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ABSTRACT In this paper, we study the issue of computation offloading in non-orthogonal multiple access
(NOMA)-based multi-access edge computing (MEC) systems. A joint optimization problem of offloading
decision, subchannel assignment, transmit power, and computing resource allocation is investigated to
improve system performance in terms of both completion time and energy consumption. The formulated
problem is a mixed-integer non-linear programming one, it is therefore hard to solve. To make the problem
tractable, we first decompose the problem into subproblems of computing resource allocation (CRA),
transmit power control (TPC), and subchannel assignment (SA). Then, we address the CRA subproblem
by a convex optimization technique. For the remaining two subproblems TPC and SA, we propose to
use a gradient-free swarm intelligence approach, namely whale optimization algorithm, to provide a very
general but efficient solution. Computer simulations are performed to show the convergence of the proposed
algorithm, also its better performance in comparison with conventional schemes.

INDEX TERMS Computation offloading, swarm intelligence, multi-access edge computing, non-orthogonal
multiple access, resource management, whale optimization algorithm.

I. INTRODUCTION
To cope with various performance requirements of emerg-
ing applications in fifth-generation (5G) and beyond net-
works, different advanced solutions have been taken into
account, simultaneously. Among them, developed by the
European Telecommunications Standards Institute (ETSI),
multi-access edge computing (MEC) is a highly useful tech-
nology [1]. The principle of MEC is to move the computation
capacity from the cloud to the network edge in the proximity
of user equipments (UEs). Thanks to this mechanism, UEs
can offload their computation tasks toMEC servers while sig-
nificantly reducing the whole network transmission latency.
On the other hand, non-orthogonal multiple access (NOMA)
has been well known as an essential technique beyond 5G to
cope with the massive Internet of Things (IoT) connectivity
[2], [3]. The primary idea of NOMA is to carry over the
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same transmission resources (e.g., frequency and power) a
superimposed signal of multiple UEs at the transmitter side.
Then, successive interference cancellation (SIC) is employed
at the receiver side to decode the signal of each UE, thus,
increasing the total number of served UEs [3]. Owing to huge
potentials of MEC and NOMA, their integration i.e., NOMA-
based MEC, in 5G networks has received much attention
recently [4].

One of the most important research topics in NOMA-based
MEC systems is solving the issue of offloading decision
and resource allocation/control. In other words, based on
the shared information between UEs and MEC servers such
as UEs’ task loads, computing resources at UEs and the
servers, transmission resources (e.g., frequency, time, and
power), each UE can decide to offload its task (with which
transmission resources) or to perform the task locally. The
main purpose of the decision is to optimize the objective
function such as the system delay, energy consumption, and
computation efficiency [4]. A number of research works have
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been studied in this literature. For instance, the optimization
problem of computation offloading is considered in multi-
user settings in [5]–[7]. They aim at minimizing the overhead
in terms of the task completion time and energy consumption
of remote computation in comparisonwith the local one. Nev-
ertheless, those works rely on the assumption that resource
blocks are orthogonally assigned to offloading users, that is,
the advantage of NOMA to support massive connectivity is
not considered in these works. One of the first contributions
that considers the impact of NOMA on offloading decision
is investigated in [8]. This work aims at minimizing energy
consumption by jointly optimizing subchannel assignment
(SA), computing resources allocation (CRA), and transmit
power control (TPC). To improve the objective in [8], both the
completion time and energy consumption of NOMA-based
MEC systems are considered in [9]; however, transmit power
of NOMA users is predefined. A weighted sum overhead of
time and energy consumption of NOMA-basedMEC systems
is minimized in [10] where SA, CRA, and TPC are jointly
considered. Nevertheless, the optimization problem in [10]
requires a standard form of the objective function so that
both TPC and CRA problems can be solved by convex opti-
mization approaches. This motivates us to study a general
optimization approach for the above issue.

The optimization schemes of offloading decision and
resources allocation in NOMA-based MEC systems can be
solved by different approaches such as network optimization
[7], [11], [12], game theory [6], and machine/deep learning
[13]. As an attractive alternative, swarm intelligence has
showed its potential in optimizing and analyzing the network
performance for years. The term swarm intelligence, firstly
defined in 1993, refers to the collectively intelligent behavior
of a group of non-intelligent robots [14]. This behavior can
unpredictably produce specific (patterns) results. Gradually,
not only groups of robots, swarm intelligence describes the
algorithms that mimic the collective behaviour of swarms,
flocks, herds of animals, for examples, a swarm of bees,
a flock of birds or a herd of wolves. According to [15], main
advantages of swarm intelligence are 1) there are no assump-
tions about the objective function and the problem to be
optimized, 2) a swarm intelligence technique can achieve the
tradeoff between exploration and exploitation so as to obtain
the global solution, 3) gradient information about the problem
to be optimized is not required, and finally 4) it is quite simple
to implement a swarm intelligence technique, as compared
with other ones in game theory, convex optimization, and
deep learning approaches. For instance, an efficient routing
protocol based on a variant of the artificial bee colony for
wireless sensor networks is proposed in [16]. The Harris
Hawks optimizer is employed in [17] to solve the problem
of unmanned aerial vehicle (UAV) placement, power alloca-
tion, and in NOMA-enabled visible light communications.
The particle swarm optimization approach is used in [18] to
generate training samples for a deep neural network in hybrid
UAV-MEC systems. As one of the most recent swarm intelli-
gence algorithms, the whale optimization algorithm (WOA)

has become popular and widely used in various engineering
problems since the proposal in [19]. WOA imitates the col-
lectively hunting behavior that only is seen in the humpback
whales. Having the characteristics of SI algorithms, WOA
can 1) be simply implemented, 2) flexibly applied for various
problems without the requirement in calculating gradient,
and 3) achieve the efficiency in obtaining the global solution
by balancing between exploration and exploitation phases.
WOA is very competitive with other SI algorithms by test
results on benchmark functions. As stated in the No Free
Lunch theorem, no optimization algorithm is suited for all
optimization problems [20]. In addition, it is shown in [21]
that WOA can be served as a promising optimization tool for
various optimization problems in wireless networks, includ-
ing energy efficiency, spectral-energy efficiency tradeoff, and
MEC computation offloading.

