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ABSTRACT Collision risk early warning is critical to sailing safety in vessel encounter situations because
it provides ship officers with sufficient time to react to emergencies and take evasive actions in advance.
In this study, we take spatiotemporal motion behaviors of encountering vessels into account since vessel
motion behaviors have great influences on the occurrence of a dangerous situation. For this purpose, a data-
driven approach is proposed to associate the motion behaviors with the future risk and early prediction
of risk is achieved through classifying the behaviors into corresponding risk level. Specifically, we first
derive a sequence of relative motion features between encountering vessels to characterize the spatial
interactions that vary over time. Then a novel deep learning architecture, which combines bidirectional
long short-term memory (BiLSTM) and attention mechanism, is developed to capture the spatial-temporal
dependences of behaviors as well as their impacts on future risk. In particular, the BiLSTM is able to discover
correlations among behaviors and the attention mechanism can emphasize the key information relevant
to the risk prediction task. Exploiting the advantages of these two mechanisms makes the risk prediction
more reasonable and reliable. Extensive experiments using ship trace data from the Yangtze River Estuary
demonstrate that the proposed Attention-BiLSTM approach outperforms conventional LSTM in terms of
accuracy and stability. Moreover, the real-time capability of the approach gives it a significant potential for
use in predicting collisions at the early stages.

INDEX TERMS Collision risk, vessel encounter, early warning, spatial-temporal model, bidirectional
LSTM, attention mechanism.

I. INTRODUCTION
Maritime transportation is the major mode of transportation
for world trade. The continued growth of the global economy
has increased the need for ships with larger cargo-carrying
capacities and faster sailing speeds. However, the resulting
increases in heavy traffic flow have made maritime accidents
a complex problem in most waterways [1]. In busy water
areas with dense traffic, ship-ship collisions are the most
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frequently occurring accidents and account for nearly 60%
of all maritime incidents [2].

To prevent collisions and improve navigational safety,
a variety of risk assessment models, including accident fre-
quency [3], accident consequence estimation [4] and proba-
bility estimation models [5]) have been extensively studied.
However, most of the models developed to date fail to incor-
porate methods for the early warning of collision risk and
instead have tended to focus on the instantaneous assessment
of collision risk. Even when a vessel officer is aware of an
immediate collision risk, they often have neither the time
nor the space to maneuver to avoid collision. For example,
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in 2018, the ‘‘Sanchi’’ and ‘‘CF crystal’’ were involved in
a maritime collision in the East China Sea outside of the
Yangtze River Estuary. According to the official accident
report, the main cause of the collision was the lack of per-
ception by either crew of the potential risk at the initial stage
of the encounter. In particular, the International Regulations
for Preventing Collisions at Sea (COLREGs) [6],proposed by
International Maritime Organization (IMO) suggest that it is
necessary to allow more time to assess individual situations
and that collision avoidance action should be taken within
a sufficient time frame. The evidence to date supports the
idea that it is extremely important to warn officers as early as
possible to allow them sufficient time to react to emergencies
and take actions to avoid collision.

The factors enumerated above motivated this study on the
use of early risk warning in collision avoidance techniques
and decision support systems for safe vessel navigation. The
main advantage of collision risk early warning lies in its abil-
ity to aid encountering vessels in avoiding a close-quarters
situation [7], i.e., a situation in which a collision cannot be
avoided through the efforts of only one vessel. Unfortunately,
most existing risk assessment approaches do not have this
capability.

A collision is the result of a sequence of motion behaviors
of all vessels involved in an encounter situation [8]. In other
words, the motion behaviors between vessel pairs have a
potential impact on the future collision risk. For example,
the relative angle between two ships can affect the probability
of collision. A ship encounter is essentially a continuous
series of movements on the part of the involved vessels.
These spatiotemporal motion behaviors determine, to some
extent, the subsequent risk status. It is therefore necessary
to use motion behavior series in making reasonable risk
predictions. However, influenced by the encountering vessels
and waterway environment, the ship motion behaviors will
exhibit a great of uncertainty during the encounter process.
Specifically, the individual vessel may change its original
course and velocity given the external pressures provided by
the presence of encounter vessels (for example, the reactions
to avoid collision). The uncertain motion behaviors increase
the complexity of risk prediction task. To this end, we relate
the motion behaviors within a specified time window to the
possible risk that might occur in the future. By learning from
historical data, the relationship between motion behavior and
future risk can be established. Using this approach, the rela-
tionship between continuous motion behavior and future col-
lision risk can be modeled as a time series classification
task.

