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ABSTRACT Contrastive Learning has recently received interest due to its success in self-supervised
representation learning in the computer vision domain. However, the origins of Contrastive Learning date as
far back as the 1990s and its development has spanned across many fields and domains including Metric
Learning and natural language processing. In this paper, we provide a comprehensive literature review
and we propose a general Contrastive Representation Learning framework that simplifies and unifies many
different contrastive learningmethods.We also provide a taxonomy for each of the components of contrastive
learning in order to summarise it and distinguish it from other forms of machine learning. We then discuss
the inductive biases which are present in any contrastive learning system and we analyse our framework
under different views from various sub-fields of Machine Learning. Examples of how contrastive learning
has been applied in computer vision, natural language processing, audio processing, and others, as well
as in Reinforcement Learning are also presented. Finally, we discuss the challenges and some of the most
promising future research directions ahead.

INDEX TERMS Contrastive learning, representation learning, self-supervised learning, unsupervised
learning, deep learning, machine learning.

I. INTRODUCTION
The performance of a machine learning system is directly
determined by the choice and quality of the data representa-
tion, or features, in the data used to train it. While it is obvious
that some criteria for usefulness depend on the task, it is also
universally assumed that there are sets of features that are
representative of a dataset and that are generally useful as
input for many kinds of downstream classifier or predictor.
Focusing explicitly on learning representation in some cases
can be beneficial, for example, when a labelled dataset for
a task is small and we want to leverage a larger unlabelled
dataset to improve the performance of a learning system.
Representation learning refers to the process of learning

a parametric mapping from the raw input data domain to
a feature vector or tensor, in the hope of capturing and
extracting more abstract and useful concepts that can improve
performance on a range of downstream tasks. Often the input
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domain has a high dimensional space (images, video, sound,
text) and the encoded representations reside in a manifold
of a much lower dimensionality. While all dimensional-
ity reduction methods convert high-dimensional inputs to a
lower-dimensional representation, some of these methods do
not learn a mapping that meaningfully generalises on new
data samples, and that is what representation learning does.

In the early day of Machine Learning (ML), much
effort was spent on designing data transformation and pre-
processing pipelines, and learning was only used to make
a shallow decision based on extracted features. One of
the key ingredients in the success of deep learning is the
ability to learn and extract through deep layers some use-
ful features from data. The increase in available computa-
tion and labelled datasets has enabled the paradigm shift
from using hand-designed feature extractors to learned fea-
ture extractors. As a result, the focus in research also
shifted from feature-engineering to architecture-engineering.
Research into deep learning architectures has exploded in
recent years and has matured into a few core principles and
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building blocks e.g convolution layer for local data, recurrent
layer for sequential data, and attention layer for set data.

As a goal, the task of explicitly learning a good repre-
sentation in comparison to implicitly learning a good repre-
sentation to optimise performance for a task, can be tricky.
Firstly, it is not entirely clear what makes a good repre-
sentation. Based on the analysis by Bengio, Courville, and
Vincent [9], a good representation has the properties of local
smoothness of input and representation, is temporally and
spatially coherent in a sequence of observations, has multi-
ple, hierarchically-organised explanatory factors which are
shared across tasks, has simple dependencies among factors
and is sparsely activated for a specific input.

From these criteria the field of Representation Learning,
especially in the Deep Learning circle, has itself developed a
number of core principals used to learn a good representation
and these are:

• Distributed: Representations that are expressive and
can represent an exponential amount of configuration
for their size. This is in contrast with other types of
representations such as one-hot encoding, learned by
many clustering algorithms;

• Abstraction and Invariant: Good representations can
capture more abstract concepts that are invariant to
small and local changes in input data;

• Disentangled representation:While a good representa-
tion should capture as many factors and discard as little
data as possible, each factor should be as disentangled as
possible. Aside from promoting feature re-use in learn-
ing systems, it can also be beneficial for other purposes
such as explainability.

While distributed representation and abstraction can be
achieved to some degree through deep network architec-
tures, invariant and disentangled representations are harder
to achieve and are usually implicitly learned with the task.
A family of methods collectively calledContrastive Learning
offers a simple method to encode these properties within a
learned representation.

In this paper, we formulate and discuss a Contrastive
Representation Learning (CRL) framework, which poten-
tially represents another paradigm shift from architecture-
engineering to data-engineering.
Even though contrastive learning has become prominent

in recent years due to the success of large pre-trained mod-
els in the fields of natural language processing (NLP) and
computer vision (CV), the seminal idea dates back at least
to the 1990s [8], [11]. Furthermore, the development into its
current form has spanned over multiple sub-fields and appli-
cation domains, which canmake understanding it challenging
although the core intuition behind its operation has remained
unchanged. In addition, due to the recent successes of con-
trastive learning in instance discrimination self-supervised
learning, it is often incorrectly regarded merely as another
self-supervised learning technique, which does not do justice
to the generality of contrastive methods.

With the recent surge in interest in Contrastive Learning
methods, there is much published work associated with con-
trastive learning but without a proper framework to analyse
this work, it can be hard to understand the novelties and
trade-offs of new methods. This paper proposes a simple
yet powerful framework that can be used to categorise and
explain in simple terms, the progress in this sub-field, rang-
ing from supervised to self-supervised methods, in multiple
application and input domains including images, videos, text
and audio and their combinations. To the best of our knowl-
edge, this is the first paper to survey the specific history and
recent development of the contrastive approach in a wide
range of domains.

In summary, these are the contributions of this paper:
• We propose a simple framework to understand and
explain the workings of contrastive representation
learning;

• We provide a comprehensive survey of its history and
development, and a taxonomy for each of the frame-
work components as well as a summary of conceptual
advancements spanning over many sub-fields;

• We study and make connections between the contrastive
approach and various other methods;

• We present the application of contrastive learning in
various application domains and tasks;

• We analyse the current limits and discuss future research
directions.

The rest of the paper is organised as follows. In the next
section, we present an introduction and an overview of what
contrastive learning is with an emphasis on contrastive learn-
ing of representations. That is followed by a taxonomy of how
we see contrastive learning starting with a formal framework
description and then presenting various ways in which the
field can be divided based on similarity, encoders, transform
heads and loss functions. Section IV then presents a variety
of data domains and problem topics to which contrastive
learning has been applied, covering applications in language,
vision, audio, graph-structured data, multi-modal data and
other areas. We then present a discussion of several topical
issues with an emphasis on future outlook, and a concluding
section completes the paper.

II. WHAT IS CONTRASTIVE LEARNING ?
We now present an overview of different representation learn-
ing approaches and an intuitive introduction to contrastive
learning with a concrete example of the Instance Discrimina-
tion task in learning self-supervised visual representations.

A. REPRESENTATION LEARNING
1) GENERATIVE AND DISCRIMINATIVE MODELS
In the machine learning literature, approaches to learning
representations of data are often divided into two main cat-
egories: generative or discriminative modelling. The process
of extracting representations, or inferring latent variables
from a probabilistic view of a dataset, is often called
inference. While both approaches assume that a good
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representation will capture the underlying factors that explain
variations in the data x, they differ in the process of learning
these representations. Generative approaches learn represen-
tations by modelling the data distribution p(x), for example:
all the pixels in an image. It is based on the assumption that
a good model p(x) that can generate realistic data samples,
must also in turn capture the underlying structure related
to the explanatory variables y. Evaluating the conditional
distribution p(y|x) for some discriminative tasks on variable
y can then be obtained by using Bayes’ rule.

Discriminative approaches to learning representations on
the other hand learn a representation by directly modelling
the conditional distribution p(y|x) with a parametrised model
that takes as input the data sample x and outputs the label
variable y. Discriminative modeling consists of an inference
step that infers the values of the latent variables p(v|x),
and then directly makes downstream decisions from those
inferred variables p(y|v).
Discriminative models have some advantages when com-

pared to generative models. Modelling the distribution for
the set of data x ∈ X is computationally expensive and is
not necessary in order to extract representations. If the goal
is only to learn a mapping to a lower dimension represen-
tation, the generation process in a generative model can be
considered wasteful. In addition, the task of learning a good
decoder/generator can be entangled with the task of learning
a good feature encoder. The objective functions of generative
models are also more expensive to evaluate and harder to
design since they usually operate in the input space.

2) SUPERVISED AND UNSUPERVISED LEARNING
Until recently, the most successful applications of deep learn-
ing belonged to the class of supervised learning methods,
where a representation is directly learned by mapping from
the input to a human-generated label i.e. in training data pairs
(x, y), to optimise an objective function. Earlier paradigms
involving pre-training layer-wise unsupervised models pro-
vided little or no benefit in an end-to-end supervised setting.
As the performance of deep learning can scale upwards with
the amount of data and the model size [55], the need for
labelled data has been identified as an impeding factor in scal-
ing deep networks. Labelling data has its own set of disadvan-
tages such as being time-consuming and expensive, as well as
carrying privacy concerns when labelling is out-sourced to a
third-party, for example in medical data, as well as potentially
injecting annotators’ biases through the labelling process.

Previously, most unsupervised representation learning
methods belong to the class of generative models [32], [58].
While generative models provide a general objective to learn
a low-dimensional representation, they are computationally
expensive and are also limited by the ability to model the
dependencies between input dimensions.

Until recently, most discriminative approaches to learning
representations are a type of supervised learning. Some newer
works under the term ‘‘self-supervised’’ learning aim to learn
useful representations without labels using discriminative

modelling approaches. These methods have shown great suc-
cess when used for transfer learning, surpassing supervised
pre-trained models in multiple downstream tasks, in both
computer vision and natural language processing applica-
tions. Since a self-supervised discriminative model does not
have labels corresponding to the inputs like its supervised
counterparts, the success of self-supervised methods comes
from the elegant design of the pretext tasks to generate a
pseudo-label ŷ from part of the input data itself [26], [118].
Among the most successful of the recent self-supervised

approaches to learning visual representations, a subset of
these termed ‘‘contrastive’’ learning methods have achieved
the most success.

3) OBJECTIVE AND EVALUATION OF REPRESENTATIONS
As distinct from supervised tasks where we can optimise for
the goal directly, there is no straightforward objective for
learning good representation that we can measure. A good
representation can be useful to improve the performance of
downstream tasks, but this objective requires prior knowledge
of the task we ultimately want to optimise for. In other cases,
where a lot of tasks share the same input data (e.g image
classification / detection / segmentation), we can argue that
a good representation captures the inherent properties of the
underlying data and should be shared across those tasks.
However the representations for these tasks can sometimes
be in conflict, especially when the capacity of the model is
not enough, and there is a trade-off between performance in
one task and generalisability across multiple tasks.

In some other cases where a representation is learned
through a proxy task, the performance of the proxy task can
also be a proxy performance measure for the representation,
such as a generative model measuring the reconstruction
error, fidelity and diversity of generated samples. This is
the case for contrastive representation learning, where the
quality of the representation is approximated by how well the
representation separates similar and dissimilar samples.

Moreover, sometimes learning a good representation can
be an effective way to study the inherent characteristics of the
data itself, without the need to perform any particular task.

B. CONTRASTIVE REPRESENTATION LEARNING
Intuitively, contrastive representation learning can be consid-
ered as learning by comparing. Unlike a discriminative model
that learns a mapping to some (pseudo-)labels and a gener-
ative model that reconstructs input samples, in contrastive
learning a representation is learned by comparing among the
input samples. Instead of learning a signal from individual
data samples one at a time, contrastive learning learns by
comparing among different samples. The comparison can be
performed between positive pairs of ‘‘similar’’ inputs and
negative pairs of ‘‘dissimilar’’ inputs.

Unlike supervised methods where a human annotation
y is needed for every input sample x, contrastive learning
approaches only need to define the similarity distribution in
order to sample a positive input x+ ∼ p+(·|x), and a data

VOLUME 8, 2020 193909



P. H. Le-Khac et al.: CRL: A Framework and Review

distribution for a negative input x− ∼ p−(·|x), with respect
to an input sample x. The goal of contrastive learning is very
simple: the representation of ‘‘similar’’ samples should be
mapped close together, while that of ‘‘dissimilar’’ samples
should be further away in the embedding space. Thus by con-
trasting between samples of positive and samples of negative
pairs, representations of positive pairs will be pulled together
while representations of negative pairs are pushed far apart.