Inspired by the work in [21], we will employWOA to solve
the problem of computation offloading in NOMA-based
MEC systems, and show that the WOA-based algorithm can
achieve a competitive performance when it is compared with
baseline and existing schemes. Our main contributions can be
summarized as follows.

1) The issue of offloading decision in NOMA-basedMEC
systems is considered both in terms of completion
time and energy consumption, taking SA, TPC, and
CRA into account. The considered problem is shown to
be a mixed integer non-linear programming (MINLP)
problem, which is hard to solve. To make the problem
tractable, we decompose the original problem into three
subproblems of CRA, TPC, and SA, which are further
solved in an iterative manner.

2) During each iteration, while the CRA subproblem can
be solved by a convex optimization technique, we use
a swarm intelligence approach, namely WOA, to solve
the TPC and SA subproblems. Two additional condi-
tions to reduce the runtime of WOA are also proposed.
Thanks to the simplicity, efficiency, and flexibility of
WOA, the approach is applicable for different forms of
the objective function of the two subproblems.

3) We carry out computer simulations to validate the con-
vergence of the proposed algorithm and show its better
performance in comparison with other algorithms.

The rest of this article is organized as follows. Our system
model and the considered optimization problem are intro-
duced in Sections II and III, respectively. The proposed algo-
rithm for the problem is described in details in Section IV,
while simulation results are presented in Section V. Finally,
Section VI concludes our works.

II. SYSTEM MODEL
A. NETWORK MODEL
We consider a NOMA-based MEC system, which consists
of a set of N UEs defined as N = {1, 2, . . . ,N }, and an
MEC server that might be located at a cellular base station
(BS). Each UE i has a task Ii = {βi, αi}, where βi (in
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FIGURE 1. Illustration of a NOMA - based MEC system.

cycles) specifies the amount of CPU computation to complete
the task and αi (in bits) is the input data size including
information of system settings, program codes, and other
parameters being transmitted in case of remote computation
[5]–[7]. UEs decide to execute their tasks locally, or offload
them to the MEC server over one of subchannels from the set
S = {1, 2, . . . , S} to save time and energy. On the other hand,
to serve multiple UEs over the same radio resource, NOMA is
also adopted in this work. In particular, more than one UE can
use one subchannel to transmit their signals/tasks. According
to the NOMA principle [22], the message of the strongest UE
(UE that has the highest channel gain) is decoded first treating
weaker signals as interference. Weaker signals are succes-
sively decoded in the order of decreasing channel gains. For
further convenience, we denote by pij the transmit power of
UE i with the chosen subchannel j.
Fig. 1 illustrates a simple example of our systems with

four UEs, where three users i.e., UE1, UE2, UE3 offload
their tasks to the MEC server, while UE4 executes its task
locally. Here, UE1 uses subchannel 1, whereas UE2, UE3 use
the same subchannel 2 with the corresponding channel gains
|h22|2, |h32|2, and |h22|2 ≥ |h32|2. At the MEC server,
UE2’s signal is first decoded under the interference of UE3’s
signal. After using SIC to eliminate theUE2’s decoded signal,
UE3’s signal can be also decoded. It is noted here that, for a
successful decoding of UE2’s signal, the condition p22|h22|2

p32|h32|2
≥

γtol need to be satisfied, where γtol is a predefined threshold
required for the SIC decoder at the BS. More generally, if we
denote by Aj the set of offloading UEs sharing the same
subchannel j, the following condition should be satisfied [10]

pij|hij|2∑
k∈Aj

|hkj|2≤|hij|2
pkj|hkj|2

≥ γtol, ∀i ∈ Aj. (1)

B. LOCAL AND REMOTE COMPUTATIONS
For local computation, the time (in seconds) denoted by T li
that UE i takes to complete its task is

T li = βi/f
l
i , (2)

where f li is the computing capability (in cycles/second) of UE
i. Also, the energy E li (in Joules) consumed for this task can
be found as

E li = κiβi(f
l
i )

2, (3)

where κi is an energy coefficient depending on UE i’s chip
architecture.

