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ABSTRACT Most methods for classifying data streams operate under the hypothesis that the distribution
of classes is balanced. Unfortunately, the phenomenon of class imbalance widely exists in many real-world
applications. In addition, the underlying concept of data stream may change in a certain way over time, and
attacks increase the difficulty of data streammining.Motivated by this challenge, a Two-Stage Cost-Sensitive
(TSCS) classification is proposed for addressing the class imbalance issue in non-stationary data streams.
We propose a novel two-stage cost-sensitive framework for data stream classification by utilizing cost
information in both feature selection stage and classification stage. Moreover, a window adaptation and drift
detectionmechanism, which guarantees that an ensemble can adapt promptly to concept drift, is embedded in
our method. Our algorithm is compared with competitive algorithms on different kinds of datasets. The result
demonstrates that TSCS obtains significant improvement in terms of class imbalance data stream metrics.

INDEX TERMS Data streams, classification, class imbalance, concept drift, cost-sensitive, ensemble
learning.

I. INTRODUCTION
Extracting knowledge from data stream environment has
gained growing attention owing to its wide applications,
such as credit card fraud detection, spam filtering, intru-
sion detection and data analysis in Internet of Things net-
works [1]–[5]. Concept drift [6]–[9], i.e., the distribution
of data stream evolving over time, is the crucial character-
istic of data streams, which deteriorates the classification
performance due to data distribution evolving. For example,
the characteristics of spam often change with users’ pref-
erences, and weather prediction models affected by atmo-
spheric dynamics. Therefore, classifications should have the
capacity of detecting the stability-plasticity dilemma caused
by concept drift [10], [11].

Although much work has been put forward to focus on
concept drift issue [5]–[7]. In practice, class imbalance [12]
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is the mining case that the instances of one class (normally of
interesting) is much smaller than that of other classes which
poses the well-known challenge in machine learning. Learn-
ing from data stream with class imbalance and concept drift
becomes a more challenging task. The phenomenon of class
imbalance presences widely in many applications, including
severe weather forecasting, rare event monitoring, text classi-
fication, medical diagnosis, networks intrusion detection and
fault identification. In fact, the learning with the simultaneous
occurrence of the two issues in data stream classification is
largely unexplored.

Class imbalance issue has extensively studied in static
learning scenarios [13]–[18]. These methods can be orga-
nized into three main groups: a) data preprocessing ori-
ented approaches, b) cost-sensitive oriented approaches, and
c) ensemble oriented approaches. Cost-sensitive oriented
approaches assign different misclassification cost values for
each class in classification. Research has shown that cost-
based strategies are an effective method. Moreover, research
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indicates that cost-sensitive learning strategy can be adopted
to solve the class imbalance issue naturally [19].

Both cost-sensitive learning and online classification have
been studied extensively in data mining community, respec-
tively. Unfortunately, there are relatively few studies consider
the application of cost-sensitive learning strategy in data
stream scenarios due to its nature of dynamic changes [19].

Finding a way to perform cost-sensitive learning in
non-stationary environment and to adopt effective learning
strategies to deal with class imbalance to pursuit better
performance of classification with concept drifting is the
main aim of this research. In addition, the task of learning
from evolving data streams with class imbalance is to tail
the cost-sensitive learning strategy into the evolving online
scenarios. The most challenge of our work is to devise an
effective cost-sensitive online learning paradigm that can
effectively extract knowledge from data stream with class
imbalance and concept drift.

This study is on the topic of adaptive ensemble, which
is considered as the most popular technique for han-
dling concept drifts. Differs from existing ensemble archi-
tectures, we tail the cost-sensitive learning strategy into
the evolving data stream classification scenarios, and a
novel cost-sensitive online ensemble, named Two-Stage
Cost-Sensitive (TSCS) scheme, is devised seeking towards
both issues simultaneously. Themain contribution of this arti-
cle is to generalize cost-sensitive learning algorithms to their
online versions. For each newly arrived data block, TSCS
first uses a cost-sensitive learning mechanism to preprocess
the feature set, that is, effectively use cost information to
select a feature subset that helps to improve the model’s
performance on minority instances; then, define the feature
subset in the feature space, use TSCS to train the classifier on
the current data block; finally, TSCS evaluates the accuracy
and misclassification cost of the existing classifier on the
current data block, and weights the classifier based on the
evaluation result. Compared with existing algorithms, TSCS
can achieve better performance on artificially synthesized and
real-world class imbalance concept drift data streams.

To summarize, there are four key original contributions of
our algorithm.
(1) In the feature selection stage, a Cost-Sensitive Principal

Component Analysis (CSPCA) by continuously select-
ing the optimal set of features according to the cost
information is employed for performing feature selec-
tion on imbalanced data streams. The exploration of
feature subspace can improve the generalization ability
of the algorithm, and can better adapt to various concept
drifts.

(2) In the classification stage, a cost-sensitive weighting
schema is developed, which introduces cost informa-
tion into the learning framework to effectively manage
the improvement of the learning performance.

(3) An adaptive window change detection mechanism is
also employed in the framework to react promptly to
different kinds of changes.

(4) An extensive experimental study was carried out on a
variety of data stream benchmarks. The results indi-
cated that the proposed method obtained better per-
formance than the competitive methods, particularly
under dynamic data streams with class imbalance
environments.

The structure of the paper is organized as follows. In Sec-
tions II, we briefly retrospect some closely related work.
Next, we describe our algorithm in detail in Section III.
Section IV demonstrates the experiments results. Finally,
a conclusion is drawn.

II. RELATED WORK
This section reviews the recent work of the major contribu-
tions that are closely related to our research presented in this
article which covers approaches in handling concept drift and
in dealing with the class imbalance.

A. HANDLING CONCEPT DRIFT IN DATA STREAMS
Concept drift is a hot research topic in the field of data mining
community and a lot of classification algorithms have been
developed. These methods have been reviewed by Tsym-
bal [6], Gama [7], Dilter [8], Khamassi [10] and Lu [11] et al,
providing valuable insight into addressing the concept drift.