In the self-supervised setting, instead of deriving a
pseudo-label from the pretext task, contrastive learning meth-
ods learn a discriminative model on multiple input pairs,
according to some notion of similarity. Similar to other
self-supervised pretext tasks, this definition of similarity can
be defined from the data itself, and thus can overcome a
limitation encountered in supervised learning settings where
only a finite number of label pairs are available from the
data. While some self-supervised methods need to modify
the model architecture during learning (such as in [118]),
contrastive methods are much simpler where no modification
to the model architecture is needed between training and
fine-tuning to other tasks.

If additional labels are provided, these can also be inte-
grated into the definition of similarity and dissimilarity of
the contrastive framework as well. By defining the similarity
and dissimilarity distribution on the dataset level instead of
individual data samples, contrastive methods alleviate the
need for a labelled dataset while providing a mechanism
to specify the desired invariant / covariant properties of the
learned mapping. Thus contrastive learning methods provide
a simple yet powerful approach to learning representations in
a discriminative manner in both supervised or self-supervised
setups.

FIGURE 1. Contrastive learning in the Generative-Discriminative and
Supervised-Unsupervised spectrum. Contrastive methods belong to the
group of discriminative models that predict a pseudo-label of similarity
or dissimilarity given a pair of inputs.

Figure 1 illustrates the family of contrastive methods along
generative-discriminative and supervised-unsupervised axes.

C. EXAMPLE: INSTANCE DISCRIMINATION
Along the lines of an exemplar-based classification task [26],
which treats each image as its own class, Instance Dis-
crimination [110] is a popular self-supervised method to

learn a visual representation and has succeeded in learn-
ing useful representations that achieve state-of-the-art results
in transfer learning for some downstream computer vision
tasks [43], [69]. Based on the simple formulation proposed
in SimCLR [16], in this section we will describe the Instance
Discrimination task as a simple form of contrastive learning,
as illustrated in Figure 2.

FIGURE 2. Contrastive learning in the Instance Discrimination pretext
task for self-supervised visual representation learning. A positive pair is
created from two randomly augmented views of the same image, while
negative pairs are created from views of two different images. All views
are encoded by the a shared encoder and projection heads before the
representations are evaluated by the contrastive loss function.

The image-based instance discrimination pretext task
learns a representation by maximising agreement of the
encoded features (embeddings) between two differently aug-
mented views of the same images, while simultaneously
minimising the agreement between views generated from
different images. To avoid the model maximising agreement
through low-level visual cues, views from the same images
are generated through a series of strong image augmentation
methods.
• Let T be the set of image transformation operations
where t, t ′ ∼ T are two different transformation opera-
tors independently sampled from T . These transforma-
tions could be random cropping and resizing, blur, color
distortion or perspective distortion, etc. A (xq, xk ) pair
of query and key views is positive when these two views
are created by applying different transformations on the
same image x: xq = t(x) and xk = t ′(x), and is negative
otherwise.

• A feature encoder e(·) then extracts the feature vec-
tors from all the augmented data samples v = e(x).
There is no restriction on the choice of the encoder but
a ResNet [42] model is usually used for image data
because of its simplicity. The representation v ∈ Rd in
this case is the output of the average pooling layer of
Resnet.

• Each representation v is then fed into a projection head
h(·) comprised of a small multi-layer perceptron (MLP)
to obtain a metric embedding z = h(v), where z ∈ Rd ′
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with d ′ < d is in a lower dimensional space than
the representation v. This projection head can be as
simple as a one-layer MLP using a non-linear activation
function. All the vectors are then normalised to be unit
vectors.

• A batch of these metric embedding pairs {(zi, z′i)}, with
(zi, z′i) represents the metric embeddings from two aug-
mented versions (xq, xk ) of the same image, are then fed
into the contrastive loss function which encourages the
distance in the metric embedding of the same pair to
be small, and the distances of embeddings from differ-
ent pairs to be large. The non-parametric classification
loss [110] and its variants, such as InfoNCE [77] and
NT-Xent [16] is a popular choice for the contrastive
loss function, which for the i-th pair has the general
form:

Li = −log
exp(z>i z

′
i/τ )∑K

j=0 exp(zi · z
′
j)/τ )

(1)

where z>z′ is the dot product between two vectors and
τ is a temperature hyper-parameter that controls the
sensitivity of the product. The sum in the denominator
is computed over one positive and K negative pairs in
the same minibatch. Intuitively, this can be understood
as a non-parametric version of (K + 1)-way softmax
classification [110] of zi to the corresponding z′i.

In order to minimise the InfoNCE loss function in Eq. (1),
the dot product in the numerator measuring the similar-
ity of representation from the same pair is maximised,
while the similarity of all negative pairs in the denominator,
is minimised.

When the contrastive training phase is done, the projection
head is discarded and the encoder is used as the feature
extractor for transfer learning. By combining the predictor or
classifier with the representation output of the encoder, they
can be fine-tuned on a new task on a target dataset.

Contrastive methods in the instance discrimination task
set out to learn a representation that can separate between
different instances, while ignoring the meaningless variances
introduced by image data augmentation. Because contrastive
learning directly maximises similarity between representa-
tions of positive similar pairs and minimises that of nega-
tive pairs, how those pairs are generated directly determines
the invariant properties in the learned representation. The
most important components for the success of contrastive
pre-training on ImageNet [23] is data augmentation methods.
As analysed in SimCLR [16], many contrastive methods per-
form very poorly without proper augmentations (i.e random
crop and color distortion) even for the same set of architec-
tures and losses.

The dataset, data transformations and instance-wise simi-
larity definition combined together in the contrastive learning
framework provide a scalable and accessible approach to
specifying invariant and covariant properties in the learned
representation.

III. A TAXONOMY FOR CONTRASTIVE LEARNING
Before we present our taxonomy for contrastive learning
methods, we first formally describe the contrastive represen-
tation learning (CRL) framework in Section III-A. In partic-
ular, the CRL is a general framework that can be used to
succinctly describe a variety of contrastive learning meth-
ods ranging from self-supervised to supervised and covering
images, videos, audio, text and more. We use this frame-
work to introduce a comprehensive taxonomy for the com-
ponents of contrastive methods in Sections III-B, III-C, III-D
and III-E.

FIGURE 3. Overview of the Contrastive Representation Learning
framework. Its components are: a similarity and dissimilarity distribution
to sample positive and negative keys for a query, one or more encoders
and transform heads for each data modality and a contrastive loss
function evaluate a batch of positive and negative pairs.

A. THE CONTRASTIVE REPRESENTATION LEARNING
FRAMEWORK
The general CRL framework, illustrated in Fig. 3 builds on
top of the work of Chen et al. [16], which describes a simple
contrastive self-supervised framework to learn visual repre-
sentations in the context of an Instance Discrimination task
(see Section II-C). As distinct from [16], we generalise this
framework beyond the image Instance Discrimination task to
cover learning representations in a variety of data domains
(images, video, audio and text), learning setups (supervised,
self-supervised or knowledge distillation) and ways to define
the concept of similarity. Specific choices of the similarity
distribution, encoders and heads as well as contrastive loss
functions allows the CRL framework to encompass arbitrary
contrastive learning methods. More importantly, it enables a
clear understanding of most of the contemporary work and
sheds light on the limitations and the promising directions
ahead.

In the following and throughout the rest of the paper,
we adopt the metaphor of query and key similar to [43],
by considering the problem of similarity matching as a form
of dictionary look-up.
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We will use the symbols q and k to represent the query
and key for either the input sample x, the representation v
or the metric embedding z depending on context. When we
need to be specific, the corresponding symbols x, v, z with
superscript ·q, ·k for query and key will be used.
Definition 1 (Query, Key): Query and key refer to a par-

ticular view of an input sample x ∈ X . Together they form
a positive or negative pair (q,k) depending on whether the
query and key are considered similar or not.

In the Instance Discrimination task, query and key views
are a randomly transformed version of an image t(x) in the
data set X .
Definition 2 (Similarity Distribution): A similarity distri-

bution p+(q,k+) is a joint distribution over a pair of input
samples that formalises the notion of similarity (and dis-
similarity) in the contrastive learning task. Distinct from
other machine learning methods where the data distribution
is defined over a single input sample p(x), the similarity
required by contrastive methods takes input from the joint
distributions of pairs of samples p(q,k).
A key is considered positive k+ for a query q if it is

sampled from this similarity distribution and is considered
negative k− if it is sampled from the dissimilarity distribution
p−(q,k−). In some tasks, the dissimilar data distribution
may not be explicitly defined but implicitly given as the
distribution of any pair that is not sampled from the similarity
distribution.

Similar to other representation learning problems,
the focus of contrastive learning is in learning from a high-
dimensional input space X , which depends on the domain
and can be a tensor representing audios, images, videos or
texts.

Combining the data distribution p(x), the definition of
similarity p+(q,k) and dissimilarity p−(q,k−), different
properties of the learned representation can be specified,
as illustrated in Figure 4.
In practice, queries and keys are not necessarily sampled

jointly but the query can be sampled first from the data dis-
tribution q ∼ p(x) where then the corresponding positive and
negative keys are sampled from the conditional distributions
k+ ∼ p+(·|q) and k− ∼ p−(·|q).

In the Instance Discrimination task, the similarity distribu-
tion is defined over any pair that are transformed from the
same input samples q,k ∼ p+(·, ·) if q = t(x) and k = t ′(x)
for 2 different random transformations t and t ′ ∈ T .
Definition 3 (Model): We refer to the combination of all

modules with parameters in a contrastive learning method as
themodel f (x; θ ) : X → R|Z| and its parameters collectively
as θ .

The model can be decomposed further into a base encoder
and a transform head.
Definition 4 (Encoder): The features encoder e(x; θe) :

X → V with parameters θe learns a mapping from the
input views x ∈ X to a representation vector v ∈ Rd .
This network (when trained via contrastive learning) can be
used to generate features (or inputs) to leverage the learned

FIGURE 4. An intuitive diagram represents the learning signal captured
by the contrastive loss through the query, positive and negative keys.
Contrastive methods allow the desired invariances to be specified
through the similarity and dissimilarity distributions. Each circle
represents the information signal contained in each view. The signal that
is not mutual between query and positive keys are invariant features,
since their representations are made as similar as possible. The signal
that is not mutual between the negative key and the query or positive
keys are covariant features, since these representations must be able to
distinguish between those to minimise similarity to the negative key.

representations in other tasks (e.g. as input when learning
another model for an image classification task), or to have
layers stacked on top (e.g. fully connected, softmax) where
the network can be fine-tuned to the new task.
Definition 5 (Transform Head): Transform heads h(v;

θh) : V → Z parameterised by θh, are modules that transform
the feature embedding v ∈ V into a metric embedding
z ∈ Rd ′ .
Depending on the specific application, the transform

heads can be used to aggregate information from multi-
ple representation vectors or used to project it down to a
lower-dimensional space before the contrastive loss.
Definition 6 (Contrastive Loss): A contrastive loss func-

tion operates on a set of metric embedding pairs {(z, z+),
(z, z−)} of the query, positive and negative keys. It measures
the similarity (or distance) between the embeddings and
enforces constraints such that the similarity of positive pairs
are high and the similarity of negative pairs are low. To attain
small distances between the embeddings of positive pairs
in the metric space, representations will become invariant
to irrelevant differences in the input space of positive pairs,
while simultaneously learning the covariant representation
between negative pairs to explain for the large distance in the
metric space.

B. A TAXONOMY OF SIMILARITY
Contrastive Learning revolves around learning a mapping
from different views of the same scene, or context into the
same region of a representation space, which is formalised
through the similarity distribution. The key to an effective
contrastive learning task is to design the similarity distribu-
tion such that positive pairs are very different in the input
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space yet semantically related, and a dissimilarity distribu-
tion such that negative pairs are similar in the input space
but semantically different. Despite the recent popularity of
self-supervised contrastive learning, contrastive learning in
general is agnostic to the supervised / unsupervised paradigm.
Depending on whether any human labels y are used in defin-
ing those joint distribution (e.g. k ∼ p(·|q, y), themethod then
becomes a supervised or self-supervised contrastive learning
task.