On the other hand, when offloading the task to the server,
UE i suffers an additional cost in term of time and energy:
i) the time and energy for transmitting the task to server, ii)
the time for executing the task at the server, and iii) the time
and energy to receive the output back from server. Since the
output data size is much smaller than the input one, while the
data rate of downlink is relatively higher than that of uplink,
we ignore the delay time and energy incurring in iii) as in
[5]–[7]. We now show how to determine time and energy
taken in steps i) and ii). In particular, we define a binary SA
variable xij, i ∈ N , j ∈ S, where xij = 1 indicates that
UE i offloads its task to the server through subchannel j, and
xij = 0, otherwise. Since each UE is assumed to use at most
one subchannel for offloading, the constraint below should be
satisfied ∑

j∈S
xij ≤ 1, ∀i ∈ N . (4)

Here, from the result of SA, offloading decision of UE i can
be determined by

∑
j∈S xij, in which

∑
j∈S xij = 0 means UE

i locally executes its task. In case of offloading,
∑

j∈S xij = 1,
the data rate of UE i through subchannel j can be given as

Rij = W log2


1+

pij|hij|2

n0 +
∑
k∈Aj

|hkj|2≤|hij|2

pkj|hkj|2


, i ∈ Aj

(5)

where W (in Hertz) is the bandwidth of a subchannel that
is set to be identical for all the subchannels, n0 is the noise
power, the aforementioned set Aj can be clearly written as
Aj = {i ∈ N | xij = 1}. It is noted here that the event UE
i does not use subchannel j to offload refers to pij = 0, and
thus, Rij = 0. In this case, the transmission time taken by UE
i for offloading (denoted by T off

i ) is only calculated based on
assigned subchannel j satisfying xij = 1, as follows

T off
i =

∑
j∈S

xijαi
Rij
= αi

∑
j∈S

xij
Rij
. (6)

On the other hand, if we denote by pi the transmit power of
UE i, we have

0 < pi =
∑
j∈S

xijpij ≤ p0i , (7)

VOLUME 8, 2020 190465



H.-G. T. Pham et al.: Joint Task Offloading and Resource Management

where p0i is the maximum power budget. Then, the energy
cost that UE i suffers from the offloading (denoted by Eoff

i ) is

Eoff
i =

pi
ξi
T off
i =

pi
ξi
αi
∑
j∈S

xij
Rij
, (8)

where ξi is power amplifier efficiency. At the server, the time
for executing the task (denoted by T exe

i ) is calculated as

T exe
i =

βi

fi
, (9)

where fi (in cycles/second) is the server’s computation
resource allocated to execute the task from UE i. It also
implies that when fi = 0, UE i executes locally. Moreover,∑

i∈N

∑
j∈S

xijfi ≤ f0, (10)

where f0 is the total computing resource of the server. Here,
the total time and energy (denoted by T ri andE

r
i , respectively)

that UE i consumes for the offloading can be summarized as
follows

T ri = T off
i + T

exe
i = αi

∑
j∈S

xij
Rij
+
βi

fi
, (11)

and

Eri = Eoff
i =

pi
ξi
αi
∑
j∈S

xij
Rij
. (12)

Finally, the total time and energy taken by UE i for its task Ii,
which are denoted by Ti and Ei, respectively, can be written
as

Ti = (1−
∑
j∈S

xij)T li +
∑
j∈S

xijT ri , (13)

Ei = (1−
∑
j∈S

xij)E li +
∑
j∈S

xijEri . (14)

III. PROBLEM FORMULATION AND DECOMPOSITION
A. PROBLEM FORMULATION
We first denote by Ui the utility function of each UE i as
follows

Ui = λti
T li − Ti
T li

+ λei
E li − Ei
E li

=

[
(λti + λ

e
i )−

(
λtiT

r
i

T li
+
λeiE

r
i

E li

)]∑
j∈S

xij, (15)

where
T li −Ti
T li

and
E li−Ei
E li

measures performance improvements
in terms of time and energy, respectively, when offloading
compared with local execution. It is noted here that Ui = 0
if UE i executes its task locally, while it might take negative
values if remote completion time ismuch longer than the local
one [5]. Moreover, λti and λ

e
i are EU i’s preferences in con-

sumed time and energy, respectively, where λti , λ
e
i ∈ [0, 1]

and λti+λ
e
i = 1. These parameters are based on the remaining

battery life and requirements of the task’s completion time

[5]–[7]. Our objective is to maximize the system utility of all
UEs when offloading i.e., U =

∑
i∈N Ui. To do that, in the

following, a joint optimization scheme of offloading decision,
subchannel, transmit power, and computing resource alloca-
tion (ODSTCA) is studied. In particular, we first denote by
X =

{
xij, i ∈ N , j ∈ S

}
, P = {Pui, i ∈ N } =

{
Psj, j ∈ S

}
,

and F = {fi, i ∈ N } the SA, the power, and computation
allocation vectors, respectively. Here, Pui = {pij, j ∈ S} and
Psj = {pij, i ∈ N }, represent the power of each UE and each
subchannel, respectively. Then, the optimization scheme can
be expressed as follows

max
X,P,F

U (X,P,F) (16)

s.t. C1 :xij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ S, (17)

C2:
∑
j∈S

xij ≤ 1, ∀i ∈ N , (18)

C3: pij ≥ 0, ∀i ∈ N , ∀j ∈ S, (19)

C4:
∑
j∈S

xijpij ≤ p0i , ∀i ∈ N , (20)

C5:
pij|hij|2∑

k∈Aj

|hkj|2≤|hij|2
pkj|hkj|2

≥ γtol, ∀j ∈ S, ∀i ∈ Aj,

(21)

C6: fi ≥ 0, ∀i ∈ N , (22)

C7:
∑
i∈N

∑
j∈S

xijfi ≤ f0. (23)

In ODSTCA problem, C1 and C2 imply that each UE can
only use at most one subchannel to offload the task to the
server. C3 and C4 refer to requirements of the allocated trans-
mit power, while C5 specifies the condition to implement
efficient SIC at the server. In addition, C6 and C7 show the
constraints of the computing capability of the server.

