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ABSTRACT A quantum error mitigation technique based on machine learning is proposed, which learns
how to adjust the probabilities estimated by measurement in the computational basis. Neural networks in
two different designs are trained with random quantum circuits consisting of a set of one- and two-qubit
unitary gates whose measurement statistics in the ideal (noiseless) and real (noisy) cases are known. Once the
neural networks are trained, they infer the amount of probability adjustment to be made on the measurement
obtained from executing an unseen quantum circuit to reduce the error. The proposed schemes are tested
with two-, three-, five-, and seven-qubit quantum circuits of depth up to 20 by computer simulations with
realistic error models and experiments using the IBM quantum cloud platform. In all test cases, the proposed
mitigation technique reduces the error effectively. Our method can be used to improve the accuracy of
noisy intermediate-scale quantum (NISQ) algorithms without relying on extensive error characterization
or quantum error correction.

INDEX TERMS Quantum computing, quantum error mitigation, machine learning, artificial neural network.

I. INTRODUCTION
The development of full-fledged quantum computers that
promise revolutionary opportunities is being challenged due
to computational errors that occur when theoretical ideas
are implemented on real quantum devices. The theory of
quantum error correction (QEC) [1]–[3] and fault-tolerance
guarantees scalable quantum computation, but the computa-
tional resource overhead is non-negligible [4]–[6]. Moreover,
the typical error rate of current quantum devices is near or
above the fault-tolerance threshold, hindering the power of
quantum error correction. With this background, the idea of
quantum error mitigation (QEM) emerged recently. Unlike
QEC, QEM does not necessarily aim to fully remove the
entropy increased by unwanted interaction with the environ-
ment to recover the logical state. Instead, it aims to merely
improve the accuracy of estimating the final answer in a given
computational task without having to encode logical quantum
state in a multi-qubit entangled state. Since QEM does not
require extra quantum resources, it is expected to improve
the quantum computation to some extent even when the error
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rate is above the fault-tolerance threshold value. Thus, QEM
is an excellent fit for improving the performance of NISQ
computing [7]–[11]. Moreover, a scalable error mitigation
technique, if exists, can contribute to the fault-tolerant quan-
tum computing beyond the NISQ era by reducing the error at
the physical level.

Several QEM methods exists. Examples of the quantum
circuit error mitigation technique are based on extrapolation
[12]–[14], probabilistic error cancellation [13], [14], quantum
subspace expansion [15], [16], and symmetry verification
[17], [18]. A machine learning protocol based on training
with Clifford circuits was used in Ref. [19] to improve prob-
abilistic error cancellation by replacing the need of recon-
structing an error model in the experiment. Data regression
utilizing the classical simulability of Clifford circuits is also
used in Ref. [20]. Some of these methods are experimen-
tally verified in Refs. [21]–[23]. Also, error mitigation meth-
ods specifically designed for readout errors are presented in
Refs. [24], [25].

In this paper, we propose a mitigation method that
uses classical machine learning. An artificial neural net-
work (ANN) is trained with shallow-depth quantum circuits
whose measurement outcomes are known. The counts of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 188853

https://orcid.org/0000-0002-1330-7066
https://orcid.org/0000-0002-3177-4143
https://orcid.org/0000-0001-7151-017X
https://orcid.org/0000-0003-0261-4068


C. Kim et al.: QEM With ANN

gates applied to individual qubits and the actual outcome
probability of all computational basis measurements are
given as the input layer to the neural network for training. The
ANN is trained with respect to a loss function that quantifies
the error with respect to a true output state derived by com-
puter simulation. Here, the error includes both cumulative
gate error and qubit measurement error. Then given a new
quantum circuit, the ANN infers the error of the probability
distribution of the measurement results. This work serves as
a stimulating example that shows classical machine learning
can improve quantum computation.

The remainder of this paper is organized as follows.
Section II describes the quantum error mitigation methods
considered in this work. Section III presents the proof-of-
principle implementation of QEM methods. The simulation
and experimental setups for the test, such as the noise models
and the device parameters, are described in section III-A and
the results are presented in section III-B. Conclusions are
drawn in section IV.