In the literature [6], the surveyed concept drift adap-
tation methods are divided into three main categories:
instance selection methods, weight-based approaches and
ensemble-based methods. The method based on instance
selection is the most widely used technique for processing
concept drift. Specifically, it refers to selecting a part of
the data to be processed, that is, selecting the most relevant
instance of the current concept for learning, so as to improve
the efficiency of algorithm learning. Such methods are often
implemented through sliding window technology (Sliding
Window). The method based on instance weighting increases
its influence in the new model by assigning larger weights
to the data that is most relevant to the current data. Many
methods for setting weights have been proposed. The more
commonly used ones are based on the age of the instance
(such as the time when the data arrives, etc.), or based on the
degree of relevance of the data in the processing of the new
concept. The ensemble learning refers to the use of multiple
base classifiers to form a set of classifiers by means of model
averaging, and then use voting or weighted voting to combine
them to predict unknown data.

Dilter et al. divided the methods into two main cate-
gories [8]: active approaches and passive approaches. The
active approaches are mainly by adding a concept drift detec-
tion mechanism to the classifier to actively discover detection
drift. The single classification model uses the concept drift
detection mechanism to actively detect the concept drift in
the data stream. Once the concept drift is detected, the current
model will be adjusted to delete outdated concepts and adapt
to the new concepts in time. However, for the slow concept
drift with gentle changes, it may be difficult to detect once
it appears, causing the old concepts not be deleted in time,
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thus affecting the performance of model. It is notable that the
passive adaptation method does not actively detect concept
drift, nor consider the occurrence of concept drift in the data
block, and is not sensitive enough to capture the drift. When
sudden conceptual drift occurs, it is difficult to deal with it in
time.

In this article, we group methods for handling concept
drift in data streams into three categories, namely single
classifiers, drift detectors and ensemble-basedmethods.Most
single-classifier methods improve and extend traditional clas-
sification algorithms to adapt to the changing environment of
data streams. In addition, single-classifier methods generally
provide implicit drift processing mechanisms (such as con-
cept drift detection, sliding window, and instance weighting).
William et al. proposed a method called Paired Classifiers
including two classifiers for complementary consideration:
using the more accurate classifier as the candidate for pre-
diction [20]. Much earlier than Paired Classifiers methods,
Zhuang and Dai introduced an inexact approach for Dual
Imbalance Text Classification [21]. Hulten et al. extended
the classic VFDT algorithm [22], and proposed an algorithm
named CVFDT [23] that can handle concept drift. CVFDT
maintains a window for storing the most recent data, and uses
a candidate sub-tree to train on the window data. If its perfor-
mance exceeds the original. For the sub-tree corresponding to
the tree, the candidate sub-tree is used instead of the original
sub-tree. Gama et al. also improved VFDT and proposed the
VFDTc algorithm [24]. The VFDTc algorithm can process
continuous attribute data and detect concept drift by compar-
ing the data distribution between two windows. Most of the
work is based on decision tree algorithms, including Hoeffd-
ing Adaptive Tree (HAT) [25], Adaptive-Size Hoeffding Tree
(ASHT) [26], and Ultra Fast Forest of Trees (UFFT) [27].

Concept drift detection algorithm, also known as concept
drift detector, refers to an algorithm that detects input data
information according to data distribution. It monitors the
changes in the data stream distribution, and once it finds a
concept drift, it will warn the classifier and take correspond-
ing actions to adjust it to the new data distribution.

In [28], Gama et al. proposed a method called Drift Detec-
tion Method (DDM) by monitoring the error-rate of the algo-
rithm.AlthoughDDMcan effectively capture sudden concept
drifts, it cannot detect the gradual drift in time. To solve this
problem, Baena-Garcia et al. improved the DDM algorithm
and presented the Early Drift Detection Method (EDDM)
method [29], which detects the standard deviation between
the error rates of two connections. Bifet and Gavalda [30]
proposed the ADWINmethod to adapt to concept drift, which
cuts each window into two sub-windows, representing the
new data and the old data respectively, and determines the
best split according to the rate of change between the sub-
windows, and then the new data use the training model to
replace the old model. In [31], Philipp et al. proposed a
parallelized version of ADWIN algorithm. Gomes et al. [32]
proposed an online version of random forest classifier, named
Adaptive Random Forest classification (ARF), which uses a

concept detector to decide when to replace trees in the forest
to deal with concept drift.

The third solution is a common strategy for addressing
concept drift issue. Ensemble-based approaches [33], [34]
have proved to be an efficient and powerful technique of
handling concept drift due to their flexible structure. Gener-
ally, constructing ensemble can be divided into three main
steps: Training a set of base classifiers (or component clas-
sifiers), selecting a subset of base classifiers, and making
the final prediction. It is considered to be an effective way
to update knowledge without changing the model structure.
On one hand, ensemble learning can learn new knowledge
very efficiently. It only needs to add new classifier members
to the ensemble model. On the other hand, integrated learning
provides a natural mechanism for forgetting irrelevant knowl-
edge.

The above work only focuses on the issue of concept
drift. The following subsections review some major work in
learning from data with class imbalance.

B. LEARNING FROM CLASS IMBALANCE DATA
Ensemble approaches have the capability of easily adapting to
changing data stream scenarios due to their modular structure.
Thus becoming one of the most popular methods used for
dealing with drift. The ways of processing data streams can
be roughly divided into two types: data block-based process-
ing and single instance online processing. Ensemble-based
methods for data streams classification can be categorized
into the following three types: block-based ensembles, online
ensembles, and hybrid ensembles [35].