B. PROBLEM DECOMPOSITION
It is observed that (16) is an MINLP problem, which might
take exponential time to obtain the optimal solution. To make
the problem more tractable, the structure of objective func-
tion and constraints are separated into subproblems as the
approach in [5]–[7]. In particular, by denoting A = ∪j∈SAj
as the set of all offloading UEs, the objective function
Z (X,P,F) is rewritten as follows

U (X,P,F) =
∑
i∈A

[
(λti + λ

e
i )−

(
λtiT

r
i

T li
+
λeiE

r
i

E li

)]
=

∑
i∈A

(λti + λ
e
i )−W (X,P,F), (24)

where W (X,P,F) refers to as the overhead in time and
energy at remote computation compared with the local one.
The problem can be now understood as maximizing the num-
ber of offloading UEs, while minimizing the extra overhead.
From (11), (12), (24),W (X,P,F) can be further decomposed
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as

W (X,P,F) =
∑
i∈A

λtiβi

fi
+

∑
i∈A

(ηi + γipi)
∑
j∈S

xij
Rij

= G(X,F)+ F(X,P), (25)

where ηi =
λtiαi

T li
, γi =

λei αi

ξiE li
, G(X,F) =

∑
i∈A

λtiβi
fi
, and

F(X,P) =
∑

i∈A(ηi + γipi)
∑

j∈S
xij
Rij
.

The original problem (16) can be now considered as three
subproblems. In particular, for a given offloading decision
X , minimizingW (X,P,F) are equivalent to two independent
subproblems, namely CRA and TPC as follows

min
F

G(X,F)

s.t. C6, C7. (26)

min
P

F(X,P)

s.t. C3, C4, C5, (27)

where rewritten F(X,P) =
∑

j∈S
∑

i∈Aj

(ηi+γipij)
Rij

. On the
other hand, for a given optimal solution of F∗, P∗ obtained
from (26), (27), respectively, (16) is equivalent to the SA
subproblem as

max
X

∑
i∈A

U (X)

s.t. C1, C2, (28)

where U (X) = (λti +λ
e
i )−G(X,F

∗)−F(X,P∗). In the next
section, we in turn present our solution for each subproblem
in order to obtain the final optimal of (16).

IV. PROPOSED METHOD
After decomposing the original problem, the CRA and TPC
subproblems can be solved with fixed subchannel allocation
and the SA can be addressed corresponding to the results
of the CRA and TPC. As will be presented in this section,
the solution for the CRA is solved by a convex optimization
technique, as presented in the previous works, while the
solutions for the TPC and SA subproblems are obtained by
WOA.

A. COMPUTATION RESOURCE ALLOCATION
The CRA problem in (26) has been showed as a convex prob-
lem, and fully addressed in [5]. We adopt this contribution in
our work to obtain the optimal solution and objective value,
respectively, as follows

F∗ = {f ∗i , i ∈ N }, f ∗i =

√
λti f

l
i∑

i∈A

√
λti f

l
i

f0,

G(X,F∗) =

(∑
i∈A

√
λti f

l
i

)2

f0
. (29)

B. WOA FOR TRANSMIT POWER CONTROL
To solve the TPC subproblem, in this section, WOA is
employed thanks to its simplicity and efficiency. WOA is a
new nature-inspired meta-heuristic searching algorithm pro-
posed in [19] that mimics the unique bubble-net hunting
behavior of humpback whales. It is shown in [21] that WOA
can achieve a competitive performance with a low compu-
tation complexity compared to algorithms in the areas of
convex optimization and game theory. The work in [21] also
discusses the use of WOA in a number of resource manage-
ment problems in 5G wireless networks and beyond.

In bubble-net hunting, the whales simultaneously move
along an upward spiral and create a net of bubbles in order
to disorient and encircle the prey, then feed them on the
surface of water [23]. Correspondingly, WOA models this
behavior by three maneuvers namely, search for prey (SFP),
shrinking encircling mechanism (SEM) and spiral updating
position (SUP). The positions of the whales (or search agents)
during finding the optimal solution (the position of the prey)
are continuously updated, which depends on the particular
maneuver. In particular, if it is SFP, a whale randomly picks
another whale in the population, then moves far away this
whale to explore its surroundings, discover potential areas
that might contain the prey. If it is SEM or SUP, the whale
will shrink the corral or swim in helix-shape towards the
prey’s position, respectively. From the swarm intelligence
perspective, SFP belongs to exploration phase, while SEM
and SUP are in exploitation phase. This process of searching
and position updating is terminated when the position of the
prey, be assumed as the best agent, is found. It is noted here
that the determination of which maneuver is selected during
the search process depends on the WOA’s parameters, which
controls the balance between exploration and exploitation
phases.