II. QUANTUM ERROR MITIGATION
A. EXACT METHODS FOR SIMPLE NOISE MODELS
Analytical methods can be so powerful to eliminate some
types of errors of quantum gates in limited cases. Although
the assumptions made for the application of these meth-
ods may not be realistic in a general experimental setup,
the analytical methods presented here can serve as a
reference to which the machine learning methods are
compared.

1) DEPOLARIZING ERROR
A two-qubit density matrix can be expressed with Pauli
matrices as follows

ρ =
I ⊗ I
22
+

4∑
k,l

γk,lσk ⊗ σl, (1)

where σk , σl ∈ {I ,X ,Y ,Z } and γ1,1 = 0. Since
Eq. (1) describes an arbitrary two-qubit state, the effect
of a noisy channel can be thought of as the modifica-
tion of the coefficients γk,l . γ̃k,l denotes the erroneous
coefficients.

The computational basis state of a qubit is defined as the
eigenstates of Z . Therefore, the measurement in the compu-
tational basis uncovers only the information about γ̃1,4, γ̃4,1,
and γ̃4,4. Thus, the goal of the error mitigation in this work
can be reduced to estimating γ1,4, γ4,1, and γ4,4 from the
estimators of γ̃1,4, γ̃4,1, and γ̃4,4. Once γ1,4, γ4,1, and γ4,4
are estimated, the correct probabilities in the noiseless case
can be calculated by

Tr(|ab〉〈ab|ρ) =


1
4 + γ1,4 + γ4,1 + γ4,4, ab = 00
1
4 − γ1,4 + γ4,1 − γ4,4, ab = 01
1
4 + γ1,4 − γ4,1 − γ4,4, ab = 10
1
4 − γ1,4 − γ4,1 + γ4,4, ab = 11.

(2)

Given the gate-independent depolarizing error (see
Appendix A) with single-qubit gate error rate denoted by ε1
and two-qubit gate error rate denoted by ε2, the error-free
coefficients γ can be expressed in terms of the noisy coef-
ficients γ̃ , which can be estimated from the actual measure-
ment probabilities Tr(|ab〉〈ab|ρε) (c.f. Eq. (2)), as

γ̃1,4 = (1−
4
3
ε1)G12 (1−

16
15
ε2)G2γ1,4

γ̃4,1 = (1−
4
3
ε1)G11 (1−

16
15
ε2)G2γ4,1

γ̃4,4 = (1−
4
3
ε1)G11 (1−

4
3
ε1)G12 (1−

16
15
ε2)G2γ4,4, (3)

where G1k is the number of single-qubit gates acting on the
kth qubit and G2 is the number of two-qubit gates.

2) MEASUREMENT ERROR
A simple measurement error mitigation (MEM) scheme is
presented in Ref. [26], which we summarize in this section.
The measurement error in an N -qubit experiment can be
modeled as a linear transformation of the ideal measurement
probabilities as

Perror = EmeasPideal, (4)

where Pideal and Perror are column vectors with 2N elements
indicating the probabilities for measuring the basis states in
ideal and real cases, respectively, and Emeas is a 2N × 2N

matrix that characterizes the measurement error. The jth col-
umn of Emeas is constructed by measuring the input state
ideally prepared in the jth computational basis state. In other
words, the matrix element at row i and column j indicates the
probability to obtain i when measuring the jth computational
basis state. With this matrix in hand, the measurement error
mitigation is performed by applying E−1meas to the probability
vector obtained in a given experiment.

B. ERROR MITIGATION VIA MACHINE LEARNING
The primary goal in this work is to mitigate errors that
cannot be described solely as a gate-independent depolar-
izing noise and without relying on any noise characteriza-
tion methods, such as randomized benchmarking and process
tomography [27]–[39]. This section is dedicated to explaining
machine learning methods to achieve such a goal.