Depending on the end goals there can be many notions
of similarity and dissimilarity, which is a strong point of
contrastive methods, but it also makes it difficult to provide
a taxonomy that captures all these variations. However, there
are some general principles that are usually the underlying
assumptions behind how similarity and dissimilarity is con-
structed, which we now examine.

FIGURE 5. Illustration of learning similarity between multiple modalities.
Each modality has an encoder and the representations extracted by
different encoders are contrasted with each other to learn a joint
embedding space.

1) MULTISENSORY SIGNALS
One direct approach to have multiple views of the same
context is to record the information with multiple sensors.
These sensors can be of the same modality (e.g. two cam-
eras recording the same scene from different angles), or of
different modalities (e.g. audio and image from a video),
as illustrated in Fig. 5. Using the natural correspondence
between different sensors, the model can learn to be invariant
to the low-level details in each sensor input and focus on
representing the shared context between them.

Contrastive methods have been used to learn cross-modal
representations of visual and textual data in [50], [96]. In the
Time-Contrastive Network [91], a visual representation is
learned by pulling the representation of two simultaneous
views from different cameras of the same scene, while push-
ing apart frames taken from far away in time but from the same
video. This leads to a representation space that is invariant to
viewpoints while being sensitive to changes in time.

2) DATA TRANSFORMATION
If synchronous data from multiple sensors is not available
(e.g. a single-modality dataset like ImageNet), the most sim-
ple yet effective approach to generating different views of the
same scene is to use a hand-crafted transformation function
operating on the input data domain. Designing and imple-
menting such semantic-preserving transformations requires
prior knowledge, but this knowledge is defined once for the
entire dataset or data collection pipeline, and can be dynami-
cally applied to individual samples at run time.

FIGURE 6. Illustration of some common image augmentation methods.
Different views from a random set of augmentations of the same images
are usually considered positive pairs.

For visual data, image augmentation methods such as
lighting or color distortion, cropping and padding, adding
noise and blur, rotation and perspective transform etc. are
efficient methods to transform pixels while preserving the
semantic meaning of an image’s content such as its class
labels. An example of these data transformations techniques
on image can be seen in Fig. 6. Destroying low-level visual
cues by image augmentation forces the contrastive method
to learn a representation invariant to those changes in the
inputs. These techniques have been widely used in supervised
learning to learn invariant features and to increase the robust-
ness of the resulting models. The recent wave of instance dis-
crimination contrastive methods have demonstrated that the
same representation can be learned from these augmentation
techniques without the need for a class label [16], [43], [69],
[110], [117].

For natural language text data, Fang et al. [29] transform a
sentence using a back-translation method to create a slightly
different sentence that has the same semantic meaning as the
original one to form a positive pair. Back-translation uses
two machine translation models to translate a sentence into a
target language and back to the source language. The random-
ness from the two translation models will yield a sentence in
the source language that is slightly different from the original
sentence.

For program code data, ContraCode [51] uses various
source-to-source transformation methods from the com-
piler literature such as variable renaming, identifier man-
gling, reformatting, beautification, compression, dead-code
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insertion / elimination, etc. to construct semantically similar
code snippets that share the same functionality. Learning
to map these textually different but functionally equivalent
programs to the same feature vector allows the model to learn
a function representation space that is predictive of equivalent
programs.

For audio data, some augmentation methods such as warp-
ing, frequency and temporal masking in the Mel spectrogram
format could be used to create different version of the same
audio data, as in [73].

3) CONTEXT-INSTANCE RELATIONSHIP
Another approach to extracting similar views of the same
scene is by exploiting the context-instance relationship from
a sample representation. Generally, we want to learn a rep-
resentation that captures the entire context, i.e the global
information about a scene. That context can usually be
decomposed further into parts, each containing a subset of
the scene’s information that is local to each subset.

Explicitly constraining the representation of the parts
(local features) to be similar to the representation of the
whole (global features), while being different from the rep-
resentation of other views is a clever approach to defining
similarity. Contrasting between the representation of local
features versus global features can encourage the model to
learn important features that present in the local views, while
ignoring noise features which occur only in those local inputs.
Representation from local features is thus encouraged to
capturemeaningful information relevant to thewhole context,
while global features are encouraged to capture as much
detail from the local instances as possible.

FIGURE 7. Illustration of extracting query and keys using the
context-instance relationship. In a), the context is a global summary
vector of the entire image, while the instances are the local features in
the set of intermediate feature maps. In b), the past context is aggregated
with a RNN contextualisation head and the instance are representations
of future time steps.

Figure 7a describes the approach taken in Deep InfoMax
(DIM) [46], where an image is encoded into a global feature
vector and also into a feature map corresponding to spatial
patches of pixels in the original image. The global feature

and local features in the feature map of the same images then
form positive pairs, while global features with local features
from other images are considered negative pairs.

Global features can also be constructed from videos in the
temporal dimension, as in Fig. 7b. In Contrastive Predictive
Coding (CPC) [77], context features are constructed as a
summary of past input segments, and then contrasted with
local features from a future time step. Contrastive learning to
predict the correct future from the past context in this way
can be thought of as an instantiation of the predictive coding
theory.

4) SEQUENTIAL COHERENCE AND CONSISTENCY
In addition to the context-instance feature relationship,
exploiting the spatial or temporal coherence and consistency
in a sequence of observations is another approach to defining
similarity in contrastive learning. This method works for a
data domain that can be decomposed into a sequence of
smaller units, such as an image into a sequence of pixels, or a
video into a sequence of frames, etc. The representation of
continuous views in a sequence is considered as a positive pair
while discontinuous and far away pairs in the same sequence
or different sequences are considered negative pairs. This
approach uses the slowness assumptions in representation
learning, which states that important features are the ones that
change slowly over a sequence of observations. Therefore,
by learning invariant, slowly changing features in a sequence,
a model will learn to extract the most important features in the
data, illustrated in Fig. 8.

FIGURE 8. Illustration of sampling query and keys using the sequential
coherence property of video data. The positive keys are defined as frames
inside a small window surrounding the query frame. The negative keys
are frames from the same video but are far away in time to the query.

Rather than using simultaneous videos with multiple view-
points as in Time-Contrastive Network (TCN) [27], [91] uses
amulti-frame TCN that exploits the temporal coherence prop-
erty of video and applies contrastive learning on a sequence
of frames, where frames inside a time-window are positive to
each other, and pairs from with a frame outside the window
are considered negative.

In addition to the hand-crafted transformations described
in Section III-B2, the temporal coherence of video frames
can also provide a natural source of data transformations. In a
video, an object can undergo a series of transformations such
as object deformation, occlusion, changes in viewpoint and
lighting. These methods have been used in [82], [106] to learn
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representations of objects from videos without any additional
labels.

5) NATURAL CLUSTERING
Clustering is the process of finding high-level semantics for
groups of instances features according to some distance mea-
sure in the embedding space. Natural clustering refers to the
assumption that different objects are naturally associated with
different categorical variables, where each category occupies
a separate manifold in a representation space. The distance
between different clusters loosely represents the similarity
between categories. This assumption is consistent with how
humans naturally categorise and name different groups of
objects, and is an important assumption in unsupervised
learning, manifesting itself in various clustering algorithms
such as K-Nearest neighbors. Semantic class labels in clas-
sification problems are also an instance of this assumption
where the number of clusters and the names for these clusters
are given by human annotators. Each cluster represents a
high-level semantic concept and together the set of clusters
provide overall structure to the data manifold.

Contrastive learning induces a metric in the embedding
space where positive pairs have smaller distances between
them and negative pairs have large distance, based on a
semantic definition of similarity. In contrast to cluster-
ing methods which enforce the cluster assumption in a
top-down fashion, contrastive methods enforce local smooth-
ness between positive pairs thus organising the embedding
manifold from the bottom up. Since contrastive learning and
clustering methods essentially encode the same assumption
but from different directions, the combination of contrastive
methods from bottom-up and clustering approaches from
top-down are a promising approach which complement each
other’s advantages. Figure 9 demonstrates this idea of com-
bining contrastive learning with clustering methods.

FIGURE 9. Illustration of contrastive methods on clusters. In addition to
individual sample’s vector, there can also have cluster prototypes with
different levels of granularity. Contrastive loss can operate on both the
sample and cluster level.

Many different methods have tried to use contrastive
methods to learn invariant properties while supplementing

higher-level semantic information to the contrastive frame-
work using clustering methods, such as Prototypical Con-
trastive Learning (PCL) [63], or Swapping Assignment
between multiple views (SwAV) [14]. In [56], the class labels
for a supervised learning task are provided as cluster infor-
mation to improve on the traditional self-supervised instance
discrimination task.

C. A TAXONOMY OF ENCODERS
In contrastive representation learning, a learned mapping
from inputs to the embedding space needs to satisfy two
purposes: mapping to a general and powerful representation
of the input data, and an efficient and effective embedding
that allows measurement of the distances between samples.
We divide the model in our contrastive representation learn-
ing framework into two components based on recognising
the purpose and functionality of each component i.e. the base
encoder and transformation head. The purpose of the encoder
is to learn a good mapping from inputs to a general repre-
sentation space, while the transform heads, depending on the
specific choice of similarity, will transform one or multiple
representations to a metric embedding for computing a simi-
larity metric. In practice there may be no distinction between
the base encoder and the head from a technical point of view
as they are just layers of a deep network, stacked on top of
each other and jointly optimised through back-propagation
with gradient descent but they are functionally distinct, hence
the separation.

In this sub-section we focus on a taxonomy of the base
encoders. While contrastive learning is general and not
restricted to any particular form of encoder, some specific
types of encoder and the interactions among them will enable
different behaviours for the downstream transform heads
and contrastive loss. For each data modality, an appropri-
ate encoder architecture is chosen, so the taxonomy for
the encoder will be based on how they are updated with
respect to the gradient from the contrastive loss during
training.

1) END-TO-END ENCODERS
End-to-end encoders represent the most simple method
both conceptually and technically, where the encoders for
the queries and keys are updated directly using gradients
back-propagated with respect to the contrastive loss function.
Since all encoders are updated end-to-end, this can impose a
significant requirement on memory. Therefore if the query
and keys are of the same data modality, their respective
encoders are usually shared with each other so only one
copy of the encoder needs to be stored in memory. This
way, both the representation for the queries and keys can
be efficiently batch-computed in one single forward pass.
However, encoding both the queries and keys end-to-end still
requires storing the hidden activations and representation on a
Graphical Processing Unit’s VideoMemory (GPU’s VRAM),
which will limit the batch size for calculating the contrastive
loss.
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2) ONLINE-OFFLINE ENCODERS
The online-offline encoders approach alleviates the memory
requirement of end-to-end encoders for storing all the queries
and keys in a GPU’s memory by using an additional offline
encoder, which is not updated online by gradient descend
directly but updated offline from the online network. In this
way, the feature vectors and the hidden activations computed
by the offline encoder are not stored on the VRAM. Therefore
with this approach, contrastive methods can scale up the
number of positive and negative pair comparisons in a batch,
independent of the GPU’s memory limit.

There are generally twoways to update the offline network,
either by using a past checkpoint or via a momentum-based
weighted average mechanism from the online encoder.
Wu et al. [110] decoupled the batch size from the number

of negative pairs by storing a detached copy of representa-
tions of the entire dataset into a separate memory bank. The
representations stored in this memory bank are later randomly
sampled to serve as the keys, while the queries are encoded by
the online network from two different transformations of the
same images. The representations computed from the online
encoder for the queries are then stored in the memory bank
to be used as the keys for the next epoch. This approach
effectively uses an online encoder’s checkpoint from the
previous epoch as the offline encoder for negative keys in the
current epoch, with a memory mechanism to avoid redundant
computation.
Momentum Contrast (MoCo) [43] further reduces the need

to store an offline representation of the entire dataset in
the memory bank through the use of a dynamic memory
queue. The offline momentum encoder is a copy of the online
encoder, with parameters being an exponentially-weighted
average of that of the online encoder. At every iteration,
the latest batch of feature vectors from the momentum
encoder are pushed to the memory queue while the oldest
batch of features are discarded from the queue. The momen-
tum queue therefore retains a more consistent set of negative
keys to the queries and keys encoded online, compared to the
memory bank’s feature vectors which are only updated once
per epoch.