(1) Specifically, in block-based ensemble, data stream is
divided into fixed-size blocks. Block-based ensemble adapts
to change by periodically updating its components and
replacing the weakest members with new ones. Streaming
Ensemble Algorithm (SEA) [36] is a block-based ensemble,
which maintains a fixed number of base classifiers based
on blocks and employs a heuristic classifier replacement
strategy. Wang et al. present a method named Accuracy
Weighted Ensemble (AWE) [37], which is the best-known
representative block-based ensemble. AWE maintains the
top-k classifiers learnt from sequential blocks of instances
and dynamically weights each classifier according to the
most recent block. In [38], an algorithm named Accuracy
Updated Ensemble (AUE1) was proposed. AUE1 incremen-
tally trains and updates component classifiers after each
block. Its improved version AUE2 [39], by periodically
weighting ensemble members, could obtain better response
to gradual drifts. At the meanwhile, it improves perfor-
mance on abruptly changing streams environment. In [40],
the algorithm dynamically weights each classifier according
to time-adjusted accuracy on change of distribution. The
performance of block-based ensembles is greatly affected by
the size of block. Another disadvantage is that their delay in
response to sudden change in time because true labels can be
entirely available after each full data block.
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(2) For online ensembles, incremental classifiers are main-
tained and updated as soon as a new instance arrives. Kolter
and Maloof proposed the most cite online-based ensemble,
named Dynamic weighted majority (DWM) [41].When there
is an error in algorithm classification, DWM dynamically
adds a new expert, when there is an error in the expert,
it reduces the weight of the expert, when the expert perfor-
mance is poor, DWM removes an expert, and incrementally
trains exist component experts through online learning. Sim-
ilar to DWM, Gomes and Enembreck presented a dynamic
ensemble classification called Streaming Ensemble Algo-
rithm (SEA2) [42], which is represented by an undirected
graph. More specifically, SEA2 is an ensemble algorithm
represents as a network in which connections are created
between two classifiers if they have similar predictions. The
weights of edges in the graph represent the similarity of
the two classifiers. Recently, Lu et al. proposed a Dynamic
Weighted Majority for Imbalance Learning (DWMIL) based
on the DWM framework [43]. DWMIL processes the data
incrementally and dynamically weighting the base classi-
fiers to ensure timely processing of concept drifts. More-
over, DWMIL uses under-bagging technology before the base
classifier training, to balance the class distribution. However,
it has the shortcoming of over-fitting.

Online-based ensembles update the component classifiers
after each new arriving instance. Hence, they have the capac-
ity of adapting to sudden changes rapidly. Unfortunately,
online ensembles have the disadvantage of higher computa-
tional costs compared with block-based ensembles.

(3) The hybrid ensembles combine the advantages of
weighting mechanism of block-based and online processing.
It continuously updates base classifiers online according to
the coming instances. Nishida et al. proposed an adaptive
ensemble algorithm, named Adaptive Classifier Ensemble
(ACE) [44]. The ACE algorithm is based on the data block
period weighting mechanism and online learning method.
It detects mutation concept drift by monitoring the error
rate of classifiers, and builds a base classifier on the data
block to cope the gradual concept drift. When there are large
data blocks, training the classifier will consume too much
time. Brzezinski et al. proposed a hybrid ensemble named
Online Accuracy Updated Ensemble (OAUE) [45]. However,
it has a potentially drawback of unable to adapt to sudden
changes due to the fixed window size. Recently, Gama et al.
introduced a dynamic weighting ensemble algorithm, named
Kappa Update Ensemble (KUE) [46], which adopts Kappa
metric to guide the member classifiers’ selection and
weighting.

In this subsection, we surveyed recent advances in strate-
gies for learning from class imbalance data in general. In the
next subsection, we will provide a review on approaches for
learning from class imbalance data streams in particular.

C. LEARNING FROM CLASS IMBALANCE DATA STREAM
Basically, both class imbalance data and data involving
concept drift are special types of low quality data [47].

Dai [48] pointed out three strategies for learning from low
quality data: preprocess data before learning; improve data
quality while learning and introduce learning algorithms that
tolerate low quality data. All these three strategies are appli-
cable in guiding the creation of new learning approaches.

The main recent developed approaches for learning
from class imbalance can be classified into three cate-
gories [12], [13]: 1) data preprocessing oriented approaches;
2) cost-sensitive oriented approaches, and 3) ensemble ori-
ented approaches.

1) Data preprocessing oriented approaches are fit into
the first category in fixing the imbalance before
learning. This type of approaches aims to reduce
the imbalance of class distribution by changing the
distribution of data. Specifically, during data prepro-
cessing, the distribution of data is balanced by adding
minority instances (oversampling) or reducing major-
ity instances (undersampling). The Synthetic Minor-
ity Oversampling TEchnique (SMOTE) [13] proposed
by Chawla et al. is the most famous preprocessing
oriented algorithm adopting the random oversampling
technology. More specifically, SMOTE generates new
instances by performing random linear interpolation
between a small number of instances and their similar
neighbors, which increases the possibility of overlap-
ping between classes. The experimental results show
that compared with other standard approaches, clas-
sification accuracy of the minority class is improved.
However, the duplication or synthetic creation of the
minority class instances often leads to over-fitting.

2) Cost-sensitive learning methods [14] fit into the sec-
ond type of learning strategy fixing imbalance data
issue during the learning. This type of methods assigns
distinct misclassification costs to different classes
and obtains the optimal decision boundary by min-
imizing the total misclassification cost. Most of the
cost-sensitive methods are improved to traditional
machine learning methods. For example, applying the
cost-sensitive strategy to the SVM algorithm [15],
the cost-sensitive Hinge loss function is minimized.
AdaCost algorithm [16] introduces cost- sensitive strat-
egy into the weight function of AdaBoost to reduce
the weight of misclassified instances. Subsequently,
Sun et al. proposed a family of AdaBoost algorithms
based on cost-sensitive strategy: AdaCl, AdaC2, and
AdaC3 [17].

3) Ensemble methods belong to the third type
strategy which is capable of tolerating class imbalance.
These methods are mainly classified into three cate-
gories [18]: bagging-based approaches, boosting-based
approaches, and hybrid ensembles. Bagging-based
methods mostly combine bagging technology, such
as OverBagging, UnderBagging, UnderOverBagging,
and DES-MI. Data preprocessing is introduced to
the boosting algorithm, and the weights of mis-
classified instances are adjusted by updating the
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distribution weights. Some prominent boosting-based
methods include SMOTEBoost and RUSBoost.
SMOTEBoost [49] introduces SMOTE to create syn-
thetic instance technology into the AdaBoost iteration.
Similar to SMOTEBoost, RUSBoost [50] randomly
randomizes the majority of instances in each itera-
tion. The hybrid ensemble method combines both bag-
ging and boosting strategy. Some prominent methods
include EasyEnsemble and BalanceCascade [21].