Recently, a number of learning-based technologies have
been proposed for effectively solving complex problems
in different fields [9], [10]. Among these, long short-term
memory (LSTM) networks have been used to successfully
perform various time series representing and classification
tasks [11], [12]. The LSTM approach can be extended to
the development of a collision risk early warning archi-
tecture. Because of their heavy masses and large inertias,

ships require longer steering and acceleration processes than
vehicles. The inertial properties of a ship also produce a
strong correlation between its current motion and previous
motion states. Effectively representing this contextual associ-
ated information on motion behavior is the key to improving
risk prediction performance. To achieve this, the proposed
model employs a bidirectional structure to capture the strong
temporal correlation inherent in motion behaviors. This bidi-
rectional structure overcomes the limitations of conventional
structure of LSTM,which tends to ignore past relevant behav-
ior information and result in the loss of contextual associa-
tion. Besides, the motion behaviors occurring in various time
segments also have different impacts on the future collision
risk during the encounter process. For example, the accelera-
tion or avoidance of a ship during one specific time segments
can have a greater impact on the collision risk than actions
undertaken during other time segments. It is therefore useful
to distinguish the contributions of various motion behavioral
features using weight coefficients. This approach has been
shown to improve risk prediction accuracy. To impose such a
weighting, we propose a deep learning architecture based on
the application of an attention mechanism to the output of the
bidirectional LSTM (BiLSTM), which is widely used in the
field of natural language processing.

The main contributions of this article to ship collision risk
early warning research are as follows:
• Owing to the situational complexities and uncertainties
associated with motion behavior during ship encounters,
determining the complex relationship between motion
behavior and future collision risk is an exceedingly
difficult task. In this article, we propose a data-driven
approach to risk prediction based on the assessment
of spatiotemporal motion behaviors. The relationship
between behavior and risk is modeled using a time series
classification architecture in which the collision risk
level is applied as the class label of a given motion
behavior sequence. By doing so, we transform the risk
prediction problem into a time series classification task,
which makes the prediction of risk more reliable and
easier to implement.

• The performance of risk prediction is highly dependent
on the validity of the models describing and under-
standing the spatiotemporal motion behaviors of vessels.
Our risk prediction architecture adopts a bidirectional
structure for LSTM to capture the temporal correlation
between current and previous motion behaviors. As the
motion behaviors in different segments have a varying
impact on future collision risk, an attention mechanism
is adopted to distinguish the contributions of behavior
feature segments. By fully exploiting the advantages of
these two sequential learning mechanisms, the temporal
dynamics of motion behavior can be effectively mod-
eled, making risk prediction more accurate and realistic.

• The proposed method enables collision risk prediction
at earlier stages of the encounter process, thereby pro-
viding ship officers ample time and space to react to
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emergencies and take evasive action. We believe that
the outcome of this study can be applied to navigational
support in densely trafficked waters and will encourage
safe navigation in encounter scenarios to reduce the
occurrence of ship collisions.

II. RELATED WORK
Risk perception and assessment are important in the avoid-
ance of collision in ship encounter situations. A number of
studies have been devoted to risk assessment and collision
detection. One output of this research has been the concept
of ship domain, which is unique in its emphasis on the
safety region. First proposed by Fujii [13], the ‘‘ship domain’’
represents the smallest geometric shape around a ship that
allows ship officers to estimate the collision risk of the ship.
Any violation of the ship domain is considered to be a threat
to navigational safety and a potential source of collision
accidents. The ship domain can be defined using three shapes,
namely, circles [14], ellipses [15] and polygons [16], and is
primarily determined by expert experience. In most cases,
the shape and size remain unchanged during a voyage regard-
less of the actual traffic and encounter situation. To refine the
ship domain concept, Wang [17] designed the so-called fuzzy
quaternion ship domain, for which the size is determined
in terms of parameters relating to the forward, backward,
starboard radii and port-side radii. Nevertheless, the deter-
mination of the size and form of the ship domain is subject
to a variety of factors, including the speed and length of the
ship, the traffic flow density, the hydrometeorological con-
ditions of the region, etc. Thus, determining a universal ship
domain that can satisfy all situations remains an extremely
challenging problem. Furthermore, because the ship domain
represents the minimum-safety region, Szlapczynski and
Szlapczynska [18] claimed that using ship domains with spe-
cialized shapes can result in risk warnings occurring too late
for ship collision avoidance. Because of the factors described
above, the ship domain is not an appropriate tool for use in a
collision early warning index.