3) PRE-TRAINED ENCODERS
Another case of not having to keep an encoder in the GPU’s
memory is when an encoder is already pre-trained and does
not need to be updated at all. This usually happens in
cross-modal learning or in a knowledge distillation setting,
where contrastive methods are used to learn a mapping to the
same representation space of another encoder. This approach
decouples the task of learning representation for each modal-
ity and can simplify the learning task of each encoder while
still leveraging the information shared from different data
modalities.

In [96], Sun et. al. used a pre-trainedBidirectional Encoder
Representations from Transformers (BERT) [24] to process
discrete automatic speech recognition tokens, while training

a separate video BERT model to process continuous video
features.

In a knowledge distillation setting, a large pre-trained
‘‘teacher’’ network with frozen weights is used to encode
the keys, while a smaller ‘‘student’’ network tries to match
the query representation to positive keys from the teacher
network. This is a special case where even though the query
and key are of the same modality, they are encoded using
different encoders. Contrastive Representation Distillation
(CDR) [100] uses a large, pre-trained teacher network as the
encoder for both the positive and negative keys, while the
queries are encoded by a small network learned to match the
representation of the teacher network.

D. A TAXONOMY OF TRANSFORM HEADS
The distinction between the base encoder and the transform
heads is to separate the ultimate goals of learning a good
representation from that of learning an embedding that is
efficient and effective for computing and maximising the
similarity metric. Entangling the main task of learning a
representation and the pretext task of learning a similarity
metric can leads to unwanted results, such as by only focus-
ing on maximising the similarity between positive samples,
the representation is forced to discard potentially useful infor-
mation. The introduction of an explicit transform head above
encoders is a recent development in contrastive representation
learning. Prior to the introduction of the transform heads,
manymethods trained a standard encoder and then performed
a comparison of which layers are best suited to use as rep-
resentation for transfer learning to some downstream tasks.
The result was that for most tasks, one of the hidden layers
gave the best performance when using as a representation for
transfer learning or fine-tuning with a downstream classifier.

With the separation from the base encoder and transform
heads, it is now also possible to train the same representation
from the base encoder with multiple transform heads for
different contrastive objectives.

Depending on the specific choice of data similarity (see
Section III-B) and its purpose, we categorise transform heads
into three types namely projection, contextualisation and
quantisation heads which we now describe in turn.

1) PROJECTION HEADS
While the representations (the output of encoders) are of
a lower dimensionality to the input dimensions, it can still
take a relatively large computational effort to measure the
similarity distance between representations. The simplest
type of transformation serves as a bridge between different
vector spaces. These projections can be a simple linear trans-
formation or a non-linear MLP. With the projection head,
the dimensionality for the representation v can be larger than
the dimensionality of the metric embedding z, so that more
information can be retained in the representation while also
allowing for efficient computation of the similarity metric in
the space of Z .
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The early contrastive methods that report transfer learning
results from the best hidden layers are effectively using the
base of the network as a feature encoder and the top of the
network as the non-linear projection head. In more recent
work, [117] explicitly uses a linear and [16] uses a non-linear
2-layer MLP as the projection head after the base encoder.

Instead of projecting the representation of the query and
key encoders to a common metric space, a transformation
head can also be used to bridge directly from onemetric space
to another. In [34], in addition to a projection head from rep-
resentation space to metric space, an additional ‘‘prediction’’
network projects the metric embedding of an online network
to the the metric embedding of an offline encoder.

2) CONTEXTUALISATION HEADS
In some settings, the projection heads can be more elaborate
than just simply projecting the representation down to a lower
dimension. For the task that defines similarity based on the
context-instance relationship (Section III-B3), a special kind
of transform head is needed to aggregate multiple feature
vectors into a contextualised embedding.

In Contrastive Predictive Coding (CPC) [77] where
similarity is defined from the past-present relationship,
a GRU [19] head is applied over previous time steps to
aggregate the past information into a contextualised embed-
ding. This is equivalent to an ordered autoregressive head
that forces the head to learn generalisable features that are
informative when predicting the correct future separate from
the incorrect future.

In Deep InfoMax (DIM) [46], where global features are
compared with local information in the feature maps, con-
volution layers with pooling are used to aggregate the fea-
ture maps into one single global vector. Similar to DIM,
in InfoGraph [97] where contrastive learning is applied on
a graph network, a transform function summarises all the
patch representations into a single fixed length graph-level
representation.

As distinct from the projection head where the representa-
tion is only projected down, the contextualised metric embed-
ding z serves a different function and holds different kinds of
information. Depending on the downstream task where the
contextual information is helpful or not, the contextualised
embedding z can actually be used instead of, or in conjunction
with, the representation embedding v.

3) QUANTISATION HEADS
While a contextualisation head aggregates multiple represen-
tations together, a quantisation head is the opposite in that it
reduces the complexity of the representation space by map-
ping multiple representations into the same representation.

For example, wav2vec 2.0 [7] uses a Gumbel-softmax [52]
quantisation head to map the continuous audio signal into a
discrete set of latent vectors (i.e ‘‘code book’’).

In methods that combine contrastive learning with cluster-
ing approaches such as SwAV [14], a Sinkhorn-Knopp algo-
rithm [22] is used as a quantisation head in order to map

a representation of individual samples into a soft cluster
assignment vector.

E. A TAXONOMY OF CONTRASTIVE LOSS FUNCTIONS
Contrastive loss is one of the key differences between contra-
stive methods and other representation learning approaches.
The most prominent difference is that in the contrastive loss
formulation, the target can be dynamically defined in terms of
the metric embedding instead of having fixed targets. While
most discriminative models measure loss with respect to a
prediction label for example using class labels, and generative
models measure loss in the input space (e.g. reconstruction
loss), contrastive losses measure the distance, or similarity,
between embeddings in the latent space.

All forms of contrastive losses can be generally decom-
posed into two components: a scoring function that measures
the compatibility between two vectors and the actual form of
the loss that enforces minimisation and maximisation given a
set of query and key vectors.

Minimising the distance between samples is the ultimate
goal of any contrastive loss function. However naively min-
imising the distances between positive pairs can lead to a
catastrophic collapse, e.g. the distances between any pairs can
be reduced to zero by making the model f (·; θ ) constant with
respect to any input x. To prevent this collapse from happen-
ing, the contrastive loss function can explicitly use negative
pairs that are forced to have a large distance in the embedding
space, or we can implicitly employ other assumptions and
architecture constraints. For example, in some recent work
such as BYOL [34] or [28], negative pairs are not employed
explicitly, and here the authors do not refer to their method
as a ‘‘contrastive learning’’ approach. However, we consider
all methods that contrast between a query and positive keys
to learn similarity as contrastive learning methods, regardless
of whether explicit negative pairs or architectural constraints
are used to prevent the representation from collapsing.

Given the goal of optimising the distance or similarity
score, contrastive loss functions can generally be classified
based on their motivation and the specific form of how they
are formulated. Below we will discuss the different types of
scoring functions and then look at the three major forms of
contrastive loss functions.

1) SCORING FUNCTIONS
The scoring function measures compatibility between two
vectors either in terms of similarity or distance. Depending
on the specific loss function, for positive pairs either the sim-
ilarity score is maximised or the distancemetric is minimised.

For contrastive losses that operate on the distance notion,
usually a simple Manhattan or Euclidean distance (also
known as L1 and L2-norm distance) D(q,k) = ‖q− k‖2
is used. Distance-based scoring function are often used in
energy-based hinge loss functions (Section III-E2).

On the other hand, scoring functions can measure similar-
ity via a simple dot product S(q,k) = q>k between two vec-
tors. The range of similarity scores in this case is unbounded
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and dependent on both the orientation and magnitudes of
the vectors in the sub-space. Since similarity can be made
arbitrarily large by increasing the magnitude, one possible
solution is to include a normalisation term for the vector’s
magnitude ‖z‖2 in the final loss function, as is done in [110].
Another method to get rid of dependency on magnitude is
to use the cosine similarity, which is computed as the dot
product between two unit vectors S(q,k) = q>k

‖q‖‖k‖ . The
cosine similarity is bounded between -1 and 1 for anti-parallel
and parallel vectors respectively, and equal to 0 for orthogonal
vectors. This is most commonly used as a scoring function in
modern contrastive loss functions such as the NT-Xent loss in
SimCLR [16]. Another popular option to measure similarity
is the bi-linear model S(q,k) = q>Ak, in which the matrix
A is learned and can be considered as a linear projection from
the sub-space of q to sub-space of k, before the dot product
operation is performed. The original InfoNCE loss [77] uses
this bi-linear model as the scoring function.

In the extreme case, the scoring can also be a learned mod-
ule and be optimised together with the other modules during
training, similar to the discriminator network of a GAN [32].
Different from a GAN’s discriminator that evaluates one
sample at a time, the learned scoring function concatenates
multiple metric vectors together as input and measures the
correspondence between them. Though it might be thought
that a learnable module is better than a hand-crafted scor-
ing function, using a neural network as a scoring function
come with disadvantages. The learned discriminator takes up
computational resources that are potentially more helpful for
the feature encoder. Therefore, a powerful discriminator can
make up for poor representation extracted from an encoder
by focusing on learning a good discriminator for bad a repre-
sentation vector instead of learning a useful representation in
itself. The learned scoring functions are also often based on
the classification objective, whether the two inputs are com-
patible or not [3]. It does not provide an explicit measurement
of distance and similarity in the latent space, which many
downstream applications rely on. Therefore in this paper,
we mostly focus on methods that uses a contrastive loss with
relatively simple scoring functions.

2) ENERGY-BASED MARGIN LOSSES
Energy-based Models (EBM) [62] are a general class of
models that associate an energy (distance score) with each
configuration of the variables to be modelled (pairs of query
and keys vectors). Training an EBM involves associating
a low energy (small distance) to desired configurations of
the variable (positive pairs) and high energy to undesired
configurations of variables (negative pairs). Unlike a prop-
erly normalised probabilistic model, making the energy for
one particular configuration low does not necessarily make
energy for other configurations higher. That is why most
energy-based models must employ explicit negative compar-
isons in computing the total loss.

Motivated from EBM, Chopra, Hadsell, and LeCun [20]
first introduced and then reformulated in [39] the original
‘‘contrastive loss’’ that uses Euclidean distance D(q,k) =
‖q− k‖2 as the scoring function in the embedding space.
To avoid confusion with the general class of all contrastive
loss functions, we will refer to this as the ‘‘pair loss’’. The
pair loss operates on a pair of query and key, where dis-
tance between positive pairs is minimised while the distance
between negative pairs should be larger than a given margin,
and formally takes the form:

Lpair =

{
D(q,k)2, if k ∼ p+(·|q)
max(0,m− D(q,k)2), if k ∼ p−(·|q)

(2)

where the margin m > 0 acts as a radius around the query,
for which only negative keys k− within this radius are pushed
away from q and contribute to the total loss value.
While the pair loss only requires the distance of neg-

ative pairs to be larger than a fixed margin, the triplet
loss [15], [21], [108] enforces the relative distance between
positive and negative pairs given in a triplet of (query, positive
key, negative key):

L(q,k+,k−) = max(0,D(q,k+)2 − D(q,k−)2 + m) (3)

While conceptually simple and widely adopted in multiple
metric learning applications [49], [90], [105], the pair and
triplet losses usually suffer from slow convergence because
of the limited interactions between samples. In pair loss,
only one comparison to either a positive or negative key is
computed for a given query, while triplet loss simultaneously
compares the relative distance from a query to one positive
and negative key. Mining techniques to find ‘‘hard’’ negative
samples to avoid easy pairs that provide no substantial learn-
ing signal are essential components of these learning systems.
To increase the number of interactions for a query, methods
such as Lifted Embedding loss [75] and a generalised version
of it [45] improved on the margin formulation of triplet loss
to take into consideration multiple positive and negative keys
for a query within a batch.

3) PROBABILISTIC NCE-BASED LOSSES
A form of contrastive loss can also be motivated from
the probabilistic softmax classification problem. Consider
the traditional supervised parametric softmax classification
objective, the probability that a query is correctly recognised
as belonging to the i-th class among n classes is

p(i|q) =
exp(q>wi)∑n
j=1 exp(q>wj)

(4)

where wj is a vector specific to the class i in the data set.
This vectorw in the parametric formulation of softmax serves
as a class prototype and does not allow explicit comparison
between representations.