1) ERROR QUANTITY DEFINITION
As a preliminary step, we first define the error quantity that
is to be minimized in the circuit of Fig.1. Given an arbitrary
input state described by the density matrix ρi and the ideal
unitary transformation denoted byU , the probability to obtain
an outcome |j〉 can be expressed as

P(j|i) := Tr
(
MjUρiU†

)
, (5)

where Mj is a measurement operator. But in practice,
the intended unitary transformation cannot be perfectly real-
ized due to unwanted interaction with the environment and
imperfections in the control. By denoting the actual (noisy)
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FIGURE 1. A schematic of ANN input extraction from a quantum circuit.
ρi represents an input state. Gkl indicates the number of k-qubit gates
applied to the l th qubit. The number of single-qubit gates
(G1 = [G11, . . . ,G1N ]) and two-qubit gates (G2 = [G21, . . . ,G2N ]) applied
to each qubit, the error at depth a (Ea = P̂a − Pa), and the noisy
measurement outcome at depth b (P̂b) are used as the input values
of a ANN.

quantum process by 3, the actual probability estimated in a
given experiment can be expressed as

P̂(j|i) := Tr
(
Mj3(ρi)

)
. (6)

Based on the above, we can quantify the error as

E(j|i) := P̂(j|i)− P(j|i). (7)

Our error mitigation technique seeks to directly adjust P̂ so
that E(j|i) is minimized. We quantify such correction (i.e.
quantity of mitigation) as C(j|i). Then, the final amount of
error after applying the mitigation technique as

Ef (j|i) := E(j|i)− C(j|i) (8)

Finally, we define the root mean squared error (RMSE) as

ERMS :=

√∑m
j=1

∑l
i=1 Ef (j|i)2

lm
. (9)

Of course, P(j|i) is not known to experimenters, and our goal
is to find the distribution of C(j|i) which minimizes ERMS.

2) TRAINING DATA GENERATION
The training data for machine learning is generated by using
random quantum circuits of depth K whose output state at
depth k = 1, . . . ,K is known a priori (by pre-calculation)
for given input state. The ideal measurement statistics at
each depth is compared with the actual measurement statis-
tics obtained under noisy computation during the training.
We extend the notations introduced in the previous section
with a subscript k asPk , P̂k ,Ek ,Ef ,k to indicate the quantities
at depth k of a given quantum circuit. We also introduce
probability vectors Pk and P̂k to denote the measurement
probabilities. Of these matrices, the ith column corresponds
to having the input basis state |i〉, and the jth row corresponds
to the probability to measure the basis state |j〉. The error
vector Ek = P̂k − Pk is also introduced to denote the
error between the actual measurement outcome and the ideal
measurement outcome. In Fig. 1, by computing the circuit at
depth a, we can have Pa and by measuring the circuit at depth
a and b, we can have P̂a and P̂b respectively.

The training dataset is generated using a set of random
circuits of chosen depth, consisting of elementary single-
and two-qubit gates. The single-qubit gates are the phase
gate S = |0〉〈0| + i|1〉〈1|, the T gate T =

√
S, and the

hadamard gate H = (X + Z ) /
√
2. The controlled-Z gate

CZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z is used as the two-qubit gate.

3) MACHINE LEARNING STRUCTURE
We propose and investigate two different designs of machine
learning methods, namely an artificial neural network (ANN)
and a concatenated artificial neural network (Concatenated
ANN). The input of the ANNs consists of three parts: the
known error information Ea, the measured probability vector
P̂b for 0 ≤ a < b ≤ K , and the number of one- and two-qubit
gates applied to each qubit between depth a and depth b
denoted by G1(a, b) and G2(a, b), respectively. During the
training, the input state for a quantum circuit is fixed. Thus,
for a system ofN qubits, there are 2N+2N+1 input nodes: 2N
for the number of single- and two-qubit gates, G1(a, b) and
G2(a, b), and 2N+1 for ith columns of Ea and P̂b given the
input state |i〉. Then the known correction Cb(j|i) is placed
in the output node for training. Thus, there are 2N nodes at
the output. The ANN has two hidden layers and all layers
are fully connected. The sigmoid activation is used except for
the last layer. The output of the ANN is the weighted sum of
the values in the last layer. Concatenated ANN has one more
hidden layer. The first hidden layer is split into two groups
such that the first group is connected only to the input nodes
for the number of gates while the second is connected only to
the input nodes for Ea and P̂b. As an ANN works better with
normalized data, we add batch normalization for the number
of gates after the first hidden layer. Then these two groups are
concatenated (fully connected) to the next layer. Afterward,
the concatenated ANN has the same structure as that of the
ANN explained above. The neural network structures used in
this work are depicted in Fig. 2.