The collision risk index (CRI) [19], another critical indi-
cator of ship collision risk, is a numerical value calculated
using various influencing factors. When the CRI exceeds
a preset threshold, a collision alarm should be triggered.
Of the multiple definitions of CRI, the most widely used
combines the distance closest point of approach (DCPA) and
time closest point of approach (TCPA) parameters to measure
collision risk. Specifically, Lisowski [20] defined the CRI as
a weighted sum of the squares of DCPA, TCPA, and the ship-
to-ship distance, with theweights of the respective parameters
determined by the ship type. Beyond the DCPA and TCPA,
there are numerous indicators that can estimate ship-ship
collision risk. Zhao et al. [21] incorporated the values of
relative distance and speed into the CRI. To assess risk in real
time, Koldenhof et al. [22] proposed a CRI incorporating the
encounter angle in different situations and assigning separate
weights for each factor. Although the CRI is a practical
measure of collision risk, it emphasizes immediate collision

risk and fails to take into account motion behavior and the
evolutionary process of encounters.

The wide adoption of Internet of Things (IoT) technol-
ogy in the marine environment [23], [24] has led to the
use of automatic identification systems (AISs) to provide
huge amounts of data for modeling ship motion behavior.
Li et al. [25] proposes an adaptive distancemeasure algorithm
for time series, which aims at analyzing the similarity of ship
motions from AIS trajectory data. Huang et al. [26] designs
a GPU-accelerated compression algorithm to extract ship
motion patterns behind massive AIS data. AIS can support
ship motion pattern modeling and analyzing, and it can also
provide real-time for motion prediction. Motion prediction
is regarded as another fundamental approach to collision
warning. Under this approach, any crossing of the predicted
trajectories of encountering ship pairs indicates a high prob-
ability of collision. Li and Jilkov [27] used ship location,
velocity, heading angle, and acceleration extracted from AIS
data to predict upcoming ship positions. However, this model
neglect ship maneuverability, which can significantly affect
ship motion. Wiig et al. [28] proposed a compact vectorial
representation to represent marine vessel maneuverability
parameters such as mass, Coriolis force, damping matrix,
restoring force, and disturbance to increase the accuracy of
trajectory prediction. In most cases, however, these maneu-
verability parameters are difficult to access. In [29] Perera
applied Kalman filtering to historical trajectory data to pre-
dict the future trajectories of ships.

Despite their advantages, current motion prediction mod-
els have certain problems. Although prediction models are
efficient at short-term trajectory prediction, they are limited
in their ability to model ship motion over longer periods of
time, which can lead to failure in the prediction of future
risk. For example, the Kalman filtering state is only directly
accessible for subsequent time steps and ignores long-term
dependencies spanning several time steps. More importantly,
risk warning models based on motion prediction depend on
the crossing of future trajectories. This simplified criterion
fails to consider the complex relationship between spatiotem-
poral motion behavior and future collision risk.

Recently, LSTM networks [30], [31] have been used
to model the temporal behavior of vehicles and humans.
Ma et al. [32] developed an LSTM network for high-
way vehicle speed prediction in which samples of his-
torical speed data ending at time t are input and an
estimate of the speed over the interval 1t is output.
Alahi et al. [33] proposed the Social-LSTM to predict the
trajectories of individual pedestrians within a crowd based
on the use of a social-pooling layer to explain the interac-
tions between neighboring pedestrians. Ships, however, have
unique dynamic characteristics that are not shared by vehicles
or pedestrians. Huang et al. [34] noted that the high masses of
ships have a significant impact on their motion: unlike vehi-
cles, ships cannot abruptly stop, turn, accelerate, or deceler-
ate. The longer times required for a ship to change its motion
state provide a strong correlation between current and future
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FIGURE 1. Overview of Attention-BiLSTM risk early warning architecture. In the risk prediction phase, motion behaviors are characterized by
transforming AIS traces into a sequence of behavioral features via a combination of a fixed set of parameters. The behavioral features are then passed
through sliding windows as input sequences Xs of the model, which contains a bidirectional structure and an attention mechanism. The output of the
Attention-BiLSTM model is the estimate of the future collision risk level risk̂s+1t . In the model training phase, the estimated future collision risk level
risk̂s+1t is compared with the real risk level risks+1t by the cross-entropy. Through error backpropagation, the parameters of the Attention-BiLSTM
model are trained.

motion states. To address this issue, we adopt the BiLSTM to
capture this correlation between motion behaviors. Another
important factor is the dependence of the collision risk on
the critical motion behavior at a given moment. To quantify
the differential impact of motion behavior over different time
segments, we introduce an attention mechanism, which can
learn the importance of different time segments and capture
underlying interactions among features [35], [36]. Originally,
the attentionmechanismwas used tomeasure the contribution
of words or sentences to text semantics.