Motivated by this, a non-parametric version for the softmax
function that correctly identifies the positive for a given query
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from a set K and contains all negative keys with one positive
key can be defined as follows:

p(k+|q) =
exp(q>k+)∑
k∈K exp(q>k)

=
exp(q>k+)

Z (q)
(5)

with Z (q) as the normalising constant, or partition function
for a given query.

The learning objective is then to maximise the joint proba-
bility or equivalently to minimise the negative log-likelihood
over the training set:

L(q,K) = −logp(k+|q) (6)

The normalisation constant Z (q) in the denominator of
the non-parametric softmax in (5) is expensive to evalu-
ate because it needs to sum over all the negative keys in
the dataset for a given query. Noise Contrastive Estimation
(NCE) [37], [38] is an estimationmethod for an unnormalised
probabilistic model that avoids the need to evaluate the par-
tition function through a proxy binary classification task,
where the binary task is to discriminate between data samples
(positive keys) and the noise sample (negative keys).
Following the original NCE formulation and assuming a

uniform noise distribution of negative samples p−(·|q) =
1/n and that we sample noise negative keys m times more
frequently than the positive key, the posterior probability of
the pair (q,k) sampled from the positive distribution p+(·, ·)
(denoted by D = 1) is:

p(D = 1|q,k) =
p(k+|q)

p(k+|q)+ m · p(k−|q)
(7)

With p(D = 1|q,k) = 1
1+exp(S(q,k)) parametrised by

a sigmoid function with the similarity scoring function
S(q,k), the approximated NCE binary training objective then
becomes:

LNCE−binary(q,K) = −Ep+[logp(D = 1|q,k)]

−Ep− [log(1− p(D = 1|q,k)] (8)

This NCE objective has been used widely in learn-
ing language models [71] and word embeddings [70].
A slightly different variation of binary NCE is Negative
Sampling (NEG) [68] which focuses on learning good word
embeddings.

Instead of having a binary task that decides whether each
key is positive or negative, suppose we want to correctly
identify and rank the positive key with highest similarity to
the query in a set K = {k+,k−1 , . . . ,k

−
n } with one positive

key and n negative keys. Jozefowicz et al. [54] extended the
local view of binary NCE to a global or ranking view, such
that the conditional distribution of key at index i is the positive
key is given by:

p(i|q,K) =
p+(ki|q)5j¬ip−(kj|q)∑N
n=1 p

+(kn|q)5j¬np−(kj|q)
(9)

If we let p(i|q,K) = exp(S(q,ki)∑N
j exp(S(q,kj))

be parameterised by

a softmax function, the approximated global ranking NCE

training objective then becomes:

LNCE−global(q,K) = EP(i|q,K)

[
−log

exp(S(q, k+))∑
k∈K expS(q, k)

]
(10)

The reader is referred to [66], [95] for more detailed treatment
of different variations of NCE-based objectives.

Sharing the same motivation with the Lifted Embedding
loss from the metric learning objective instead of by the NCE
objective, Sohn [92] independently proposed the Multi-class
n-pair loss that has the same formulation as the NCE-global
objective in Eq. (10) and uses samples in the same mini-batch
as the negative samples to save memory during computation.
By formulating it as a multi-class classification problem, this
loss automatically incorporates multiple negative keys for
comparison, and is thus very effective.

In more recent work, a slightly different form of
this loss called the normalised-temperature cross-entropy
(NT-Xent) [16] loss with a temperature parameter τ to control
sensitivity of the cosine similarity scoring function is used

LNT−Xent (q,K) = −log
exp( q>k+

‖q‖‖k+‖τ )∑
k∈K exp( q>k

‖q‖‖k‖τ )
(11)

The temperature τ has the same effect of controlling
the attraction-repulsion radius around the query, similar
to the margin m in the margin-based contrastive loss in
Section III-E2.

4) MUTUAL INFORMATION-BASED LOSSES
Mutual Information (MI) has a long history in representation
learning for various methods that aim to maximise the MI a
representation z and its inputs x. In the same spirit, contrastive
learning methods motivated from MI aim to learn a mapping
that maximise the mutual information between representa-
tions of different views of the same scene, which is upper
bounded by the MI between the representation and the input
of a scene.

Oord, Li, and Vinyals [77] first proved that minimising the
InfoNCE loss based on NCE is equivalent to maximising a
lower bound on the MI. Inspired from NCE, InfoNCE comes
to the same formulation of the classification-based N-pair
loss in Eq. (10), and shows that minimising this loss also
maximises a lower bound on the mutual information between
the input and the representation. Having the same form as
the multi-class n-pair loss [92] and NT-Xent [16] but using a
bi-linear layer as a scoring function instead of a dot product,
this form of contrastive loss is currently the most popular due
to its effectiveness and simplicity in implementation, as well
as a theoretical guarantee based on MI.

Proposed independently of InfoNCE, DIM [46] also for-
mulated the contrastive learning problem as MI maximi-
sation and evaluated different MI estimators, such as the
Donsker-Varadhan (DV) [25], the Jensen-Shannon estima-
tor [74] and the InfoNCE [77].
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Some recent work [83], [88] performed a review of dif-
ferent MI estimators and derived a new continuum of multi-
sample lower bounds that describes the bias-variance and
efficiency-accuracy tradeoffs, as well as showing the gener-
alisation bound of MI in the context of contrastive learning.

However, even though mutual information is a principled
motivation for contrastive losses based on the information
bottleneck principle, simply maximising the mutual informa-
tion in positive pairs does not guarantee a successful applica-
tion of the contrastive loss concept. Tschannen et al. [102]
argue and provide empirical evidences that the success of
contrastive losses can not be attributed to mutual information
alone.

IV. DEVELOPMENT OF CONTRASTIVE LEARNING
Now we will briefly examine the major developments in con-
trastive methods over time, that span over multiple sub-fields
and domains.

The core idea of learning by comparing between separate
but related data points, without any supervised signal, dates
back to 1992 to work by Becker and Hinton [8] and by
Bromley et al. [11] in 1993. While Becker and Hinton [8]
formulate the problem as learning invariant representations
by maximizing mutual information among different views of
the same scene, Bromley et al. [11] introduces the ‘‘Siamese
Network’’ composed of two identical weight-sharing net-
works in a metric learning setup. These are the first examples
of the general principle of learning by directly comparing
between different training samples.

In 2005, Chopra, Hadsell, and LeCun [20], [39] created
the foundation for the contrastive learning framework with
the original contrastive pair loss for discriminative models to
learn an invariant mapping for recognition and verification
problems. Instead of having to define non-linear similarity
relationships using some simple metric in the input space,
the contrastive pair loss demonstrates the ability to learn a
representation space in which a simple distance metric in the
embedding space approximates a notion of similarity in the
input space.

Inspired by a form of triplet loss used in [108], Collobert
and Weston [21] trained an unsupervised language model,
and Chechik et al. [15] learned an image similarity model
using a ranking triplet loss. Later, the triplet loss was applied
in the context of a deep neural network and has been shown
to be capable of learning fine-grained image similarity [105],
or a useful representation [49].

To address the limitations of slow convergence and insta-
bility of the pair and triplet contrastive losses, Oh Song et al.
[75] and Sohn [92] proposed loss functions that improve the
number of comparisons for a query in an iteration. While
using hard negative and positive samples has been a common
component in successfully applying contrastive methods,
Wu et al. [109] and Hermans, Beyer, and Leibe [45] argue for
the case that quality of data pairs used in training are also of
paramount importance for pair and triplet losses in the metric
learning setting.

While there have been approaches to using probabilistic
approaches to learning metric embeddings [98], most suc-
cessful applications up to now all use the energy-based pair
or triplet loss due to the computational requirements to com-
pute the normalisation constant in probabilistic loss. In 2010,
Gutmann and Hyvärinen [38] introduced Noise Contrastive
Estimation (NCE), a simple conceptual strategy for estimat-
ing an unnormalised statistical model by contrasting between
the data and noise distributions.

In natural language processing that processes discrete input
text tokens, this form of NCE-based contrastive loss has been
used to train powerful language models [71] or to learn useful
word embeddings [68], [70] from a large unlabelled corpus of
text.

Also motivated from the mutual information maximisation
perspective similar to [8], in 2018 CPC [77] and DIM [46]
made the connection between minimising a contrastive loss
with maximising a lower bound of the mutual information
between different views.

The instance discrimination task that drove the progress
of contrastive methods in the past few years is introduced
in [110]. Simplifying the framework for instance discrimina-
tion and focusing on learning representations with only aug-
mentationmethods, Ye et al. [117] andMisra andMaaten [69]
showed that pre-training with contrastive loss can outper-
form supervised-only training for a computer vision task.
To achieve the best results with contrastive loss, training with
large batch sizes on a large GPU cluster is required. Methods
such as Momentum Contrast (MoCo) [43] were introduced to
reduce the requirement for large batch sizes. Using an online
and momentum-updated offline network, MoCo proposed
to view contrastive learning as a form of dictionary lookup
and raised questions around how best to retain consistency
between offline and online networks to perform similarity
matching between the queries and keys.

Using extra network heads on top of the learned repre-
sentation has been used previously, but it was mostly out
of necessity, for example to aggregate context information
from multiple time steps such as in CPC [77]. SimCLR [16]
proposed an explicit projection head to separate between
the tasks of learning a representation and optimising for the
contrastive objective. This distinction raises the question of
what are the optimal design choices for the base encoder and
representations for recent work such as SimCLRv2 [17]. This
separation enabled other work to use multiple heads and con-
trastive objectives when optimising for the same underlying
representation [28], [111].

Local aggregation [120] spearheaded the direction of com-
bining clustering methods with instance discrimination con-
trastive learning, while in [28], [34], [106] the authors raised
the question of whether negative samples are necessary at
all where they propose a different contrastive loss function
to avoid the collapse of the representation with additional
implicit constraints.

Table 1 provides a brief summary of some prominent
papers over the development of contrastive learning.
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TABLE 1. A table summary of the development of contrastive learning methods. Entries are sorted in chronological order of first disclosure. The topics of
contribution include foundational ideas behind contrastive learning, the development for different forms of the contrastive loss, how similarity is defined
and new applications of contrastive learning methods.

V. APPLICATIONS
We now look at various data domains and problem topics to
which contrastive learning representations have been applied,
most of this work being very recent. This is done through the
lens of the generalised Contrastive Representation Learning
framework introduced in Section III.

A. LANGUAGE
Following the idea proposed in [76] to learn a language
model discriminatively, Collobert and Weston [21] learned
a language model to perform a two-class classification task
to determine whether and how the middle word of a context
window is related to its context or not. They used posi-
tive examples as instances of such word triples taken from
Wikipedia and created negative examples by replacing the
middle word in a triplet by a random word and trained the
model with a triplet loss.

Later, Mnih and Teh [71] adapted NCE [38] and pro-
posed a more efficient algorithm to learn a language model
using a probabilistic contrastive loss, where the context query
includes all the previous words, the positive key is the next
word in a sequence and the negative keys are sampled from a
unigram distribution of words in the corpus.

With the introduction of the Skip-gram and CBOW algo-
rithms [68] to learn word representations which depend heav-
ily on the tree structure of the hierarchical softmax, Mnih and

Kavukcuoglu [70] used NCE to avoid having to compute the
normalisation term of the softmax. Also inspired by NCE,
Mikolov et al. [67] proposed a slightly different method
called Negative Sampling (NEG) that focuses solely on learn-
ing good word representations with the trade-off of losing the
probabilistic properties from NCE.

Recently, the Bidirectional Encoder Representation
from Transformer (BERT) [24] model learns bidirectional
word representations using the Transformer architecture’s
decoder [103] and demonstrated great performance for trans-
fer learning in multiple downstream tasks. XLNet [116] mod-
ified BERT’s masked language model objective to include
an autoregressive objective. While these language model
objectives are usually referred to as a form of denoising
autoencoder that try to reconstruct the original input, in the
case of learning word embeddings which is just a lookup
layer from index to vector, there is no difference between
reconstructing and contrasting between feature vectors and
thus this work does fall under the remit of being a form of
contrastive learning.