On the other hand, the former version of WOA is des-
ignated for unconstrained optimization problems only. To
solve TPC subproblem in (27), we therefore adopt a penalty
method applied in [21] to transform the subproblem into an
unconstrained one. In particular, constraints C4, C5 can be
rewritten as

h4(Pui) =
∑
j∈S

xijpij − p0i , i ∈ N ,

h5(Psj) = Ptol ×
∑
k∈Aj

|hkj|2≤|hij|2

|hkj|2pkj − |hij|2pij,

j ∈ S, i ∈ Aj. (30)

Note that, constraint C3 is handled by limiting the vari-
able domain of the algorithm. Then, by denoting 0(hi) =
0 if hi ≤ 0 and 0(hi) = 1, otherwise, a penalty term is
defined as

PTPC(X,P) =
∑
i∈N

µi0(h4(Pui))h
2
4(Pui)
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+

∑
j∈S

∑
i∈Aj

νij0(h5(Psj))h
2
5(Psj), (31)

where µi, νij are penalty factors, which represent the vio-
lation level of the considering solution to the correspond-
ing constraints. These factors, in general is in range of
[1013, 1015] [21], mostly depending of the value range of
objective function. To explain how the penalty method works,
we give an example. It is supposed that, for a given SA X ,
we are considering an allocated transmit power solution P
that, for at least one UE, the maximum power condition is
violated, i.e. h4(Pui) > 0, then 0(h4(Pui)) = 1, therefore,
PTPC(X,P) = µih24(Pui) � F(X,P∗), with respect to
P∗ is the best solution had found so far, correspondingly
F(X,P∗) is the smallest objective value. Thus, F(X,P) +
PTPC(X,P) � F(X,P∗), i.e. P takes penalty for violating
the constraints. Therefore, it is impossible for P to become
the best solution. As a result, the transformed TPC problem
can be expressed as

min
P

[F(X,P)+ PTPC(X,P)]. (32)

For a given SA X , (32) can be efficiently solved by WOA
as in Algorithm 1. The transmit power P is represented to
positions of the whales (search agents). Our algorithm aims
to determine their best position, i.e., the transmit power P∗

that results in the smallest objective function value in (32).
In particular, the searching process, which is iterative, begins
with a random whale population. In each iteration, the MEC
server searches for the current best position and updates
the search agents’ position in two stages, namely, Stage I-C
and Stage II-C, respectively. Here, C stands for continuous
WOA. In Stage I-C, for the position of each search agent,
the server first amends if this position excesses the power
budget of UEs. TCP subproblem, then, finds the best current
(whale’s) position determined by the smallest calculated fit-
ness in (32), which is referred to (lines 14-18) in the algo-
rithm. In Stage II-C, the positions of all whales are updated
according to the above mentioned maneuvers of the WOA,
i.e., SFP, SEM, and SUP. The algorithm is terminated when
reaching I1 iterations or a predefined converged condition is
satisfied (lines 19-23).

C. BINARY WOA FOR SUBCHANNEL ASSIGNMENT
In this section, we propose to use binary WOA (BWOA)
approach for the SA subproblem in (28). Note that, SA is
an optimization problem that works on binary variables. In
particular, the server decides whether or not a UE should
utilize a subchannel among subchannels, from that, decides
the offloading decision of that UE. In order to deal with the
integer programming problem SA, an exhaustive search on
all possible solutions could be impractical. Particularly, for
the considered NOMA-based MEC system consisting of N
UEs and S subchannels, a UE can locally execute or offload
through one of S subchannels, thus there are (S+1)N feasible
SA solutions. For example, we consider a NOMA-based

Algorithm 1 WOA for TPC Problem
1: Initialization:
2: The whale population {P1,P2, . . .PM1} whereM1 is the

number of search agents
3: The iteration index t = 0, the convergence index t1 =

0, the maximum number of iterations I1, the maximum
number of iterations for convergence Iα

4: The current best fitness value F∗(t) = ∞
5: The convergence threshold ε
6: while {t1 < Iα or t < I1} do
7: t = t + 1
8: Stage I-C :
9: for k = 1→ M1 do
10: if Pk /∈ the power range of UEs then
11: Amend Pk
12: end if
13: Calculate the fitness F(X,Pk ) according to (32)
14: if F(X,Pk ) < F∗(t) then
15: P∗ = Pk
16: F∗(t − 1) = F∗(t)
17: F∗(t) = F(X,Pk )
18: end if
19: if | F∗(t)− F∗(t − 1) |< ε then
20: t1 = t1 + 1
21: else
22: t1 = 0
23: end if
24: end for
25: Stage II-C :
26: for k = 1→ M1 do
27: Update WOA’s parameters
28: Update the new position Pk
29: end for
30: end while
31: Output: The TPC solution P∗ and the best fitness value

F(X,P∗) = F∗(t)

MEC system with N = 15, S = 5, the number of SA
solutions is (5 + 1)15 = 4.7 × 1011, that has the polynomial
complexity to be implemented in practice. In investigating an
efficient approach, we apply binary WOA (BWOA) to solve
the SA problem.

Not similar to WOA where the updating position is not
continuous value within the variable domain, that in BWOA
is only 0 or 1. To do this, the update mechanism in BWOA
with helix-shaped movement behavior of humpback whale
might be determined by other transfer functions rather than
that in WOA, for example, as in [21] and [24]. In particular,
by rewriting the constraint C2 as h2(xij) =

∑
j∈S xij − 1, i ∈

N , the penalty term as in WOA can be defined as

PSA(X) =
∑
i∈N

θi0(h2(xij))h22(xij), (33)

where θi is the penalty factor. We also omit C1 constraint
since it is already considered as the domain of our problem.
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Then, by denoting U (X) ,
∑

i∈A(λti + λ
e
i ) − G(X,F∗) −

F(X,P∗)−PSA(X), the SA subproblem (28) is equivalent to
the following

max
X

U (X). (34)

To solve (34), we first find G(X,F∗) by addressing the
CRA subproblem according to (22), for a given value of X .
Then, the objective function in (34) can be rewritten as