The ANN trained with various input states |i〉 and pairs of
a and b is used to infer the amount of correction for a target
quantum circuit of depth L > K . The input nodes consist of
El , P̂L , and the number of gates applied to each qubit between
l and L, and the ANN outputs CL(j|i). The use of El improves
the error mitigation when the error is known for some
l > 0. In the absence of such information, the error mitigation
is performed with only E0, which indicates the measurement
error. The workflow to train the machine is in Fig. 3.

III. SIMULATION AND EXPERIMENT
As a proof of principle, we use simulation with two different
noisemodels and experiment with an IBMquantum computer
to validate the performance of QEM.

A. SETUP
In this example, 100 random circuits with K = 10 are used
for training, and l = 0 and L = 20 for inference. For
each circuit, we use four states randomly chosen from the
computational basis states are used as input. Each probability
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FIGURE 2. The neural network architectures used in this work. Two different ANN models are used, (a) ordinary
ANN and (b) concatenated ANN. The ordinary ANN has two hidden layers. All layers are fully connected using
weight summation and sigmoid is used for activation function. In the concatenated ANN, the first two layers are
concatenated after applying batch normalization to the number of gates. After that, all hidden layers are fully
connected using weight summation and activated by sigmoid. The ANN infers the error of a quantum circuit at
depth b with the given information at depth a < b. G1(a,b) and G2(a,b) are the vector of the number of single- and
two-qubit gates applied to each qubit between depth a to b, respectively. Input nodes are the i th column vectors of
Ea and P̂, which are for a particular input state |i〉. Then ANN outputs the i th column vector of the correction
matrix Cb. The input quantity in the circuit is explained in Fig. 1.

FIGURE 3. The workflow for training a ANN for one sample circuit. Initial
states are chosen from the computational basis set. The workflow repeats
until all circuits in the training set are used.

vector is estimated by repeating the same quantum cir-
cuit followed by the projective measurement 8192 times.
Simulations were carried out with quantum circuits with the

FIGURE 4. Physical qubit layouts of the IBM superconducting-qubit
devices used in this work. (a) A five-qubit device called ibmq_5_yorktown
is used for the two-qubit experiment. The noise parameters for this
device are used for simulations with up to five qubits. The qubits used for
the experiment are labeled as 0 and 1 in the figure. (b) A 15-qubit device
called ibmq_16_melbourne. The noise parameters for this device are used
for the seven-qubit simulation. Qubits 0, 1, 2, 3, 11, 12 and 13 are used
for the simulation.

number of qubits ranging from two to seven. First, we per-
form the simulation with the depolarizing noise defined in
Appendix. A. This noise model allows for the exact error
cancellation via analytical solution as discussed in Sec. II-A.
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FIGURE 5. Simulation results for the error mitigation with ANN, Concatenated ANN, and no error mitigation under the (a) depolarizing noise model,
(b) IBM Q noise model without measurement error mitigation, and (c) IBM Q noise model with measurement error mitigation. The vertical axis
represents the ERMS error averaged over 100 test circuits, and the horizontal axis shows the number of qubits.