Data streams also exhibit class imbalance problem. In fact,
addressing the two issues simultaneously is a nontrivial
task due to the need to adhere the following requirements:
1) detecting changes as soon as possible; 2) adapting to
changes quickly; and 3) recovering to the accuracy level
before changes.

In [51], Gao et al. proposed an ensemble framework using
oversampling technology, named Sample and Ensemble (SE).
In such framework, incoming data block is divided into two
parts: one represents the positive class instances (P) and
another represents the negative class instances (Q). To take
all these instances into account, we choose some positive
instances from P and obtain a subset of Q then merge them
together. Then we use all these instances to learn a new
classifier to obtain a better performance. Chen and He [52]
proposed a novel algorithm, named SERA (SElectively
Recursive Approach), which used a similar measure to select
the previous minority instances. Similar to SERA, Gao et al.
proposed an algorithm that selects the ‘‘best’’ nminority class
according to Mahalanobis distance. Unfortunately, it is not
strictly incremental, as it requires to access previous data.
Mirza and Lin [53] introduced a method based on Extreme
Learning Machine (ELM), which incorporates sampling and
cost-sensitive weighting technique to solve class imbalance
and use window technology to deal with concept drift. It is the
first meta-cognitive framework to solve class imbalance and
concept drift problem. Ditzler and Polikar [54] presented an
extension of Learn++.NSE, named Learn++.NIE. It employs
subensemble and class-independent error weighting mecha-
nism with a penalty constraint strategies to address the two
issues.

Ghazikhani et al. introduced cost-sensitive learning to neu-
ral networks and proposed an online neural network ensemble
algorithm [55] for dealing with the class imbalance issue.
Recently, Li et al. [56] presented a novel ensemble algo-
rithm based on multi-window technology to address the
issue. Lu et al. [43] proposed an algorithm, called Dynamic
WeightedMajority for Imbalance Learning (DWMIL), which
dynamically weights the performance of base classifier on
each newly arriving block to ensure timely processing of con-
cept drift. Moreover, DWMIL uses underbagging technology
before the base classifier training; that is, during each bagging
iteration, undersampling technology is used to ensure that
the training instance class distribution is balanced. However,
it has the shortcoming of overfitting.

Most recently, Zhao et al. [57] propose to introduce a
novel cost-sensitive online classification framework, named

Adaptive regularized Cost-sensitive Online Gradient descent
algorithms (ACOG), which employs the adaptive regular-
ization during the classification. Wang and Pineau [58]
proposed a cost-sensitive home algorithm using an online
gradient descent algorithm to solve online optimization tasks
by maximizing weights or minimizing weighted classifica-
tion error costs; and theoretically analyzed cost sensitivity.
Recently, Wang et al. [59] convert a series of batch-based
cost-sensitive ensembles into online versions, including new
online extensions of UnderOverBagging, SMOTEBagging,
AdaC2, CSB2, RUSBoost, and SMOTEBoost.

In [58], Khanchi et al. proposed an active learning algo-
rithm named StreamGP, which adapt over time as genetic
programming (GP) individuals improve. Korycki et al. [60]
present an online framework called Active Learning Strat-
egy (MD-OAL) for imbalanced data streams with partially
labeled.

Most of the above algorithms are based on techniques for
static data that are used to reduce the imbalance in data.
These methods have the following disadvantages: SE only
builds a classifier for the current data block, and cannot save
the concepts that have been learned, and most of the data
block use real-time update mechanisms that cause excessive
time consumption. The base classifier in IMDWE increases
linearly, resulting in a sharp increase in time consumption.
Learn++.CDS and Learn++.NIE lead to excessive time con-
sumption; and SERA requires constant access to previous
data, so it is not a strictly incremental algorithm. While,
StreamGP and MD-OAL are specially designed for partially
labeled data stream scenarios.

III. OUR METHOD
This section firstly introduces a change detector based on
adaptive window strategy to deal with concept drift, and then
our cost-sensitive principal component analysis method is
described in detail. After that our proposed two-stage cost-
sensitive ensemble method is presented.

A. CHANGE DETECTOR BASED ON ADAPTIVE WINDOW
In our method, a novel change detection algorithm, which
utilizes a two-window change detection schema to monitor
the change of distribution, is presented. In order to quanti-
tatively measure whether the data in the sliding window has
concept drift, it utilizes Kullback-Leibler divergence as the
metric to compare the distance between the windows. The
Kullback-Leibler divergence of two distributions p(x) and
q(x) is defined as Equation (1).

KL(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

(1)

where x is the space of the events.
More formally, let W1 ={x1, x2, . . . , xn) and W2 ={xn+1,

. . . , x2n) represent the reference window and the current
window. Our change detection can be expressed as hypothesis
testing uses the following methods to detect whether the data

191946 VOLUME 8, 2020



Y. Sun et al.: TSCS Learning for Data Streams With Concept Drift and Class Imbalance

sequence has concept drift:{
H0 KL(W1,W2) ≤ ε
H1 KL(W1,W2) > ε

where KL(W1||W2) is a metric that measures the dissimilarity
of W1 and W2, ε is a threshold. If the Kullback-Leibler
divergence of the data in the new window and the data in the
historical window is greater than the threshold, it indicates
that a concept drift has occurred.

Adaptive window change detection can detect sudden con-
cept drift, gradual drift and recurring concept. A concept
drift is detected when the value of distance function exceeds
the threshold. A recurring concept is recognized when the
measure is zero. ε is a threshold calculated according to
Bernstein inequality, refer to our previous work [61]. The
change detector alarms a signal when a change is detected.
Then the outdate data is discarded. If the stream is stationary,
the windows slide step by step. The pseudo-code of the
adaptive window detector is specified in the Algorithm 1.