III. METHOD
To model the relationship between spatiotemporal motion
behavior and future collision risk, a data-driven approach
with a novel deep learning architecture for collision risk early
warning was developed. An overview of the proposed archi-
tecture is shown in Fig.1. The entry point is the AIS data pro-
duced by the encountering ships, which are analyzed to obtain
spatiotemporal information relating tomotion behavior. From
these data, behavioral features can be extracted and the colli-
sion risk level calibrated. The proposed Attention-BiLSTM is
then used to relate sequences of behavioral features to future
collision risk level. In this architecture, the BiLSTM is used to
capture the temporal dependence of motion behavior, and the
attention mechanism is then used to establish a more precise
collision risk predictionmodel based on the varying influence
of motion behavior on risk.

A. FEATURE EXTRACTION AND COLLISION RISK
CALIBRATION
Ship encounter is essentially a stochastic process com-
prising the motion behaviors of the encountering ships.

FIGURE 2. Geometric representation of encounter ships.

Many studies [37] point out that valuable information can be
extracted from spatiotemporal behavior data. Following this
rationale, the ship encounter process can be represented by
transforming their AIS traces into a sequence of behavioral
features that represent the spatial dependencies between the
two ships. By applying a widely used dynamic CRI [1],
the collision risk can then be related to the motion behavior
sequence over each time interval. In machine learning, these
two steps correspond to feature extraction and label calibra-
tion, respectively.

The behavior feature vector comprises the relative veloc-
ity, course difference, relative distance, and three types of
azimuth obtainable via geometric calculation. As shown
in Fig. 2, a rectangular coordinate system in which the X- and
Y-axes represent east and north, respectively, is established.
Expressing the own ship coordinates, course over ground,
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and velocity as So(lngo, lato), φo and Vo, respectively, and
the corresponding target ship values as ST (lngT , latT ), φT ,
and VT , the six motion parameters can be obtained as:

VR = |Vo − VT | (1)
a = sin(lat)sin(latt )
g = cos(lato)cos(latt )cos(lngt − lngo)
Dot = R ∗ arc cos(a+ b) ∗ π/180

(2)

A =

{
φo − φT |φo − φT | ≤ 180◦

360◦ − (φo − φT ) |φo − φT | ≥ 180◦
(3)

α =


arc cos(

a

Dot
) a ≥ 0

360◦ − arc cos(
a

Dot
) a ≤ 0

(4)

αo = α − φo (5)

αt = α − φT (6)

where VR is the relative velocity, Dot is the relative distance,
A is the relative course, α is true azimuth, alphao, alphat
are own and target ship azimuths, respectively. These six
inter-ship motion parameters are then input as features into
a risk prediction module in which the feature vector at time t
is denoted by xt , and xt = [V (t)

R ,Dot
(t),A(t), α(t), α(t)o , α

(t)
t ].

The COLREGs suggest that the CRI can be used to eval-
uate the probability of inter-vessel encounters. In this study,
the CRI was used to calibrate the collision risk in individual
time windows using the optimally effective DCPA and TCPA
indicators. DCPA and TCPA can be obtained by geometric
calculation as follows:

DCPA = Dot × sin(6 OTQ) (7)

TCPA = Dot × cos(6 OTQ)/VR (8)

In practice, small values of DCPA or TCPA indicate a
high probability of collision risk. To measure collision risk,
the CRI combines DCPA and TCPA using the following
equation:

CRIbasic =

adcpa (DCPADs

)2

+ atcpa

(
TCPA

Ts

)2

+ ad

(
Dot
Ds

)2
−

1

2
(9)

Although this basic definition of CRI is typically used
to quantify the risk of ship collision, the value of using
this model as a decision support system for real-time risk
assessment has been questioned, and a number of improve-
ments have been proposed to meet efficiency requirements.
In this study, we used the CRI proposed in [1] as the index
for evaluating dynamic collision risk in a more timely man-
ner than Eq. 9. Compared with Eq. 9, the dynamic CRI in
Eq. 10 takes the impacts of different encounter situations into
consideration. As investigated on the historical casualty data,

the crossing encounters are much more dangerous than other
encounter situations.