Under the mutual information maximisation framework,
Kong et al. [61] showed that BERT or XLnet also maximise
global-local mutual information, whereas the next sentence
prediction pre-training task can be seen as constructing simi-
larity pairs using the sequential coherence property. With this
insight, Kong et al. [61] also proposed BERT-NCE, a variant
of BERT that uses an NCE-based loss instead of the full
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TABLE 2. A summary of methods that applied contrastive methods on language data. The color for defining similarity in query and keys encodes:
Multi-sensory, Data transformation, Context-Instance, Sequential Coherence, Clustering. Colors for encoder represent: End-to-end, Online-Offline,
Pre-trained. Colors for transform head represent: Projection, Contextualisation and Quantisation.

softmax over the entire vocabulary, making it more aligned
with contrastive learning methods. Inspired by DIM [46],
they also introduce InfoWord that aims to maximise the
mutual information between local and global representations
of a sentence. The queries for the global representation are
the sentence with a contiguous masked chunk which is an
n-gram, the positive keys are the local representation of the
original n-gram while negative keys are randomly sampled
n-grams. The final model used InfoNCE loss to minimise
the mutual information lower-bound for both the masked
languagemodel and the global-local representation objective.

In learning representations for units larger than words,
Quick-Thought [64] extends the Skip-gram model for word
embedding to learn representations for entire sentences.
A GRU [19] encodes word-by-word a query sentence and
a nearby sentence as the positive keys, while the negative
keys are encoded from sentences outside the context window.
The final hidden state of the GRU is treated as the sentence
embedding.

CPC is a general contrastive learning method that can be
applied to many different data modalities. For text data, CPC
encodes the context query using past sentences with the pos-
itive keys as the future sentence. A 1-D convolution network
is used as the encoder to encode the entire sentence, while
a GRU acts as a context head and aggregates information
from past sentences to predict the representation of future
sentences.

SentenceBERT [86] extended word representations from
BERT to explicitly learn a sentence embedding using the
triplet loss. Two sentences from the same paragraph are
considered positive pairs and are negative otherwise. After
obtaining individual word representations from BERT, either
the special token CLS or a pooling operation is used over the
entire sentence to obtain the sentence representation.

Inspired from the success of data transformation-based
contrastive methods in computer vision, Fang et al. [29]

extended this idea and introduces CERT to learn sentence-
level representations. To create positive pairs of sentences,
CERT creates two different sentences which are similar in
meaning by back-translating, using a machine translation
model to translate a sentence into a target language and using
another translation model to convert it back to the source
language. CERT uses BERT as its encoder and uses InfoNCE
as the contrastive loss function.

As yet another alternative approach, Chi et al. [18] used
contrastive methods to learn cross-lingual sentence repre-
sentations using a parallel corpus. In InfoXML, the objec-
tive includes a combination of maximising monolingual
and cross-lingual token-sequence (global-local) information,
and cross-lingual sentence-sentence (multiview) information.
The CLS token from the base BERT encoder is used as
the sentence representation with a linear projection head.
A momentum encoder is used to encode the query while the
online encoder is updated using the InfoNCE loss.

Not limited to natural language but still a form of lan-
guage, [51] learns a functional-equivalent of program code
representation by generating similar code snippets using dif-
ferent augmentation techniques from the compiler literature.
The transformer’s representation of each token is averaged
to obtained the representation for the entire program and
InfoNCE is used as the contrastive loss.

A summary of the methods that learn language representa-
tions using Contrastive learning is shown in Table 2.

B. VISION
Motivated by the challenges of recognition, verification and
fine-grained classification problems, Chopra, Hadsell, and
LeCun [20] introduced the contrastive pair loss function in
the context of metric learning. Such applications need to deal
with data with high intra-class variance (e.g same face but
different lighting condition and angles) and low inter-class
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variance (e.g different faces but taken by the same camera
setup). The explicit formulation of a contrastive learning
objective to minimise the distance between inputs of the same
class whilst maximising the distance between inputs of dif-
ferent classes is a direct attempt to solve this problem. On the
other hand, Hadsell, Chopra, and LeCun [39] demonstrated
that the contrastive loss will learn an invariant mapping for
many irrelevant input features in order to be able to map
different inputs to the same neighbourhood in the embedding
space.

Building on the intuition of invariant mapping and its
application in metric learning, Chechik et al. [15] learned
a large scale image similarity model for retrieval using the
triplet loss.

Moving beyond metric learning applications, Hoffer and
Ailon [49] used a similar triplet architecture but focused on
learning image representations simply from using the class
labels to denote similar pairs.Wang andGupta [107] extended
this idea beyond supervised learning by learning visual rep-
resentations from video with the help of an unsupervised
tracking method. The corresponding patches provided by the
tracker are used as the positive pairs while the hard negative
pairs are mined from elsewhere in the dataset.

Among the first to exploit sequential coherence for defin-
ing triplets, Sermanet et al. [91] introduced the Time-
Contrastive Network (TCN), a self-supervised method to
learn a view-agnostic but time-sensitive representation from
unlabelled videos. Two simultaneous views from different
cameras, or two consecutive frames from the same view are
defined to be similar, while two frames far apart in time but
from the same camera view are defined to be dissimilar.

Recently contrastive learning has received a lot of attention
due to its successful application to self-supervised visual
representation learning, especially in the Instance Discrim-
ination task introduced by Wu et al. [110]. Following the
idea of treating each instance as its own exemplar class [26],
a memory bank mechanism was introduced to store the com-
puted representations for use in future iterations, so that the
number of negative samples is decoupled from the batch size.
The queries are computed online and contrasted with the keys
from the memory bank where the global NCE objective is
used to learn to discriminate between features of the same
instance or not. Looking at contrastive learning as a dictionary
lookup problem, He et al. [43] introduce Momentum Con-
trast that maintains the offline encoder as an exponentially
weighted average of the online encoder where it stores the
key representations in a queue, weighting more recent key
representations as being more important.

Since the difference between the query and the posi-
tive keys in instance discrimination is how they are ran-
domly augmented, multiple works such as Invariant and
Spreading Instance Feature [117], PIRL [69], SimCLR [16]
have focused on engineering strong and varied augmenta-
tions to yield better representation from the ImageNet [23]
dataset without class labels. These methods have attracted
special interest because for the first time they outperform

supervised ImageNet classification pre-training on multi-
ple downstream vision tasks. SimCLRv2 [17] performed a
comprehensive study of contrastive self-supervised learning
in semi-supervised settings where few labels are present,
and demonstrated state-of-the-art results by contrastive
pre-training in various downstream vision tasks.

In a different direction, Oord, Li, and Vinyals [77] pro-
posed CPC to learn invariances between context-instance
relationships instead. The predictive coding principle in CPC
defines context as the past, and that a good representation
of the past will possess a strong predictive capability for
instances in the future. The predictive power of a repre-
sentation is modelled as a contrastive objective that max-
imises the mutual information between the past context and
the future instance through the InfoNCE mutual information
lower bound. While the CPC method is general and equally
well applicable to multiple data modalities, CPCv2 [44]
improved on CPC with some architectural design changes
specifically for learning from images and evaluating this on
label-efficient fine tuning tasks. Expanding CPC into learning
representations from natural videos,Dense Predictive Coding
(DPC) [40] contrasts between local patches of the feature
maps extracted from the past context with the local patches
of the features maps extracted from future instances. DPC
employs three kinds of negative samples: the easy negatives
come from patches encoded from different videos, the spatial
negatives come from the same video but at different spa-
tial locations of the feature maps, and the hard negatives
come from the same spatial location but from different time
indexes.

Also learning invariances from context-instance relation-
ship, DIM [46] defined context to be a little more general than
CPC. A single vector for each image is used as the global rep-
resentation, while the feature vectors at each spatial location
from the feature map at previous layers are considered local
features. DIM enforces the contrastive objective using multi-
ple different mutual information lower-bounds but also found
that InfoNCE is the most effective, especially with a large
number of negative samples. Combining the context-instance
strategy with the temporal coherence property of a video,
Anand et al. [2] proposed SpatioTemporal DeepInfoMax
(ST-DIM) that learns to maximise mutual information
between global features of the current frame and local fea-
tures from the next frames. Finally, Augmented Multiscale
DIM [5] combined both the global-local objective from
DIM [46] and image data augmentation from the instance
discrimination task to learn visual representations.

By exploiting temporal consistency as a natural source
of image transformation, Video Noise Contrastive Estima-
tion (VINCE) [33] modified the instance discrimination task
where instead of contrasting between two augmented views
of the same image, VINCE defined positive pairs as two
frames from the same video. An additional benefit of this
approach is that different objects that are likely to show up
in the same video (e.g dog and cat) are also encouraged
to be closer than more random pairs (e.g cat and whale).
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By combining the image data transformation, temporal
coherence between frames and global-local correspondence
between features, Video Deep InfoMax (VDIM) [47] learned
effective spatio-temporal representations for downstream
tasks on videos.

Exploiting visual similarity to form natural clusters in
the representation space has been used previously to learn
unsupervised representations [13]. This objective has been
reformulated in the form of a contrastive learning method
in [120], where a set of close neighbours is aggregated
together from a set of background neighbours. Given a query
image, the background neighbours are an unbiased sample of
nearby points measured with cosine distance in the embed-
ding space. An unsupervised clustering algorithm is applied
on the set of background neighbours, where the samples in
the cluster that includes the query are the close neighbours,
which act as the set of positive samples for that query. The
embedding is learned iteratively using an NCE loss to clas-
sify between close neighbours and background neighbors. In
addition to just preserving the local smoothness around each
instance in the same cluster, Prototypical Contrastive Learn-
ing (PCL) [63] also encoded the higher semantic structure of
the data into the embedding through the cluster’s centroid.
Assuming that each data point is associated with a latent
class variable, PCL aims to learn both the class’s prototype
and optimises for points belonging to a cluster to stay close
together through the Expectation Maximisation (EM) frame-
work. In the E-step, k-clusters are obtained by performing
k-means on the features from the momentum encoder and
the distance from each point to its cluster’s prototype is
minimised using the InfoNCE loss in the M-step.

Most clustering-based methods up to now are offline in
the sense that they require multiple passes over the data
to compute features and perform clustering, but Swapping
Assignment between multiple Views (SwAV) [14] proposed an
online clustering method to learn unsupervised visual repre-
sentations. Combined with data transformation approaches in
instance learning, two different augmented views of the same
images are encoded into features and the clustering assign-
ment for each of the views is computed from a set of trainable
‘‘code’’ vectors. Similarity is enforced through a ‘‘swapped’’
prediction problem where the feature vectors from one of
the views is matched with the cluster’s code from the other
views. No negative pairs are explicitly used in this method but
the representation is prevented from collapsing through the
batch-wise online code computations. InterCLR [112] also
performed mini-batch clustering with a set of learned cluster
centroids but instead of using a swapped prediction with no
explicit negative samples, they modelled the instance-cluster
relationship by assigning a pseudo-label for each instance.
Samples that shared pseudo-labels are positive pairs while
samples that have different labels are negative pairs. All of
these clustering-based contrastivemethods in a sense enhance
the similarity and dissimilarity in the instance discrimination
task through using pseudo-labels derived from clustering
techniques.

Most of the methods above focus on the self-supervised
paradigm and thus refrain from using human-annotated
labels. Supervised Contrastive Learning [56] directly used
class labels to define similarity, where samples from the
same class are positive and samples from different classes are
negative samples. This method was shown to be more robust
to corruption than using the usual cross-entropy loss with the
labels alone.

Most of the work above utilised the NCE objective in one
form or another, which will usually benefit with more nega-
tive samples. Therefore self-supervised contrastive represen-
tation learning methods usually require large batch sizes and
longer training times than other supervised or self-supervised
methods. The training dynamic of contrastive methods can be
dissected into two keys properties [106], alignment (close-
ness) of features from positive pairs and uniformity (spread-
ing) of the induced representation on a hypersphere. The
uniformity explains the role of negative pairs in keeping the
representation from collapsing and opens up the research
direction of using other methods without negative samples to
prevent the representation from collapsing. In SwAV, similar-
ity is formulated as a swapped prediction problem between
positive pairs while the minibatch clustering methods implic-
itly prevent collapse of the representation space by encour-
aging samples in a batch to be distributed evenly to different
clusters. In Bootstrap Your Own Latent (BYOL) [34], the sim-
ilarity constraint between different views are also enforced
through a prediction problem, but from an online network
to an offline momentum-updated network. The key insight is
that by trying to match the prediction from an online network
to a randomly initialised network, the obtained representa-
tions are already better than those of the random offline net-
work. By continually improving the offline network through
the momentum update, the quality of the representation is
bootstrapped from just the random initialised network.

