or DAG based search spaces. Another multi-objective scheme
can be devised which can search for cell architecture as well
as, meta-architecture (currently manually designed in cell-
based search spaces) which will help reduce the need for
manual interventions.

N
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Step 1: Initialize problem and adjustable parameters

Step 2: Initialize positions and memories

Step 3: Evaluate fitness function

Input: the reference Dataset D, number of iterations T, the
number of crows in the flock N, the awareness probability AP,
tournamentSize

—* Generate a flock of N crows with randomly assigned locations —>{ Evaluate all
with memory mem = current_location

crows for recognition
corresponding networks

accuracy of the

———

Step 5: Evaluate fitness

Step 4: Generate new position
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Step 6: Update memory
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FIGURE 14. Flowchart of proposed binary crow search algorithm.

APPENDIX
See Figure 14.
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