Algorithm 1 Change Detection based on Adaptive Window-
ing
Input: S is a data stream, n is maximum size of windows;
Output: alarm signal
Procedure:
01: Set t to 0;
02: Set W1 to{xt+1, . . . , xt+n};
03: Set W2 to {xt+n+1, . . . , xt+2n };
04: while not at the end of S do
05: ifKL(W1, W2) > ε then
06: Alarm a drift signal at t;
07: Discard the outdate instances and goto step 02;
08: else if KL(W1, W2) ==0 then
09: Alarm a recurring concept signal;
10: end if
11: else W2 is slide by 1 step;
12: end if
13: end while
14: end.

B. COST-SENSITIVE FEATURE SELECTION BASED ON
PRINCIPAL COMPONENT ANALYSIS
In our algorithm, we apply a cost-sensitive learning strat-
egy in the feature selection. Principal component analysis
(PCA) [62] is one of the most popular feature selection
techniques, which uses orthogonal transformations to gain
a low-dimensional representation of data called the princi-
pal components. In order to deal with class imbalance data,
we tailor the traditional PCA algorithm into cost-sensitive
mode, named Cost-Sensitive Principal Component Analysis
(CSPCA). More specially, we apply cost-sensitive strategy in
feature selection stage, by incorporating cost value into the
process of feature selection.

The majority and minority classes in training instances use
different cost ratios:

Ci =


C−i =

1− α
N−

If yi = −1

C+i =
1+ α
N+

If yi = +1
(2)

where i = 1, . . . , n instances;N− andN+ are the total number
of negative and positive instances, respectively. α ∈[0, 1] is a
parameter.

Consider the data matrixX ∈ Rm×n, where the n represents
the total number of instances, and the m are the number of
features. w1 is the first principal component of p dimensions
and p� m. w1 is calculated according to Equation (3):

w1 = argmax
∑
i,j

(
Xi,j · w1j

)2 (3)

where i and j are the rows and columns of X respectively.
Geometrically, the first step of PCA is centered data by

subtracting the average of the data from all points. However,
in class imbalance case, covariance matrix usually represents
the variance of most of the class instances, and the maximum
variance direction of the data may be largely captured from
most spaces. For this reason, we introduced the cost-sensitive
learning into the PCA algorithms to solve imbalance prob-
lems. For binary classification, it is assumed that the negative
and positive instances are discounted by imbalance cost ratios
C− and C+ respectively. Thus, the weighted r th principal
component is:

w1 = argmax
∑

i:yi=1,j

(
C−i Xi,j · w1 j

)2
+

∑
i:yi=+1,j

(
C+i Xi,j ·W1j

)2
(4)

where j is the index of the dimension, C−i and C+i are calcu-
lated according to Equation (2).

Using different cost ratios for negative and positive classes
can reduce the dominant role of negative instances in select-
ing features. CSPAC selects a relatively small subset of rele-
vant features from the original set of features. For this reason,
the CSPCA can address the class imbalance at the feature
selection level without changing the distribution of data or
modifying the algorithm.

C. TWO-STAGE COST-SENSITIVE ENSEMBLE LEARNING
In this section, a novel two-stage cost-sensitive ensemble
framework is put forward for effectively handling the joint
issue of class imbalance and concept drift. TSCS provides a
combination of online and block-based approaches, both con-
tinuously updating base classifiers and replacing them with
new ones when necessary. More specifically, TSCS relearn
a classifier based on the instances in latest window. Another
strategy is to use hybrid ensemble learning scheme, in which
the base classifiers are weighted their performance and cost
of the latest block, and incremental learning the classifiers on
the latest block. Hence, it is a hybrid method that offers both
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FIGURE 1. The framework of TSCS algorithm.

implicit (change detection mechanism) and explicit mecha-
nisms (ensemble weighting mechanism) to deal with concept
drifts.

The basic framework of the TSCS algorithm is shown
in Figure 1, which mainly involves two stages:

1) PCA-base feature selection stage: It employs a cost-
sensitive learning mechanism in the feature selection process
to filter out feature sets that are more meaningful for effective
prediction and classification of minority samples, and at the
same time. It also has the effect of reducing data dimensions.

2) Ensemble classification stage: A cost-sensitive weight-
ing schema is designed, that is, based on both the accuracy
and the total cost of misclassification of the base classifiers
on the latest data block to update its weight, and then the
weighted voting schema is employed for prediction.

Assume there are
—d Stream data window Wj; contains the current data

(1 ≤ j ≤ d );
—k base classifiers hi = fi(Wj) (1 ≤ i ≤ k );
—m instances It (1≤ t ≤ m);
To implement our two stage cost-sensitive ensemble learn-

ing, we need to introduce the weight weightij and the cost ctij.
The more important a base classifier outcome is, the higher
weight is assigned. Similarly the higher cost of a base classi-
fier, the less important the base classifier would be.

Specifically, a data stream can be described as S ={s1,
s2, . . . , st , . . . }, where st =(xt , yt ) represents the instance
at time t. E ={h1, h2, . . . , hk} represents the ensemble con-
taining k weighted base classifiers. First, TSCS continuously
uses CSPCA algorithm to select effective feature subset, and
learns a base classifier hi base on the new feature space of
the latest window Wj, i. e., hi = fi(Wj). And then, for each
incoming instance xt , instead of evaluating base classifiers
every d instances, each classifier hi ∈ E is weighted based
on the data in the latest window according to Equation (5).

weightij =
1

ctij +MSEij −MSEr +1

MSEr =
∑
y

p(y)(1− p(y))2

MSEij =
1
|Wj|

∑
(x,y)∈Wj

(1− f iy (x))
2 (5)

whereMSEij is the prediction error of base classifier hi on the
recent window Wj, while MSEr represents the mean square
error of a randomly predicting classifier and is employed as
the baseline for predicting the current distribution. Addition-
ally, 1 is a very small positive value. f iy (x) represents the
probability of using hi to classify x as y.
ctij is the total cost of the misclassification of classifier

hi on current window Wj, which can be computed using
Equation (6):

ctij =
1
|Wj|

∑
{x,y}∈Wj

∑
y′

cos t(y, y′)f iy′ (x) (6)

where cos t(y, y′) represents the cost of instance x of class y
being classified as y′.