In concurrent work, Ermolov et al. [28] proposed aWhiten-
ing MSE loss, where again the similarity between augmented
instances is enforced through the minimisation of MSE dis-
tance in the embedding space, while the whitening operation
common in many image pre-processing pipelines is applied
on the representation in batch. The whitened vectors of all
samples in a batch, including positive pairs, become dis-
tributed and the MSE objective will pull features of positive
pairs closer together i.e. the distance between positive pairs
is small while the representation space does not collapse into
a single cluster.

A summary of themethods that learn visual representations
using Contrastive learning is shown in Table 3.

C. AUDIO
For audio processing, CPC [77] used a strided convolutional
network as the base encoder to map from raw audio signal
to the representation v where a GRU RNN head aggregates
the information from all previous timesteps to form a con-
textualised representation z. This contextualised embedding
z is then used as the query where it is contrasted with a set of
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TABLE 3. A summary of methods that applied contrastive methods on vision data. The color for defining similarity in query and keys encodes:
Multi-sensory, Data transformation, Context-Instance, Sequential Coherence, Clustering. Colors for encoder represent: End-to-end, Online-Offline,
Pre-trained. Colors for transform head represent: Projection, Contextualisation and Quantisation.

representations v with respect to the true future v+ from the
noise v−.
Built on top of CPC, wav2vec [89] uses another convo-

lutional network to aggregate context information instead
of using a recurrent network for the context head. Moving
beyond evaluating on frame-wise phoneme classification in
CPC, Schneider et al. [89] evaluated the learned represen-
tation of wav2vec and applied the contrastive pre-trained
representation to improve a supervised Automatic Speech
Recognition (ASR) system. VQ-wav2vec (Vector-quantised
wav2vec) [6] modifies the wav2vec architecture by using
an additional quantisation head before the context head.

The quantisation head is implemented through a Gumbel-
softmax [52] to convert the continuous speech signal v into a
set of discrete codes c. The context head is built on top of these
discrete codes to form the query context vector z. Similar to
CPC and wav2vec, the context vector is then compared with
another quantised representation c to find the representation
of the correct future. The discretised speech representation
can then be used directly as a representation for other models
that expect discrete input such as BERT [24].

All of these methods above encode context representa-
tion using only past-to-present information. Inspired from
the success of the bidirectional encoding in the transformer
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TABLE 4. A summary of methods that applied contrastive methods on audio data. The color for defining similarity in query and keys encodes:
Multi-sensory, Data transformation, Context-Instance, Sequential Coherence, Clustering. Colors for encoder represent: End-to-end, Online-Offline,
Pre-trained. Colors for transform head represent: Projection, Contextualisation and Quantisation.

model [103],Wav2vec 2.0 [7] replaces the unidirectional con-
text head from vq-wav2vec [6] with a bidirectional masked
Transformer.

In a different direction, Nandan and Vepa [73] learned
speech representation from audio in mel spectrogram image
format. Combined with mel spectrogram data transformation
techniques (i.e time and frequency masking [79]), they use
a pipeline similar to many image instance discrimination
methods to a learned representation that is language agnostic
and is shown to transfer well to an emotion classification task,
regardless of the spoken language.

A summary of the methods that learn an audio representa-
tion using Contrastive learning can be seen in Table 4.

D. GRAPHS
For relational and graph-structured data, contrastive learning
has been successfully applied to learn both node, edge and
graph-level representations.

The earliest approaches to learning representation from
relational data that comes in the form of triplets (subject,
relation, object) is Linear Relational Encoding (LRE) [78].
In this early work, the representation encoder is just a sim-
ple embedding layer for the subjects and objects, while the
relations are represented as a matrix. The transform head in
this case is a simple matrix-vector multiplication between the
relation and subject, so that the resulting vector is closest to
that of the object.

Later, Bordes et al. [10] introduced TransE, which learns a
vector embedding for both the nodes and edges, and uses an
additive transform head to represent relations as a translation
in the embedding space. TransE uses an energy-based triplet
loss to learn the embeddings and similar to LRE, the negative
training pairs are created by corrupting the object node with
random nodes from the data.

More recently, the Contrastively-trained Structured World
Model (C-SWM) [60] uses a Graph Neural Network to model
each state embedding as a set of objects and their relations.
The base encoders consist of a CNN object extractor and
an MLP object encoder, that turn an image into an abstract
state representation. The graph Neural network heads then
transform the state’s representations and its corresponding
actions (represented as one-hot vectors) into the state repre-
sentation in the next time step. Similar to TransE, the state

transitions between time steps is modeled as a translation in
the embedding space and the entire world model is trained
end-to-end with an energy-based hinge loss.

Focusing on learning useful node representations from
general graphs, node2vec [35] aims to learn a node repre-
sentation that is similar between neighbour nodes. The key
contribution of node2vec is a family of biased random walk
methods, allowing for a flexible notion of network neighbour-
hood (i.e positive keys). The model is trained similar to the
Skip-gram model in word2vec, using negative sampling.

Veličković et al. [104] follows DIM [46] to propose Deep
Graph Infomax (DGI) to learn node embedding by maximis-
ing mutual information between representations of local and
global patches of a graph. The encoder is a Graph Con-
volutional network [31], [59] that summarises a patch of
the graph centered around some nodes. A contextualisation
head in the form of a readout function summarises the patch
representations into a graph-level global representation so
that all patches encode the most useful features present in
the global features. The negative samples are patches from
random graphs in a multi-graph setting or a corrupt function
is used in a single-graph setting.

Also inspired by the mutual information maximisation
between global and local structure of DIM, but with some
design choices different from DGI [104], InfoGraph [97]
focuses on learning graph-level representations. InfoGraph
uses GIN [115] as the base encoder and uses sum over mean
for the readout function, both of which are more suitable to
learning representations at graph-level.

Combining both the multi-view and global-local mutual
information maximisation objective, Hassani and Khasah-
madi [41] aims to learn both graph-level and patch-level rep-
resentations for graphs. A graph diffusion is used to generate
a different structural view of the graph, and then a sub-graph
is sampled from both of the views. A dedicated GNN is
used as the base encoder for each view, while the transform
heads are shared between the two views. An MLP is used as
projection head for the node representation, while a pooling
layer followed by an MLP is used as the contextualisation
head for the graph representation. A mutual information con-
trastive loss is then used to maximise the similarity between
a local representation of one view to a global representation
of another view.
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TABLE 5. A summary of methods that applied contrastive methods on relational and graph-structured data. The color for defining similarity in query and
keys encodes: Multi-sensory, Data transformation, Context-Instance, Sequential Coherence, Clustering. Colors for encoder represent: End-to-end,
Online-Offline, Pre-trained. Colors for transform head represent: Projection, Contextualisation and Quantisation.

Aiming to learn a structural representation of a graph
without node attributes and labels, Graph Contrastive Cod-
ing (GCC) [85] simulates the augmentation-based instance
discrimination task in computer vision. GCC treats each
sub-graph as an instance and tries to learn a representation
that captures similarity between sub-graphs by discriminat-
ing between these instances. A positive key is created by
applying a graph sampling transformation on that sub-graph.
GIN [115] is used as the base encoder with a momentum
encoder [43] for the keys and InfoNCE is used as the con-
trastive loss.

A summary of the methods that learn graph representations
using Contrastive learning is shown in Table 5.

E. MULTI-MODAL
The constraints enforced by the contrastive loss distance
metric are not limited to embeddings from the same media
modality. Contrastive learning has also been used to to learn
cross-modal embeddings from two or more modalities that
enhances the representation learned from a single data modal-
ity, especially for data that has limited labels.

In the most obvious way, the ‘‘views’’ from Contrastive
Multiview Coding (CMC) [99] is straightforward to extend
to multiple modalities. In this paper, they experimented with
views from L and ab channels from RGB color images,
or from one RGB frame and an optical flow feature at the
same time.

The Audio-Visual Correspondence task is one example
where it is desirable to have a joint representation space
between representations extracted from the visual and audio
modalities. The Audio-Visual Embedding Network (AVE-Net)
[4] is an example where contrastive learning is applied to this
problem. Two separate convolutional encoders for the vision
and audio data streams are used. The audio which is 1 sec-
ond in duration and is centered around the selected frame,
is considered a positive pair, while negative pairs are extracted
from different videos. This is different from the verification
setting from previous work [3], where an MLP fusion net-
work takes the concatenation of the two representations and
outputs the final decision on whether the signals correspond.

Instead, AVE-Net explicitly projects representations from
each sub-network to a common embedding space through the
use of a non-linear MLP head and measures correspondence
through a contrastive loss using Euclidean distance in the
embedding space. Since similarity between representations is
explicitly enforced instead of implicitly learned in the fusion
network as in [3], the embeddings learned by AVE-Net [4]
are well-aligned and more suitable for cross-modal retrieval
tasks.

Similarly, Cross-modal Audio Visual Instance Discrimi-
nation (Cross-AVID) [72] jointly learn the general represen-
tation from video using corresponding image frames and
audio segments. In addition to contrasting between audio
and visual representations of the same instance, they intro-
duced a Cross-modal Agreement (CMA), a mining method
that extends the set of positive pairs beyond just from a
single instance. CMA measured the agreement of two videos
based on both their visual and acoustic characteristics and if
two videos have high agreement in both modalities, they are
considered positive pairs.

Performing within-modal contrastive learning beyond the
instance-level using the extended definition of positive pairs
from CMA helps to improve the performance of Cross-
AVID, and reduces the chances of the representation col-
lapse phenomenon observed in cross-modal learning set-
tings. Very similarly, Patrick et al. [81] performed visual
audio cross-modal contrastive learning with a more princi-
pled approach to sampling and augmentation in an attempt to
qualitatively measure the invariance and covariance, which
they refer to as ‘‘distinctiveness’’, captured by the learned
embedding.

Instead of contrasting cross-modal representations of dif-
ferent instances, Afouras et al. [1] used de-synchronisation to
select negative samples by mis-aligning (shifting) the video
and audio features. The global features from the audio signal
for a frame is compared with the local features from the
featuremap of the vision network, resulting in an audio-visual
attention map. A max-pooling layer acts as the context head
to summarise the agreement between the audio and visual
signals.
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TABLE 6. A summary of methods that applied contrastive methods on multimodal data. The color for defining similarity in query and keys encodes:
Multi-sensory, Data transformation, Context-Instance, Sequential Coherence, Clustering. Colors for encoder represent: End-to-end, Online-Offline,
Pre-trained. Colors for transform head represent: Projection, Contextualisation and Quantisation.

Jiao et al. [53] applied the misalignment objective to learn
joint embeddings for ultrasound audio and the corresponding
doctor’s narrative speech. Applying contrastive learning in
this setting is particularly helpful because this type of paired
data is a lot easier to collect in a medical setting. Positive and
negative pairs are defined based on spectrum of misalignment
in time. Positive and ‘‘hard-positive’’ pairs are video frames
and their corresponding or slightly misaligned audio clips.
Negative and ‘‘hard-negative’’ are pairs of frames and audio
clips that are even further misaligned from each other in time.

Instead of learning the correspondence directly between
the visual and audio signals, in [96] video representations are
learned by contrastingwith representations from text captions
extracted from an Automated Speech Recognition (ASR)
system. The ASR sequences are encoded using a pre-trained
BERT [24] model while a pre-trained S3D [113] model is
used to extract visual features which are then fed into a
shallow Transformer [103] network to construct a video-level
visual embedding. The scoring function comprises another
shallow transformer module that acts on the concatenated
representations from the twomodalities, followed by anMLP
network that estimates the mutual information (MI) between
the two inputs. The MI scores between them are again esti-
mated through a softmax classification setting.