CRI = CRIbasicFDCPAFTCPAFcd (10)

FTCPA = exp−TCPA/10 (11)

FDCPA = exp−DCPA (12)

where CRI and CRIbasic are the dynamic and basic colli-
sion risk indices. FTCPA, FDCPA are the weights of TCPA
and DCPA respectively. Fcd is a multiplier reflecting the
encounter danger degree in different encounter situations.
Specifically, according to the different angle of encounter,
the encounter situations can be divided into three cate-
gories and corresponding value of each multiplier Fcd is
obtained: overtaking(encounter course is 0-60◦, Fcd = 1),
crossing(encounter course is 60-150◦, Fcd = 8.5) and head-
on(encounter course is 150-180◦, Fcd = 2.34).
It is obvious from Eq. 10 that CRI is a continuously valued

function. However, the continuous CRI values do not directly
indicate the urgency of ship collision; that is, even if the
value of the CRI is known, the level of danger it represents
remains uncertain. Inspired by [38], we divide continuous
CRI into 5 discrete levels to rank the severity of the vessel
encounters. We sort the CRI values of all samples and adopt
the Cumulative Distribution Function (CDF) to determine
the threshold for each level, so that the number of sam-
ples in each level is the same. The five risk levels are: low
(L, CRI ∈ [0, 0.15]); low-middle (LM, CRI ∈ [0.15, 0.17]);
middle (ML, CRI ∈ [0.17, 0.25]); middle-high (MH, CRI ∈
[0.25, 0.4]); and high (H, CRI > 0.4).
After calculating the behavioral features xt for each time

point over the entire ship-pair trace, the trace can be split
into multiple samples (snippets) with a given observation
length by a sliding window technique. For each snippet,
Xt = (xt−s+1, xt−s+2, · · · , xt ) is defined as the behavior
sequence leading up to time t . At the same time, the ship
collision risk level, riskt , at time t can be calculated using
Eq. 10. To achieve early risk warning, the risk level must
be predicted in advance, making it insufficient to obtain the
instantaneous collision risk level riskt+4t . Instead, our goal
is to predict the collision risk level beyond time interval
4t given a behavioral sequence Xt . To do this, the current
sequence of the behavior feature should be matched with
the future collision risk level to form a time series sample
with a label given by (Xt , riskt+1t ). Using the proposed
Attention-BiLSTM algorithm, the relationship between Xt
and riskt+1t can be established.

B. SEQUENTIAL MODELING OF MOTION BEHAVIORS
USING BIDIRECTIONAL LSTM
As discussed in the preceding sections, the motion behaviors
of encountering ships over a specific time interval will have
a significant impact on the future collision risk. Accord-
ingly, the proposed model focuses on employing the behavior
sequence constructed as discussed in Section IIIA to identify
the potential risk, which is also the key to achieving early
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warning of collisions. For this purpose, the model applies the
concept of time series classification to establish the relation-
ship between each behavior sequence and its corresponding
risk.

LSTM networks have been shown to be effective in per-
forming many sequential data classification tasks. Unlike
feed-forward neural networks, which can only predict out-
put labels based on current input features, LSTM can hold
important and relevant information obtained from historical
inputs. An LSTM unit performs remembering and forgetting
functions by controlling three gates [39] that can remember
relevant information obtained in previous time steps and
ignore irrelevant data. This process is carried out using the
following functionalities and calculations:

1) The forget gate ft is responsible for filtering past period
information on ship motion behavior. Not every action under-
taken by a ship during a voyage (in particular, constant
actions) will affect the level of risk. The purpose of the forget
gate is to filter out, under supervision, information useless to
risk determination to reduce the operational time and storage
requirements:

ft = σ (Wf ∗ [ht−1, xt ]+ bf ) (13)

where ht is the vector encoding the ship motion state from
times 0 to time t − 1, which serves as a representation of the
shipmotion behaviors during this period; xt is the shipmotion
behavior feature, which is input at time t; Wf and bf are the
weights and biases in the forget gate, respectively; and σ is
the sigmoid function.

2) The input gate comprises it , which determines which
ship motion behavior information needs to be updated at
time t , and C̃t , which temporarily records the current input
information. If, for example, the ship turns at the current time,
t , the input gate allows this information to be updated. The
motion state Ct that can be updated includes historical infor-
mation (before time t − 1) and the current input information.
In this process, Ct−1 is used in the calculation of Ct ; in this
recursive manner, information on motion behaviors is stored:

it = σ (Wi ∗ [ht−1, xt ]+ bi)

C̃t = tanh(Wc ∗ [ht−1, xt ]+ bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t (14)

3) The output gate ot selects the ship motion state informa-
tion that has a significant impact on the risk, and outputs the
final ship motion state ht at time t .

ot = σ (Wo ∗ [ht−1, xt ]+ bo)

ht = ot ∗ tanh(Ct ) (15)

The ship motion state ht is the output of the LSTM structure
and the input of the attention layer and is used to construct a
representation of the motion behaviors between the encoun-
tering ships:

H (ht ) = argmin
N∑
i=1

(Risk_Level − H (ht ))2 (16)

FIGURE 3. Representation of ship motion state with bidirectional motion.
(a) Forward, (b) backward, and (c) bidirectional LSTM. Traversing the
contextual motion behaviors in both directions enables the capture of
temporal dependencies.