U (X) = H (X)− F(X,P∗), (35)

whereH (X) =
∑

i∈A(λti+λ
e
i )−PSA(X)−G(X,F

∗). We also
define U

∗
= U (X∗), where X∗ is the current best agent

determined from the previous iteration.
Condition 1: If H (X) ≤ U

∗
, the MEC server does not

need to optimize the transmit power for the solution X .
Proof: If the Condition 1 is true, the fitness value of

the current position U (X) = H (X) − F(X,P∗) is obviously
smaller than U

∗
. Thus the current position is farther from the

target prey than the current best agent. Hence, it is unneces-
sary to optimize the transmit power. �
On the other hand, if H (X) > U

∗
, we are going to find the

lower bound of F(X,P) denoted by F̃(X,P), which helps to
determine the upper bound of U (X), as follows
Lemma 1: F̃(X,P) is the lower bound of F(X,P), and

F̃(X,P) =
∑
j∈S

∑
i∈Aj

(ηi + γipij)

R̃ij
, (36)

where R̃ij = W log2(1+ n
−1
0 pij|hij|2).

Proof: We can easily observe that

pij|hij|2

n0 +
∑
|hkj|2≤|hij|2 |hkj|

2pkj

≤
pij|hij|2

n0
, j ∈ S, i, k ∈ Aj

⇔ Rij ≤ R̃ij ⇔ F(X,P) ≥ F̃(X,P).

The bound is tight for {∀j ∈ S | ∃!i ∈ Aj}. �
Then, we only need to solve an equivalent lower-bound

optimization problem as follows

min
P

F̃(X,P)

s.t. C3, C4. (37)

It is noted here that, the received signals over the same sub-
channel is supposedly decoded perfectly at the server. There-
fore, the condition C5 has been removed. In addition, in cases
an UE is assigned with one subchannel, (37) is equivalent to
the original problem (27).
Lemma 2: The problem described in (37) is a quasicon-

vex optimization problem, and the optimal solution can be
obtained after a number of steps.

Proof: For a given SA X , the problem in (37) can be
decomposed into individual subproblems for offloading users
over the corresponding subchannel as follows

min
pij

W−1(ηi + γipij)

log2(1+ n
−1
0 pij|hij|2)

, j ∈ S, i ∈ Aj

s.t. 0 ≤ pij ≤ p0i . (38)

Then, based on the study in [5], the objective function of this
problem is recognized quasiconvex. Therefore, the optimal
solution of (37) denoted by P̃∗ can be found via solving indi-
vidual subproblems (38) by an evolved bisection algorithm
that is terminated after dlog2 (p

0
i /ε)e iterations. �

Condition 2: If H (X) − F̃(X, P̃∗) ≤ U
∗
, the server does

not need to solve the TPC subproblem.
Proof: According to Lemmas 1 and 2, F(X,P∗) ≥

F̃(X,P∗) ≥ F̃(X, P̃∗). Hence, U (X) ≤ H (X) − F̃(X, P̃∗).
If H (X) − F̃(X, P̃∗) ≤ U

∗
⇔ U (X) ≤ U

∗
, the TPC step is

unnecessary. �
By Condition 2, the MEC server can omit cases in which

UEs use unfavorable subchannels to offload, which might
reduce the transmission overhead and shorten the algorithm’s
running time.

We employ the BWOA-based algorithm to solve the SA
problem, from that we obtain task offloading and resource
allocation for the ODSTCA problem as described in Algo-
rithm 2, where the searching process is also iterative and
contains two stages i.e., Stage I-B and Stage II-B, in which,
B stands for BWOA. Stage I-B is in charge of updating the
current best position. Here, compared to WOA, there is no
step for amending positions since the whale population is
firstly initiated as random binary positions. The updating
position is done by toggling between 0 and 1, which does not
make the whales going beyond the variable domain. Condi-
tions 1 and 2 are also checked in Stage I-B (lines 12 and 14,
respectively). After satisfying both the conditions, the TPC
subproblem is addressed by Algorithm 1. Then the fitness
value of the current position U (Xk ) can be recalculated,
which helps to update the the current best position (lines 17-
22). On the other hand, in Stage II-B, positions of whales in
the population are updated. The algorithm terminates if either
reaching I2 iterations or satisfying a predefined stop condition
as in Algorithm 1.

Here, it is worth to remind two important notations in
Algorithm 2. Firstly, the transfer functions proposed in [21]
are used for mapping onto three maneuvers SFP, SEM, SUP.
Secondly, solving the TPC problem for the total M2 whales’
position in all iterations can take time. Hence, for a given
SA, before optimizing transmit power, two conditions are
proposed to check. This is in order to omit cases that not
making benefit for the system utility. Only potential solutions
passed both conditions need to optimize the transmit power.

D. COMPLEXITY ANALYSIS
In this section, we analyse the complexity of the proposed
algorithm, presented in Algorithm 2. The BWOA is applied in
cooperation with the penalty method, a convex optimization
technique (to solve the CRA subproblem), andWOA (to solve
the TPC subproblem) for solving the constrained problem
ODSTCA, which consists of two stages.