Not limited to jointly learning an embedding space, con-
trastive methods can also be used to learn a mapping
between two separately-trained models of different modali-
ties. Ilharco et al. [50] learned a probe to find the similari-
ties between words and object images from a paired image

captioning dataset. Even though the BERT [24] text encoder
and the Faster RCNN [87] object detection model are trained
separately and not updated by the contrastive loss, the LSTM
cells [48] and a linear project head can still map between
words and object representations.

In the same spirit of learning representations from loosely
aligned data,COALA [30] learns a shared embedding between
audio and its tags, which aremore readily available than a cor-
responding audio-transcript. In a different setting, Khurana,
Laurent, and Glass [57] demonstrated a proof-of-concept
approach to learn a translation network between English
speech and its text translations in other languages. Their
CSTNet used a triplet loss with a semi-hard negative mining
method to learn both a cross-modal and cross-lingual repre-
sentations.

A summary of the methods that learn multi- or cross-modal
representation using Contrastive learning is shown in Table 6.

F. OTHERS
We conclude this section on applications of contrastive
learning by looking at some others works that apply con-
trastive learning on other field such as reinforcement learning
or that are different from the usual pre-train then transfer
of contrastive representation learning framework in other
modalities.

Not limited to learning representations, contrastive learn-
ing can also be applied to distill knowledge from a large
pre-trained teacher network to a smaller student network,
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as demonstrated in Contrastive Representation Distillation
(CRD) [100].

In addition to learning representations of observations
in the environment, CPC|Action [36] is a variant of CPC
that explored whether contrastive learning methods can also
encode belief states (i.e its uncertainty) in its representation
condition on the future action.

To improve the representation for reinforcement learn-
ing (RL) tasks, CURL [93] applied the instance discrimi-
nation task with a momentum encoder from MoCo [43] to
train model-free RL agents directly from the pixel observa-
tions. Due to the fact that many RL algorithms operate on a
sequence of frames, the augmentations to create positive pairs
are applied consistently across a consecutive frame stack as
opposed to a single frame.

In an attempt to decouple representation and reinforce-
ment learning, Stooke et al. [94] proposed the Augmented
Temporal Contrast (ACT) for pre-training representations that
are transferable to multiple RL tasks. Using the temporal
consistency properties and a momentum encoder, augmented
observations are contrasted with future observations in the
same trajectory using the InfoNCE loss.

In a different vision application, Park et al. [80] proposed
multi-layered patch-wise contrastive methods to enhance
the performance of an unpaired image-to-image transla-
tion model. With the intuition that for a given patch of a
style-transformed image, the corresponding patch at the same
layer and spatial location should be more strongly associated
with that patch than at any other patches at different spatial
locations, InfoNCE contrastive loss is used to maximise the
mutual information between patches at the same spatial loca-
tion of both input and output images.

In other lines of work that try to learn representations
in a greedy layer-wise manner instead of through an end-
to-end approach using gradient descent, it has been shown
that mutual informationmaximisation through the contrastive
InfoNCE loss is particularly suitable for greedy optimisation.
In this direction, Greedy InfoMax (GIM) [65] extends the
approach of CPC [77] while Local Contrastive (LoCo) [114]
improved the performance by extending SimCLR [16] with a
modified overlapping architecture between local layers.

VI. DISCUSSION AND OUTLOOK
In this section we analyse and raise some questions about
the current limitations and possible future directions for con-
trastive representation learning.

A. WHAT KIND OF REPRESENTATIONS ARE LEARNED BY
CONTRASTIVE METHODS?
Recent successes in transfer learning by instance dis-
crimination contrastive pre-training [16], [43], [69] have
raised the question of ‘‘what representation is learned
from contrastive methods and why is it better than super-
vised pre-training’’ [101], [119]? However from the view
of the Contrastive Representation Learning framework,
the invariant and covariant features learned from the instance

discrimination task are entirely decided by the augmenta-
tions techniques that create the positive pairs. To understand
the effect of augmentations on the representation, one must
take into account the bias of the dataset that it was applied
to as well. As analysed in [84], models trained with an
instance discrimination objective rely heavily on the occlu-
sion invariance property, which was induced by applying
aggressive cropping on centred, single-object images from
ImageNet [23]. Naively applying this ‘‘overfitted’’ set of
augmentations on a different dataset with a more diverse
composition of scenes can lead to unexpected behaviour in
the representation. To successfully apply contrastive learning
to other data sets and problems, one must be aware of the bias
represented in the data together with the principle behind how
positive and negative samples are produced (Section III-B).

B. CONTRASTIVE LOSS NEEDS MORE OR NO NEGATIVE
SAMPLES?
Based on the theoretical guarantee of NCE and empirical
evidence, the performance of contrastive learning methods
benefit from comparison with multiple negative samples,
which requires training on large GPU clusters and longer
training times. One approach to alleviate this problem is to
employ memory tricks such as the momentum encoder tech-
nique (Section III-C) that can allow the incorporation of even
more negative samples and is not limited to the batch size
limited by hardware memory. Based on the assumption that
negative samples are present just to prevent the representation
from collapsing into one single cluster, another direction is
to eliminate the need for negative samples altogether and
impose additional constraints on the embedding space to
prevent it from collapsing [28], [34].

Beside quantities, qualities of negative samples are often
neglected as sampled uniformly from the data distribution.
More careful selection of negative samples has been shown to
improve the convergence rate and performance of the learned
embeddings on downstream tasks. This is consistent with
hard negative and positive mining techniques, which has been
a standard component in many metric learning applications.

This raises the question of a quality vs. quantity trade-off
in employing negative samples for contrastive loss. Would
it be possible to design a contrastive loss that employs both
architectural constraints, perhaps for early stages of learning,
and uses hard negative samples to learn a more fine-grained
representation in the latter stage?

C. WHAT AND HOW DO DIFFERENT ARCHITECTURAL
DESIGNS AFFECT THE PERFORMANCE OF CONTRASTIVE
METHODS?
The separation between the transform heads and base encoder
serves as a conceptual distinction to focus on transfer learning
on downstream tasks, but in practice the distinction is not
so clear cut. While the base encoders are mostly borrowed
directly from supervised learning, with some modifications
such as wider layers to capture more features, the best
choices for projection and transform heads is unclear. In some
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cases the transform head is necessary (e.g to perform fea-
ture aggregation as shown in Section III-B3). Other possible
choices are to not use any head, or to use a linear layer and
non-linear multi-layers projection heads. In SimCLRv2 [17],
empirical experiments show that the output of the second
layer of a 3-layer MLP projection head is a better repre-
sentation for transfer learning than the output of the base
ResNet [42] encoder. In BYOL [34], in addition to the projec-
tion head from a high-dimensional representation embedding
to a lower-dimensional metric embedding, a MLP ‘‘predic-
tion network’’ projects metric embeddings of the online to
that of the offline networks. This additional bridge between
two embedding spaces is a crucial component for the success
of the entire model.

These design choices are usually the result of empirical
experiments specific to the architecture. The observations
suggest a potential discrepancy in architectural design for
supervised learning and representation pre-training, as well
as potential for research in principles to design an efficient
architecture for contrastive methods and representation learn-
ing in general.

Another under-explored topic is the specific form of the
representation, which is currently treated as a simple vector
for each input. With the ease of specifying invariant and
covariant properties allowed by the contrastive framework,
LooC [111] is an example where contrastive learning is used
to concurrently learn multiple embedding sub-spaces, each of
which is invariant to all but one transformation as specified by
the distribution of positive pairs. Learning disentangled and
compositional representations using contrastive learning is a
promising research direction.

D. AN ASYMMETRIC SCORING FUNCTION?
Even though the learned similarity score has previously been
used for retrieval and ranking applications, currently com-
puting similarity or distance in contrastive learning is mostly
used as a proxy task to learn representation. Can the learned
similarity score be used in novel applications that were not
previously possible?

An interesting possible extension for the scoring function
is an asymmetric one. The current literature on contrastive
methods assume a simple symmetric distance/similarity rela-
tionship, but not all kinds of similarity are the same (for exam-
ple the similarity between ‘‘dog-cat’’ should be different from
‘‘dog-animal’’). Could a contrastive loss with non-transitive
similarity relationships be developed?

E. FUTURE OF THE CONTRASTIVE LOSS FUNCTION?
As discussed in Section III-E, the form of the contrastive
loss is generally motivated from an energy-basedmargin loss,
NCE-based classification or mutual information maximisa-
tion. The most popular form of contrastive loss belongs to the
family of InfoNCE (and its variants such as NT-Xent), due
to its efficiency and simplicity, with a well-grounded moti-
vation from information theory. Can we design better con-
trastive loss functions that are more efficient in computation

and memory, for example one that is more suitable to incor-
porate multiple positive keys for one query?

From which perspective can such a loss be developed?
Even though contrastive losses motivated from mutual infor-
mation have a strong body of theoretical support, as pointed
out in [102], maximising mutual information alone can not
explain for all the successes of contrastive learning methods.
Looking at the contrastive loss from all the different perspec-
tives may motivate the development of a new generation of
contrastive losses.

F. BEYOND LEARNING REPRESENTATION WITH
CONTRASTIVE METHODS
While this paper focuses on the majority of work that applied
contrastive learning to learn representation, either supervised
or self-supervised, the question of whether learning repre-
sentation first is actually necessary, is still not settled. Even
though there is ample evidence that representation learning
on a general data stream benefits the performance of models
when fine tuned on low-resource tasks, one can argue that if
we know the task we want to be good at there are better ways
to directly optimise for that task without explicitly dealing
with the representation as a leaky abstraction [12]. Because
contrastive learning only needs a definition of positive and
negative distribution for pairs of samples, one can potentially
define those just once for the entire data set or data stream,
and optimise directly for a relevant task using the contrastive
loss. Therefore contrastive methods can potentially extend
task-based learning beyond the need for a static labelled
dataset, as is the case for current supervised learningmethods.

VII. CONCLUSION
Although there has been a recent surge of interest in the
topic, contrastive learning and contrastively learning repre-
sentations is not a new idea, with work dating back nearly
30 years to the early 1990s. This is partly because much
of the machine learning field is now taken up by problems
of data architecture and systems engineering and scalability.
This usually involves building systems which are bigger and
operating under the maxim that bigger is better. Contrastive
learning is more like data engineering and it allows the prop-
erties of data to emerge naturally based on data similarity
rather than trying to fit data processing into some large and
complex system architecture.

In this paper, we introduced a framework for describing
contrastive learning and we presented a taxonomy of work
done in the field. Because contrastive learning has been used
in multiple applications and input domains including image,
video, text, audio and others, we have had to draw together
input from NLP, computer vision, audio processing and more
in order to present a comprehensive survey of the field, with
inputs also drawn from across these disparate application
areas.

While the paper will provide a useful resource for those
who have little background in the topic of contrastive learning
and who want to learn more, it will also be of value to
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those already familiar with the topic since contributions to
the development of the area are drawn from such a range of
sources.

Contrastive learning and contrastive representations of data
represent an interesting and different approach to modeling
data which is suited to some kinds of datasets, and for appli-
cations where labelled training data may not be available
or in sufficient amounts to support typical deep learning
approaches.

Whilst successful contrastive representation learning typi-
cally involves using relatively more computational resources
(and thus power), the models produced by this process often
enable rich general-purpose representations that show greater
performance on a variety of downstream tasks than their end-
to-end counterparts. Ultimately, this may result in less com-
putational resources being consumed when using pre-trained
contrastive representation models for as basis for new tasks.

Contrastive learning is not a panacea for all kinds of prob-
lems in data modeling and data classification, prediction and
clustering, but for a reasonable subset of application types,
on certain types of datasets it is a suitable approach to improve
performance on downstream tasks. Nor is it an approach
with all of its problems and issues solved, and in the paper
we highlighted areas for future research, some of which are
fundamental issues.

For practitioners who want to apply contrastive methods
for pre-training representations on different datasets, we sug-
gest to be mindful about:
• Any inherent characteristics and biases in the data set,
e.g. do the images contain only one or multiple objects,
are the objects in the center, etc.

• The desired properties of the representation for
downstream tasks, e.g. occlusion-invariance, color-
invariance, temporal-covariance, etc.

• The ways positive and negative pairs are constructed,
such that they provide good learning signals and convey
the desired properties.
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