Ship motion states tend to be relatively stable owing to
the weight and inertia of the vessel. Accordingly, it takes
a long time for a ship to transition from one motion state
to another, which produces a strong degree of correlation
between the current and previous motion states. Tomodel this
strong correlation in the time series, a comprehensive network
structure must be used to perceive the motion state.

In natural language processing terms, BiLSTM is used to
capture the temporal dependencies of contextualized infor-
mation. It overcomes the limitations of conventional LSTM,
which tends to ignore past relevant information, by remem-
bering input information from the past time frames and apply-
ing information from the current frame using two separate
LSTMs (forward and backward pass). In a manner simi-
lar to natural language, ship motion behaviors exhibit high
temporal dependencies, and BiLSTM capitalizes on this by
capturing the temporal dependencies between the past and
current motion states.

The forward and backward LSTM layers embedded within
BiLSTM connect with the sub-section layer to provide more
comprehensive and sequenced information for the output
layer. As shown in Fig. 3, this architecture allows BiLSTM
to facilitate a deeper understanding of ship behavior and tem-
poral correlation. In addition to the single-direction LSTM
model parameters mentioned above, it is necessary to input
backward time series, xt , and initialize and train parameters
{
←−
W } and {

←−
b } for backward LSTM. The output of the result-

ing model ht will then contain the available information on
ship motion behavior:

ht = [
−→
ht ,
←−
ht ] (17)

C. ATTENTION MECHANISM
As mentioned in the previous sections, critical motion behav-
iors in certain time segments will affect the probability of
potential collision. In particular, the acceleration, decelera-
tion, steering, and avoidance actions taken within a certain
time interval can have a more significant impact on the
potential for ship collision than actions taken during other
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time periods. More formally, within the time window Xt =
(x1, x2, · · · , xt ), the behavior at a specific time point x̃t will
have a larger contribution to the determined risk and the
prediction results. If, however, only the output of the BiLSTM
network at time t , [

−→
ht ,
←−
ht ], which represents the final motion

state (after t time steps) of the ships, is used to predict
the future risk (as shown in Eq. 18), the impact of motion
behaviors at the individual time points might be lost. The
attention mechanism is used to quantify the different impacts
of these individual encounter behaviors on collision risk.

The attention mechanism was first proposed for use in
machine translation tasks [40]. The primary concept underly-
ing this mechanism is that words and sentences make differ-
ent contributions to the emotion and meaning of a text. Using
the attention mechanism, different attention weights can be
assigned to various words to improve the understanding of
text semantics. The momentary motion behaviors over the
course of a ship voyage can be likened to the words in a text,
with the future collision risk corresponding to the emotion
and semantics of the text. Using this metaphor, the attention
mechanism can be used to quantify the different effects of
ship motion behavior on the risk at various time frames:

p(riskt+1t |x1, x2, . . . , xT ) = p(risk|
−→
ht ,
←−
ht )

(
−→
ht ,
←−
ht ) = BiLSTM (x1, x2, . . . , xT ) (18)

This approach differs most significantly from the basic
LSTM and BiLSTM approaches in that it does not attempt
to use the last-moment output state ht to summarize the
motion behavior over an entire period. Instead, it focuses
on the critical motion behaviors of ships at specific time
points that produce changes in the risk. As shown in Eq. 19,
the motion states at each moment [h1, h2, . . . , ht ] are input
to the attention layer. The degree of contribution of each
frame is represented by the corresponding attention weight
in [α1, α2, . . . , αt ], which is calculated using Eq. 21 based
on Bahdanau’s attention computational approach [40]. The
overall attention is calculated as follows:

p(riskt+1t |x1, x2, . . . , xT ) = p(riskt+1t |
−→
h1 ,
−→
h2 , . . .