In order to calculate the fitness value for each search agent
(solution) in Stage I-B, the CRA subproblem is firstly solved
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Algorithm 2The Proposed Algorithm for ODSTCAProblem
1: Initialization:
2: The binary whale population {X1,X2, . . .XM2} where
M2 is the number of search agents

3: The iteration index t = 0, the convergence index t1 =
0, the maximum number of iterations I2, the maximum
number of iterations for convergence Iβ

4: The current best fitness value U
∗
(t) = −∞

5: The convergence threshold ε
6: while {t1 < Iβ or t < I2} do
7: t = t + 1
8: Stage I-B :
9: for k = 1→ M2 do
10: Solve the CRA problem (29) and obtain G(Xk ,F∗)
11: Calculate H (Xk )
12: if H (Xk ) > U

∗
(t) then

13: Solve the lower bound problem (37) and obtain
F̃(Xk , P̃

∗
)

14: if H (Xk )− F̃(Xk , P̃
∗
) > U

∗
(t) then

15: Solve the TPC problem by Algorithm 1 and
obtain F(Xk ,P∗)

16: Calculate the fitness value U (Xk ) (35)
17: if U (Xk ) > U

∗
(t) then

18: X∗ = Xk
19: Save F∗,P∗

20: U
∗
(t − 1) = U

∗
(t)

21: U
∗
(t) = U (Xk )

22: end if
23: if | U

∗
(t)− U

∗
(t − 1) |< ε then

24: t1 = t1 + 1
25: else
26: t1 = 0
27: end if
28: end if
29: end if
30: end for
31: Stage II-B :
32: for k = 1→ M2 do
33: Update WOA’s parameters
34: Update the new position Xk
35: end for
36: end while
37: Determine the offloading decision set A from the SA

solution X∗

38: Output: The resource allocation solution F∗,P∗, X∗,
the offloading decision solution A

as IV-A, which has the complexity O(N ). Next, Condition 1
is tested. Only the solutions that passed this condition need
to address the lower bound problem, which is equivalent
to solving at most N individual subproblems as Lemma 2,
the complexity isO(N log2(p

0
i /ε)). Finally, only the solutions

that passed Condition 2 is solved the TPC problem, following
Algorithm 1. Similar to [21], in Algorithm 1, the WOA is

applied with penalty method for N inequality constraints
C4 and at most NS constraints C5. For a M1-whale pop-
ulation, the dimension of whales is NS, the WOA iterates
maximum I1 iterations, hence the computational complex-
ity of Algorithm 1 is O(I1 M1(N + NS + NS)), which is
equivalent to O(I1 M1 NS). We consider the worst case that
a solution SA X passed both Condition 1, 2, the complex-
ity in Stage I-B for each solution can be summarized as
O(N + N log2(p

0
i /ε) + I1 M1 NS), which is equivalent to

O(N log2(p
0
i /ε)+ I1 M1 NS).

In Stage II-B, the position of each whale is updated and
index functions are checked to evaluate the penalty term,
the complexity isO(NS+N ). Therefore, if we denote by I2 the
maximum number of iterations for Algorithm 2 to converge,
and M2 the number of search agents, the complexity of the
proposed algorithm is O(I2 M2(N log2(p

0
i /ε) + I1 M1 NS +

NS)), which is eventually equivalent to

O(I2M2(N log2(p
0
i /ε)+ I1M1NS)). (39)

V. PERFORMANCE EVALUATION AND DISCUSSIONS
In this section, computer simulations are performed to val-
idate the correctness of our proposed algorithm ODSTCA,
as well as to show its effectiveness in comparison with the
conventional ones. In particular, we consider the other fol-
lowing algorithms

1) Exhaustive search (EX): The MEC server searches for
all feasible cases of subchannel allocation ((S + 1)N

in total), optimizes the computing resource, transmit
power allocation for each case, and then chooses the
best solution.

2) All Remote Joint Optimization Algorithm (ARJOA):
The MEC server accepts all offloading UEs, then
jointly optimizes the subchannel, transmit power, and
computing resource allocation [5].

3) Independent Offloading Joint Optimization Algorithm
(IOJOA): All UEs independently make their offloading
decision (whether to offload or not), then a joint opti-
mization scheme of subchannel, transmit power, and
computing resource is performed at the MEC server
[5].

4) OFDMA: Orthogonal frequency division multiple
access technique is used instead of NOMA, i.e., each
subchannel is allocated to at most a UE [5].

5) All Local Computing Algorithm (ALCA): All UEs exe-
cute their tasks locally.

Other simulation settings are described as follows. A MEC
server is located with a BS at the center of a small cell of
radius 250 m. If not stated otherwise, the number of users
N = 18. The number of subchannels S = 5, eachwith a band-
width of W = 1 MHz. The noise power n0 = −114 dBm.
Similar to [25], we adopt the distance-dependent path-loss
model as 140.7 + 36.7 log10 d [dB], where d (in km) is the
distance from each UE to the server. The channels between
UEs and the server are supposedly independent. The sim-
ulation results are averaged by 300 realizations. Moreover,
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FIGURE 2. Convergence behavior of ODSTCA in terms of system utility.

FIGURE 3. Comparison of ODSTCA and EX regarding the number of UEs:
(a) system utility, (b) algorithm runtime.

the computing capacity of the server, if not stated otherwise,
is set by 10 GHz. In regard to the condition of implementing
efficient SIC technique, the threshold γtol is set by 0 dB,
while each UE’s maximum transmit power p0i is 24 dBm [22].
The energy coefficient of each UE κi = 5 × 10−27, and
power amplifier efficiency is ξi = 1. The computing capacity
of each UE is randomly selected from {0.5, 0.8, 1} (GHz).
For the computation task, we consider a face recognition
application, where the input data size αi = 420 (kB), βi =
1000 (Megacycles) [26]. The preference coefficients in time
and energy are both set to 0.5.