Thus, we use such oversimplification to test the performance
of our method to the theoretical upper bound. For testing
under more realistic noise, we use the noise model and
parameters provided by the IBM Q cloud service [40]. In this
case, the noise model consists of the depolarizing noise,
longitudinal and transversal relaxations characterized by T1
and T2, and the measurement error. Hereinafter, we refer to
this noise model as IBM Q noise model. The noise model
is described in detail in Ref. [41]. For simulations with the
IBM Q noise model, the error mitigation performance was
tested with and without the measurement error mitigation
technique described in Sec. II-A2. For simulations with up
to five qubits, we took the data of the ibmq_5_yorktown
quantum processor [42], which consists of five supercon-
ducting qubits, from June 25th, 2020. The single-qubit gate
error rate was 6.25 × 10−4 and 6.70 × 10−4 for qubit 0
and qubit 1 respectively. Two-qubit gate error rate was
1.65 × 10−2. For the seven-qubit simulation, we use the
data of a quantum processor with 15 superconducting
qubits named ibmq_16_melbourne [43]. For this device,
the single-qubit error rate ranges from 4.49 × 10−4 to
4.18 × 10−3, and the two-qubit error rate ranges from
1.09 × 10−2 to 1.66 × 10−1. The physical qubit layouts of
the IBM quantum devices are shown in Fig. 4.

The experimental error mitigation was tested for two-qubit
quantum circuits by using ibmq_5_yorktown.

B. RESULT
Table 1 presents simulation and experimental results for
two-qubit error mitigation applied to 100 random test circuits
that are not in the training set. The values in the table are
the root mean squared error defined in Eq. 9 averaged over
all test circuits, and the parenthesis contains the ratio of the
ERMS after error mitigation to before. The smaller the number
in the table is the better the error mitigation performance.
In all cases, the applied error mitigation technique always
reduces the RMSE. As expected, the analytical method

TABLE 1. ERMS in two-qubit error mitigation obtained from simulations
under the depolarizing and IBM Q noise model and experiments with the
IBM quantum device. The value in the parenthesis shows the ratio of the
ERMS after error mitigation to before.

TABLE 2. ERMS in seven-qubit error mitigation obtained from simulations
under the depolarizing and IBM Q noise model. The value in the
parenthesis shows the ratio of the ERMS after error mitigation to before.

performs the best when only the depolarizing noise is present.
The machine learning based methods also work reasonably
well when compared to the analytical method; the RMSE
of all three approaches is in the same order of magnitude.
For more complex but relevant error models (i.e. IBMQ noise
model), the machine learning based methods prevail. For the
real quantum device, the concatenated ANN performs the
best.

The simulation results for the seven-qubit system error mit-
igation are shown in Table 2. The machine learning reduces
the error, although the amount of reduction is less than that
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FIGURE 6. The ratio of ERMS after error mitigation to before for (a) ANN and (b) Concatenated ANN as a function of the number of
qubits.

for the two-qubit system. Indeed, our machine learning based
error mitigation method always reduces the error for all cases
that we tested as shown in Fig. 5. We also plot the ratio
of the ERMS after error mitigation to before in Fig. 6. The
figure shows that the Concatenated ANN achieves slightly
better results than the ANN. The numerical values for the
simulation of three- and five-qubit systems are provided
in Appendix B. Another interesting observation is that the
RMSE obtained from the simulation with the measurement
error mitigation explained in Sec. II-A2 does not provide a
noticeable enhancement to the simulation result without it.
This implies that our machine learning based error mitigation
takes care of the measurement error to some extent.

IV. CONCLUSION
We developed a quantum error mitigation scheme based on
classical machine learning methods. The artificial neural net-
work and the concatenated artificial neural network are used
for machine learning. The neural networks are trained with
quantum circuits for which the error behavior can be trained
by numerical simulations and hardware experiments, in order
to infer the amount of error in the result measurement of quan-
tum output states. The performance of our method was tested
using simulationswith realistic noisemodels and experiments
accomplished by the IBMquantum cloud service for quantum
circuits consisting of two, three, five, and seven qubits. In all
cases, our method was able to reduce the error. In particular,
in the two-qubit experiment, our method reduced the error by
a factor of 1/2.

The proposed error mitigation is designed to reduce the
error of a target experiment conducted under the same noise
model with which the neural networks are trained. Thus our
method can effectively mitigate time-dependent noise with
frequencies lower than the frequency of which the train-
ing is carried out. To optimize the error mitigation perfor-
mance in a systematic way, the training should be done as a
subroutine of the device calibration. Also, the ANN should

be trained more frequently than the known frequency of the
most dominant time-dependent noise. The development of a
noise-independent error mitigation method will be of great
impact, which we plan to investigate in future work.