The intuition underlying of Equation (5) is that the weight
of the classifier hi is inversely proportional to the error and the
cost value, that is, the larger the classification error rate and
cost of the classifier on the data of latest window, it indicates
that the classifier is not suitable for the current data distribu-
tion, and its weight in the ensemble classification should be
weakened.

After the generation of base classifiers, a new classifier h′

is trained then added into the ensemble when drift is detected.
When the number of base classifiers reaches the specified
maximum value, the worst classifier is replaced by the new
classifier. The final prediction of ensemble is based on the
weighted majority voting rule according to Equation (7).

E(xt ) =
k∑
i=1

weightifi(xt ) (7)

where
k∑
i=1

weighti = 1, 0 < weighti < 1.

To assume
k∑
i=1

weighti = 1 and 0<weighti <1 hold true.

We normalize the weights of base classifiers in the following
way:

Assume k individual weights obtained via formula (5) is
< w1, w2, . . . , wk > (Here we fix the window on current one
so we omit the subscript j). We let

w =
k∑
i=1

wi (8)

and we let the weights we used in Equation (7) as follows

weight i =
wi
w̄

(9)

When the algorithm detect a drift or the instances in the
long-term buffer exceeds the specified max value (line 4),
a classifier that represents the new concept is built according
to the instances in B (line 5), weighted (line 6), and added
to the ensemble (line 8). The final prediction is based on the
weighted majority voting rule. The pseudo-code of TSCS is
given in Algorithm 2.
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Algorithm 2 Two-Stage Cost-Sensitive Ensemble
input: D: change detector, S: data stream, k: max number
of classifiers, d : maximum size of windows
output: E : ensemble with k base classifiers
Procedure:
01: E ← ϕ

02: for each current Wj in S
03: apply CSPCA algorithm;
04: if |Wj| > dor detected a change then
05: train a new candidate classifier h′ based on new
feature subset of Wj;
06: weight new classifier h’;
07: weight all classifiers hi in E according to Equa-
tion (5);
train all classifiers hi in E incrementally;
08: if E is not full then add the classifier h′ to ensem-
ble;
09: else the worst base classifier is replaced by h′;
10: reset D;
11: reset current window;
12: end if
13: end for
14:end.

IV. EXPERIMENTAL STUDY
The experiments are carried out with Massive Online Analy-
sis (MOA) [63] software package. MOA is the most famous
open source framework for data stream mining and it provide
an environment for implementing the state-of-the-art algo-
rithms of data stream mining.

A. DATA BENCHMARKS
A thorough experimental study, comparing TSCS to 14 state-
of-the-art algorithms over 6 synthetic and 8 real-world data
stream benchmarks. The synthetic data streams were simu-
lated by the MOA Generators.

The imbalance rate (IR) represents the ratio between the
majority class instances and the minority class instances.
Two types of class imbalance benchmarks are selected
in the experiment: (a) static class imbalance benchmarks;
(b) dynamic class imbalance datasets, whose IR values
change dynamically over time. The detail of the datasets is
described in Table 1.

1) SYNTHETIC DATASETS
We first generate data streams through the generators in
MOA, and then use the ConceptDriftStream generator to
simulate concept drifts. Finally, we set the imbalance rate
of the ImbalancedStream generator to simulate data streams
with class imbalance. For multi-class classification, the first
class is set as the major class, the remainder classes are the
minority classes.

The Agrawal data stream is used to generate one of ten
specified functions, including a total of 9 attributes. We use

TABLE 1. Characteristic of the datasets.

the MOA Agrawal generator to produce a stream with 1000,
000 instances.

The STAGGER data set was proposed by Schlimmer et al.
It is a widely used dataset of simulated concept drift.. In the
experiment, we utilized the STAGGERGenerator in MOA to
generate a dataset having 1, 000, 000 instances. It contains
3 concepts. The concept 1 is set as the majority class. The
imbalance ratio with the other two categories is 5.

Hyperplane is the most popular synthetic dataset in data
stream classification experiments. It is a classic two class
classification problem that simulates a d-dimensional hyper-
plane. We simulate a stream with gradual drift containing 1,
000, 000 instances.

The LED dataset is to predict the numbers on LED display.
In the experiment, we produced 24 binary attributes version
of the LED, of which 17 are irrelevant. Simulate concept
changes by exchanging related attributes. We generate a LED
with mixture drift. It contains 1, 000, 000 instances.

The Rotating Spiral stream is used to describe four types
of spirals. It contains 1, 000, 000 instances, of which about
5% are positive instances. Therefore, the Rotating spiral is a
dataset with class imbalance and gradual concept drifts.

The SEA stream has three attributes, only two of them are
relevant. The dataset contains four concepts which represent
a block of data. The dataset uses f1 + f2 ≤ O to classify
the instances in the blocks. 9, 8, 7 and 9.5 are the most
common used threshold.We generate a SEA dataset with sud-
den recurring concept drift, containing 1, 000, 000 instances.
We use the RecurrentConceptDriftStream generator to simu-
late recurrent concept drifts.

2) REAL-WORLD DATASETS
It is impossible for real-world data sets to know exactly when
drift begins, what kind of drift exists, or even whether it does
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exist. Therefore, it is more meaningful to verify the adapt-
ability of algorithms. The static datasets can be downloaded at
MOAwebsite,1 and then use the MOA generators to simulate
them into streams.

Spam dataset represents information of a message, and
is divided into two types: spam (only 20%) and legitimate
messages, so it is a dataset with class imbalance. It contains
9, 324 instances, each instance have 500 attributes. The char-
acteristics of the spam slowly evolving over time. And then
simulate static dataset into stream by the generator in MOA.

The Electricity dataset is the most frequently used
real-world data stream. It has 45, 312 instances, and each
described by 7 attributes. The purpose of Electricity dataset is
to predict the trend of electricity price changes in Australia.

The German credit dataset contains 1000 instances, and
each instance is described by 24 attributes. The purpose of
the dataset is to predict the tendency of loan default based
on bank loan information and the occurrence of overdue
loans of applied customers. It can be obtained from LIBSVM
website.2

The Poker Hand dataset comes from UCI repository [64].
It indicates the issue of recognizing hand in a poker game.
The Poker dataset has 1000, 000 instances. Each instance is
described by 10 attributes, representing a group of five cards
in hand. The class is described as ‘‘Poker Hand’’.