A. CONVERGENCE BEHAVIOR AND SUBOPTIMALITY OF
THE PROPOSED ALGORITHM
We first study in Fig. 2 the convergence behavior of the
proposed ODSTCA in terms of system utility, for different
numbers of UEs N = 5, 15 and 25. It is seen that the
algorithm converges after a number of iterations depending
on the number of UEs, while in this example, ODSTCA
converges in all cases after 100 iterations.Moreover, in Fig. 3,
we compare the performance of the proposed algorithm with
that of EX in terms of the system utility and the algorithm
runtime, for a given number of UEs. The results are obtained
with Windows Desktop PC, quad-core 3.1 GHz CPU, 16 GB
RAM. In this scenario, S = 3, andN = 2−7 are set. It is seen
that, while the performance of the two methods is almost the
same in this setting, the runtime of ODSTCA is much smaller
than that of EX. This confirms the validity and effectiveness
of the proposed algorithm.

FIGURE 4. Completion time and energy consumption of each UE with
respect to the UE’s preference in time.

FIGURE 5. Performance comparison of ODSTCA and conventional
schemes regarding the number of UEs: (a) offloading percentage, (b)
system utility.

B. IMPACT OF THE SYSTEM PARAMETERS ON THE
ALGORITHMS’ PERFORMANCE
In Fig. 4, we illustrate the effect of UE’s preference in time
λti to the completion time and energy consumption of each
UE in the system. It is noted here that λei = 1− λti . It can be
seen from the figure that when λti increases the completion
time decreases at the cost of the energy. This is because the
tasks that might take a shorter time to complete have a higher
probability to offload than the others with a longer one.

Fig. 5 depicts the offloading percentage and system util-
ity of the proposed ODSTCA and the above conventional
schemes i.e., ARJOA, IOJOA, OFDMA, and ALCA, for a
given number of UEs. It is seen that the ODSTCA signifi-
cantly outperforms other baseline schemes especially with a
large number of UEs, which can be explained as follows

1) In ALCA, UEs do not take advantage from remote
computation so that offloading percentage, and thus,
the system utility is always 0.

2) Offloading percentages of ARJOA and IOJOA are,
respectively, 1 and 0.5. In this case, when the number
of UEs increases (N ≥ 14 (ARJOA) and N ≥ 22
(IOJOA)), the system utility decreases due to limited
resources of subchannels S, the bandwidthW , the com-
puting capacity f0 of MEC server, etc.

3) Although both offloading percentages of OFDMA and
ODSTCA decrease according to the increase of N ,
the number of offloading UEs with ODSTCA is higher
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FIGURE 6. Performance comparison between schemes with respect to
the task loads.

FIGURE 7. Performance comparison between schemes with respect to
the task input sizes.

than that with OFDMA. The reason is that ODSTCA,
by exploiting NOMA, helps more UEs to have benefit
from remote computation over the same number of
subchannels. Therefore, the system utility of ODSTCA
is higher than that of OFDMA.

Figs. 6 and 7 illustrate the impacts of task loads and
task input data sizes, respectively, on the performance of
the above-considered schemes. Here, we skip showing the
ALCA’s performance (from now on) without loss of gen-
erality since its offloading percentage is 0. It is logical to
observe that the performance is proportional and inversely
proportional to the task load and input data size, respectively.
Nevertheless, in all cases, ODSTCA outperforms the other
methods in terms of system utility thanks to the efficiency of
the proposed optimization algorithms.

Fig. 8 illustrates the impact of UEs’ maximum transmit
power p0i on the system performance. It can be seen that
when the power increases, the performance of SIC at the
MEC server is more efficient and thus, the system utility
of all methods except OFDMA (without OFDMA) increases
until it reaches a threshold. The reason for this performance
saturation is due to the signal interference to other UEs on the
same subchannel.

We also describe in Fig. 9 the impact of the MEC server’s
computation capacity f0 on system performance. In general,
it is seen that the higher f0, the better performance of all

FIGURE 8. Performance comparison between schemes with respect to
the UEs’ maximum transmit power.

FIGURE 9. Performance comparison between schemes with respect to
the MEC server’s computing capacity.

schemes thanks to the offloading mechanism. Nevertheless,
in both the two above figures, ODSTCA obtains the highest
system utility, which again, confirms the efficiency of the pro-
posed algorithm in comparison with the conventional ones.

VI. CONCLUSION
In this paper, we studied the issue of computation offloading
in NOMA-based MEC systems. Our optimization problem
ODSTCA was modeled as an MINLP one, which was then
decomposed into subproblems of CRA, TPC, and SA for
more tractable. A swarm intelligence approach i.e., WOA,
was proposed to solve the TPC and SA subproblems, while
the CRA was handled by convex optimization technique.
Computer simulations were performed with different sys-
tem parameters to validate the correctness and efficiency of
the proposed algorithm. The obtained results showed that
the algorithm converged after a number of iterations. Its
performance was comparable with that of the exhaustive
search, while the computational complexity was much lower.
Moreover, the proposed algorithm was shown to outperform
conventional and baseline schemes such as ARJOA, IOJOA,
OFDMA, and ALCA in terms of system utility.

As for future works, it is desirable to consider NOMA-
based multi-server MEC systems [27]. A number of research
issues should be further investigated, for examples, the hier-
archical MEC model with small-cell and macro-cell MEC
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servers, the computation migration between MEC servers,
and the joint design of user association, offloading decision,
and resource allocation. Although optimization problems in
such scenarios would be more challenging, but they have
the potential to improve the quality of service for UEs and
network performance.
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