−→
ht ,

←−
h2 , . . . ,

←−
ht , α1, α2, . . . αt )

(
−→
h1 ,
←−
h1 , . . . ,

−→
ht ,
←−
ht ) = BiLSTM (x1, x2, . . . , xT ) (19)

µt = tanh(Wwht + bw) (20)

αt =
exp(Wµµ

T
t )∑

t exp(Wµµ
T
t )

(21)

s =
∑
t

αtht (22)

where ht = [
−→
ht ,
←−
ht ]; Ww and Wµ are the weights of the

respective fully connected layers; s is the weighted sum of all
time steps [h1, h2, . . . , ht ], which represents the motion state
of the overall encounter process; and αt is the normalized
weight of each motion state of the ship, i.e., the attention
score. Whereas in conventional natural language processing,
the attention score is used to describe the contribution of each
word to the semantic or emotion of the text, in our early risk

Algorithm 1Attention-BiLSTMAlgorithm for Collision
Risk Early Warning

1 Input:AIS data collection C(n)
2 Output:Risk prediction model H
3 Compute behavioral features X (k) and risk level of
encounter ship from C(n)

4 Generate the training data set Mtrain and Mtest from X (k)
5 For mini batch M in Mtrain
6 For T time window data MT in M
7 For t=1 to T
8 Using forward LSTM to encoder ht
9 Using backword LSTM to encoder ht
10 End For
11 Compute Attention score αt and s
12 Compute risklevel from s
13 End For
14 Training the model H with back propagation
algorithm

15 End For
16 Save the prediction model H

FIGURE 4. Dense traffic flow and nautical chart of Nancao channal.

warning task, the attention score is applied to quantify the
importance of the motion behavior features to the future risk.
From this process, the future risk is obtained as risk = ffc(s),
where ffc is the fully connected layer. By comparing the
cross entropy between the predicted and real risk levels and
applying the back-propagation algorithm, the corresponding
parameters in the model can be trained. A pseudo-code of the
Attention-BiLSTM training process is given as Algorithm 1.

IV. EXPERIMENT AND RESULTS
A. DATA SET AND MODEL PARAMETERS
From the AIS dataset for the East China Sea, the encoun-
tering ship-pair trace data from the Yangtze River Estuary
covering January to April 2019 were selected for analysis.
The region, covering the longitude range between 122◦457′E
and 122◦594′E, and latitude between 31◦41′N and 30◦943′N,
is a typically busy waterway with dense traffic flow, as shown
in Fig. 4. To process theAIS trace data, we used timewindows
with a length of 20 s and a step of 10 s to separate the overall
track into different time intervals. Using themethod described
in Section III, the six motion behavioral features and the CRI
values were calculated, and the results saved in a database
with 75,115 records.
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TABLE 1. Network structure and parameter.

The architecture was designed based on Bahdanau’s atten-
tion LSTM structure using the network parameters listed
in Table 1, which were the optimal parameters determined
using the cross-validation set. The input had the dimensions
[850, 20, 6], where 850was the batch size, 20 was the number
of time points, and 6 was the behavior feature dimension. The
learning rate was adjusted by applying the Adam method in
accordance with the convergence speed during the iterative
process. The initial learning rate was 10−4.

B. EXPERIMENT AND RESULTS
The proposed model introduces two augmentations to con-
ventional LSTM: BiLSTM and the Attention mechanism.
To determine which improvement has a greater impact on
prediction performance, LSTM, Attention-LSTM, BiLSTM,
and the Attention-BiLSTM algorithm were compared.

Fig. 5 shows a comparison of the respective algorithms’
classification accuracies on the training set during the training
process. The following are noted in terms of final accuracy
and speed of convergence, respectively:

(1) It is seen from the final prediction results in Fig. 5 that
the Attention-BiLSTM algorithm (red line) achieves the
best prediction accuracy, with the highest point of stabil-
ity. The accuracy of BiLSTM (green line) is lower than
that of Attention-BiLSTM but higher than those of the
remaining two algorithms. Relative to the original LSTM,
BiLSTM offers features with higher dimensionality for the
decision-making model and enables the representation of
strong temporal correlations in motion state. The results
obtained by the Attention-LSTM algorithm (yellow line)
do not differ significantly from those of the conventional
LSTM algorithm. Attention-LSTM takes into account the
differences in influence of various ship motion behaviors
on risk. However, because it lacks a sufficient perception of
ship motion behavior, it is difficult for the attention model to
exert these advantages. From a machine learning standpoint,
the complex Attention-LSTM model feeds into a relatively
reduced number of dimensions, resulting in inaccurate pre-
diction results that are only slightly better than those obtained
by the LSTM.