The purpose of Airlines dataset is to predict whether a
flight will be delayed based on the given information of
scheduled departure. The dataset contains 539, 383 instances,
and each instance consists of three numeric attributes and
five nominal attributes. The class of the Airlines is delay,
indicating whether a flight is delayed.

IJCNN1 dataset comes from the IJCNN competition
in 2001, and uses the pre-processed data of LIBSVM as
experimental data. It has 49, 990 instances.

The Sensor dataset comes from 54 sensors information in
the Intel Berkeley Research Laboratory, as shown in Figure 2.
It consists of 2, 219, 803 instances and each instance with
5 attributes. Brightness and temperature change over time,
leading to concept drifts.

The Nebraska Weather Prediction (Weather) dataset con-
tains the daily weather measurements of the Offutt Air Force
Base in Bellevue. It consists of 18, 159 instances. It is a
dataset with diverse weather patterns and concept drifts.

B. EVALUATION METRICS
Since the classification accuracy is not suitable for imbal-
anced data distribution, we adoptG-mean [67, 68] as alternate
metrics for evaluating the performance of classifiers in class
imbalance scenarios.

(1) Precision and Recall
Precision and recall can be calculated as:

precision =
TP

TP+ FP
(10)

1http://moa.cms.waikato.ac.nz/datasets/.
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

FIGURE 2. The sensor distribution map in the inter Berkeley Research Lab.

recall =
TP

TP+ FN
(11)

(2) F−measure F−measure is the harmonic mean of precision
and recall, as shown in Equation (12).

F -measure =
2 Precision × Recall
Precision + Recall

(12)

(3) G-mean
G-mean is the most commonly used evaluation measure

in class imbalance environments. G-mean is the geometric
mean of the recall of abnormal classes and normal classes.
Formally, the G-mean can be calculated as follows [65].

G− mean =

√
TP

TP+ FN
×

TN
TN + FP

(13)

C. EXPERIMENTAL SETUP
All algorithms are written in Java and executed under the
MOA framework. The experiments were carried out on a
3.0GHz Pentium CPU with 32GB of RAM and Microsoft
Windows 10.

In the experiments, we use the prequential evaluation
strategy in MOA to evaluate the performance of all com-
pared methods. Therefore, a classifier is evaluated before all
instances are obtained. This evaluation method can generate
an incremental learning curve, where the two-dimensional
curve corresponding to the horizontal axis to the number of
instances that have been classified, and the vertical axis are
the dynamic changes of evaluation indicators.

In the study, all tested ensemble methods set k to 15. The
Hoefffding tree was selected as the basic classifier. This is
mainly because the decision tree is probably the most widely
used algorithm equipped with ensemble technology, and can
effectively deal with concept drift. For the Hoeffding tree
algorithm, we set grace period nmin to 100, set tie-threshold
τ to 0.05, and set split confidence δ to 0.01.

D. RESULTS AND ANALYSIS
The proposed method was evaluated against ten state-of-
the-art algorithms. The first five is non-stationary learning
algorithms and the last five are designed for evolving envi-
ronments with class imbalance.
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TABLE 2. G-mean comparison of 10 algorithms.

TABLE 3. F -measure comparison of 10 algorithms.

• ARF: ARF [32] is an online version of random forest
classifier, which uses a concept detector to deal with
concept drift.

• AWE: AWE [37] is the most representative block-based
ensemble, which maintains the top-k classifiers learnt
from sequential blocks of instances and dynamic
weights each classifier according to the most recent
block.

• OzaBagAdwin: OzaBagAdwin is the online bag-
ging version equipped with ADWIN as the change
detector.

• LeverageBagging (Lev Bagging): Lev Bagging extends
the traditional bagging algorithm to the online mode,
and randomizes the weights of instances in the
input data stream to enhance the performance of the
ensemble.

• AUE2: AUE2 [39] is a block-based ensemble. It uses a
non-linear base classifier weighting scheme, incremen-
tally updates each data block after it arrives to address
sudden concept drift.

• KUE: KUE [46] is a hybrid ensemble which using the
Kappa metric for dynamically weighting base classifiers
in ensemble.

• Online SMOTEBagging (OSB): OSB [58] is an
online version of bagging based cost-sensitive learning
algorithm.

• Learn++.NIE: Learn++.NIE [54] is an ensemble algo-
rithm that adopts bagging-based subensembles to gen-
erate subensemble of classifiers and weighting strategy
based on recall, Fmeasure, or G−mean.

• ACOG: ACOG [57] is the state-of-the-art online classi-
fication based on adaptive regularization.

The results are evaluated by themetrics ofG-mean,F−measure,
and running time, as shown in Tables 2-4.
G-mean Analysis. As shown in Table 2, in terms of

G-mean, on average TSCS achieved the best, AWE is the
worst. In the case of data streams, the best average perfor-
mance is obtained on LED, SEA, Poker, Sensor and Weather
datasets. Compared with other algorithms, TSCS can achieve
better performance under class imbalance data streams envi-
ronment. This is because TSCS has a concept drift detection
mechanism and uses the cost-sensitive strategy, so it can
handle class imbalances and concept drift well. Due to AWE
unable to deal with the class imbalance problem, so its aver-
age performance is the worst. Meanwhile, the cost sensitive
learning strategy is adopted in TSCS classification stage, and
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TABLE 4. Times comparison of 10 algorithms (seconds).

a feature subset space which can effectively balance the data
distribution is selected. During the training stage, a new base
classifier is learned in the feature subspace when concept
drift is occurred. In the prediction process, TSCS uses the
cost-sensitive ensemble method to make prediction.
F−measureAnalysis. As shown in Table 3, on most sce-

narios, Lev performs the worst compared with other algo-
rithms. This is because there is no mechanism in Lev to deal
with class imbalanced issue, thus it performs poorly. TSCS
is ranked the second directly next to the best. For TSCS,
cost-sensitive feature selection strategy is implemented by
deleting irrelevant and redundant features from the original
feature set, and then classification is performed based on this
feature set, which further affects the overall classification
performance.