Another crucial future work is the development of a
scalable ANN architecture in which the number of nodes
increases polynomially with the number of quantum circuit
elements. If the process of training can be done in polynomial
time, it will be possible to apply the error mitigation method
to a large number of qubits beyond the NISQ era. Although
our method is limited in practice to small quantum systems,
it sets an important milestone in the advancement of quan-
tum computing, opening up tremendous opportunities for the
application of machine learning to improve quantum control.

APPENDIX A
DEPOLARIZING ERROR
The density matrix of one qubit can be expressed as

ρ =
I
2
+

∑
i

γiσi, (10)

where σi ∈ {X ,Y ,Z }. Under the depolarizing error with an
error rate of ε1, the density matrix changes to

ρε = (1− ε1)ρ +
ε1

22 − 1
(
∑
i

σiρσi)

= (1− ε1)(
I
2
+

∑
i

γiσi)

+
ε1

22 − 1

∑
i

σi(
I
2
+

∑
j

γjσj)σi

= (1− ε1)(
I
2
+

∑
i

γiσi)−
ε1

22 − 1
(
3
2
I +

∑
i

γiσi)

=
I
2
− (1−

4
3
ε1)
∑
i

γiσi, (11)

where σi ∈ {X ,Y ,Z }.
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We can express a two qubit density matrix as

ρ =
I ⊗ I
22
+

4∑
i,j

γi,jσi ⊗ σj, (12)

where σi, σj ∈ {I ,X ,Y ,Z } and γ1,1 = 0. Under the two-qubit
depolarizing error with an error rate of ε2, the density matrix
transforms as

ρε = (1− ε2)(
I ⊗ I
22
+

4∑
i,j

γi,jσi ⊗ σj)

+
ε2

42 − 1
(

4∑
i,j

(σi ⊗ σj)(
I ⊗ I
22
+

4∑
k,l

γk,lσk⊗σl)(σi⊗σj))

= (1− ε2)(
I ⊗ I
22
+

4∑
i,j

γi,jσi ⊗ σj)

+
ε2

42 − 1
(
15
22
I ⊗ I −

4∑
i,j

(γi,jσi ⊗ σj))

=
I ⊗ I
4
+ (1−

16
15
ε2)

4∑
i,j

(γi,jσi ⊗ σj) (13)

The one-qubit depolarizing error acting on the first qubit
changes the two-qubit density matrix as

ρε = (1− ε1)ρ +
ε1

22 − 1

4∑
i=2

(σi ⊗ I )ρ(σi ⊗ I )

= (1− ε1)(
I ⊗ I
22
+

4∑
i,j

γi,jσi ⊗ σj)

+
ε1

22 − 1

4∑
i=2

(σi ⊗ I ) (14)

(
I ⊗ I
22
+

4∑
k,l

γk,lσk⊗σl)(σi ⊗ I )

= (1− ε1)(
I ⊗ I
22
+

4∑
i,j

γi,jσi ⊗ σj)

+
ε1

22 − 1
(
3
22
I ⊗ I −

4∑
i,j

γi,jσi ⊗ σj))

=
I ⊗ I
4
+ (1−

4
3
ε1)

4∑
i,j

(γi,jσi ⊗ σj). (15)

When the single-qubit and two-qubit depolarizing errors
are combined, the two-qubit density matrix can be expressed
with the number of single-qubit gates N1 and the number of
two-qubit gates N2 as

ρε =
I ⊗ I
4
+ (1−

4
3
ε1)N1 (1−

16
15
ε2)N2

4∑
i,j

(γi,jσi ⊗ σj).

(16)

APPENDIX B
MITIGATION RESULTS
See Tables 3 and 4.

TABLE 3. Error mitigation result for the five-qubit case.

TABLE 4. Error mitigation result for the three-qubit case.
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