Time Analysis.As shown in Table 4, we observe that OSB
and ACOG are the most time-consuming methods. The better
performance of our algorithm might be partially because
our algorithm benefits from the adaptive window change
detection strategy to capture drift in a timely manner. In most
datasets, TSCS adapts to concept changes faster than most of
the competitive techniques.

In conclusion, TSCS achieves better average performance
with respect to G-mean, time and F-measure on different
types of concept drift scenarios compared to other ensemble
approaches that use the same base learner. This is principally
for the following reasons: (1) The two-stage cost-sensitive
learning schema injected the information of cost into the
procedures of feature selection and classification, which can
effectively deal with class imbalance issue. (2) The manage-
ment of the change detection mechanism improves the gener-
alization of classification in different situations, particularly
in non-stationary environments.

Figure 3-5 shows the changes of the G-mean of the algo-
rithms as the number of instances processed increases. Such
graphical plots can display the algorithms’ adaptability to
different kinds of drifts intuitively.

The scenario of LED data stream simulates a complex
change by joining two gradually evolving streams. As shown

FIGURE 3. G-mean of algorithms on the LED dataset.

FIGURE 4. G-mean of algorithms on Poker dataset.

in Figure 3, all the algorithms show relatively smooth curves
at the beginning up to 60, 000 instances processed. When
concept drift occurs, all theG-mean curves suffer from instan-
taneous accuracy rates fluctuation, including that of TSCS.
Since TSCS can track the sudden change immediately using
the change detector, it can update the ensemble classifier to
adapt to gradual changes in a timely manner. These results
confirm that our algorithm provide a certain guarantee for the
stability of different kinds of concept drift.
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FIGURE 5. G-mean of algorithms on Sensor dataset.

Conceptual changes in real-world stream environments
has the characteristics of uncertainty, so it can verify the
adaptability of data stream algorithms. Figure 4 shows
G-mean of the algorithms on the Poker dataset. The curves of
all methods suffer a sudden drop, which indicates that there
may exist concept drift. Since this is a real dataset with class
imbalance, the AWE and ARF do not have the ability to deal
with class imbalance, so the performance is poor. In contrast,
the curves of TSCS and Learn++.NIE are relatively stable.
Our method adapts the classification model to non-stationary
environments passively, incorporates two-stage cost-sensitive
mechanisms to address class imbalance issue.

Specially, as shown in Figure 5, TSCS is superior to the
other algorithms on the Sensor dataset. More importantly,
we can observe that the curves of AUE2, ADOB and ARF
decrease at the period of after learning 200K instances to
learning 300K instances. Thus, we can infer that there may
exist concept drift in this period. However, TSCS performs
well in this period. The ensemble methods (TSCS, OSB,
Lear++.NIE, ACOG) achieve better generalization perfor-
mance than the other five algorithms. AUE2 and AWE are not
designed for dynamic environments and therefore performs
poorly on this dataset. TSCS gained the best performance,
followed by KUE. The curve of TSCS is relatively stable
compared to that of other algorithms. This is due to the fact
that TSCS employs the hybrid ensemble algorithm uses an
online manner to update the model.

Sensitivity to Imbalance Ratio. To further verify the
adaption of the five algorithms (KUE, OSB, NIE, ACOG
and TSCS) are affected by the imbalance rate (IR). In the
experiment, we vary the value of IR from 1 to 20 on the
HyperPlane data stream. As the imbalance rate increases
over time, the classification task becomes more and more
difficult. As shown in Figure 6, the curves of all algorithms
drop sharply as the imbalance ratio increase, except TSCS.
This might be attributed to the combination of cost-sensitive
feature selection and cost-sensitive weighting strategies that
provides a good trade-off between improved robustness to
class imbalance features and applicability to dynamic data
streams scenario. The results indicate that TSCS has strong
adaptability to dynamic environment of class imbalance rate.

FIGURE 6. Sensitivity to imbalance ratio on hyperPlane dataset.

FIGURE 7. Critical-different diagram for all the algorithms.

Finally, we did a non-parametric Friedman test for all
competing algorithms [67]. In the statistical test, we set the
significance level α to 0.05. The test result rejects the null
hypothesis, which indicates that there is no significant dif-
ference between the performances of all algorithms. Next,
we adopt the Nemenyi post-hoc test [68] (p = 0.05) to further
verify the results. The results shown in Figure 7 reveal that our
method is significantly better than AUE2 and AWE.

In summary, all of the above experimental results confirm
that TSCS is superior to the competitive existing methods
mainly in the following aspects: (1) The cost-sensitive fea-
ture selection strategy is implemented by deleting irrelevant
and redundant features from the original feature set, and
then classification is performed based on this feature set,
which further affects the overall classification performance;
(2) TSCS can deal with concept drifts quickly and appropri-
ately; and (3) TSCS provides a good performance in both
static and dynamic class imbalance environments.

V. CONCLUSION
This study seeks to understand the capability and explain
the role of cost-sensitive learning in dealing with the class

VOLUME 8, 2020 191953



Y. Sun et al.: TSCS Learning for Data Streams With Concept Drift and Class Imbalance

imbalance issue under non-stationary data stream. This
research introduced a novel and efficient learning approach to
deal with the classification of data streams with class imbal-
ance and concept drifts. It provides an effective way to tackle
the learning challenge when concept drifts and class imbal-
ance occurs simultaneously using a two-stage cost-sensitive
learning scheme. First, in feature selection process, CSPAC
algorithm incorporates cost information into feature selec-
tion, which can not only delete redundant features but also be
capable of handling class imbalance issue in data stream. Sec-
ondly, a cost-sensitiveweighting ensemble scheme is devised.
In addition, the ensemble is equipped with an adaptive win-
dow change detect mechanism to determine when to build a
new candidate classifier to adapt drift quickly. Experimen-
tal results manifest that our proposed TSCS approach out-
performs other methods and achieves the best performance
assessed with measurement metrics commonly applied by
researchers in the research area, especially for evolving data
streams with class imbalance environments.
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