(2) A comparison of the rates of change of the four curves
in Fig. 5 reveals that the Attention-BiLSTM algorithm has
the fastest learning rate during the early training period (the
red line has the highest gradient over the first 93 iterations).
This demonstrates the effectiveness with which the rela-
tionship between motion behavior and the future collision
risk is trained by Attention-BiLSTM. In the latter stage of

FIGURE 5. Accuracy curves of models on the training set. The
convergence rate and accuracy of a model can be obtained from the
gradient and peak value of its curve.

training, the prediction accuracy of BiLSTM rises at a sim-
ilarly rapid rate, although the model tends to converge after
about 300 iterations. In terms of model structure, BiLSTM
traverses ship behaviors in the forward and backward direc-
tions to increase the number of feature dimensions. How-
ever, it is relatively simple compared with Attention-BiLSTM
and terminates the iteration process prematurely, which is
an under-fitting phenomenon. By contrast, the Attention-
LSTM model fluctuates significantly in terms of learning
speed because it does not fully perceive ship motion behavior
information. When the representation created by the model
does not completely reflect the motion state of the ship,
the performance of the model becomes unstable, especially
under the complexmodel formulation applied using the atten-
tion mechanism.

To quantitatively analyze the respective algorithm pre-
diction performance at different risk levels, the recall rate
was applied as an evaluation index on the test set. The
results in Table 2 and Fig. 6 indicate that all LSTM-based
risk prediction models achieved higher recall rates when the
collision risk was high. Over five risk levels from low to
high, the recall rate of Attention-BiLSTM reached 78.95%,
72.51%, 73.61%, 84.24%, and 87.98% respectively, possibly
because the motion behavior of the ship is more typical
in high-risk situations. Among the LSTM-based algorithms,
Attention-BiLSTM performed the best in terms of average
recall rate. These results suggest that the BiLSTM and atten-
tion mechanism augmentations are effective in early risk
warning.

The stabilities of the four models are compared using
box-plots in Fig. 6. In this case, a box-plot with a smaller
length corresponds to a higher degree of stability of the
model, while the vertical position of the box is proportional
to the mean value of the recall rate. Under these criteria,
Attention-BiLSTM is relatively stable, as confirmed by the
variance values in brackets in Table 2 and the length of the box
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FIGURE 6. Box-plots of recall rate on the test set representing the
stabilities of the models at various risk levels.

TABLE 2. The recall rate of risk prediction.

in Fig. 6. A separate analysis of the two mechanisms reveals
that, while the recall rate variance of BiLSTM is relatively
small, it has a small mean. This suggests that a bidirectional
structure is indeed a more comprehensive representation of
motion behavior and offers adequate feature dimensions for
the model. However, because of its lack of sophistication,
BiLSTM has difficulties in fitting the relationship between
ship behavior and risk. As mentioned earlier, BiLSTM con-
siders only the last-moment ship motion state [

−→
ht ,
←−
ht ] as

the basis for predicting future risk while ignoring the influ-
ence of ship behavior at each prior time point. By con-
trast, Attention-LSTM has a high variance and an unstable
recall rate. As the attention mechanism takes into account
the ship behavior at each time step, the model can produce
an unstable prediction effect owing to individual differences
in behavior. The combination of the two mechanisms not
only enriches the bidirectional feature expression but also
increases the high-dimensional fitting degree of the model.
As a result, Attention-BiLSTM achieves the best prediction
effect in terms of accuracy and stability.

C. CASE STUDY AND INTERPRETABILITY OF ATTENTION
From the above experiments, we have verified that the
Attention-BiLSTM algorithm has good prediction perfor-
mance in the overall sample. To further study the concrete
examples, in this part, we analyze the difference between the
predicted risk level and the true value in the naturalistic ship
encounter scenario. Then, through the calculated attention
weight, the interpretability of the risk prediction model is
analyzed.

As stated in the literature [6], encounter situations between
ships can be divided into three categories: crossing, head-on,

and overtaking. In different encounter situations, the impact
of motion behavior on future collision risk might differ.
Figs. 7(a), (b), and (c) show the changes in ship risk and the
evolution of motion behavior under the respective situations.
It is worth noting that the risk levels shown in the figure rep-
resent the collision risks after 30 s.We then compared the risk
levels predicted by the threemodels with the ground-truth risk
level and found that the risk predicted by Attention-BiLSTM
was the most consistent with the ground truth. In particular,
the real collision risk level changed as the two ships met and
departed. The LSTM was not able to catch this change in a
timely manner and tended to maintain the risk level in the
previous period. By contrast, Attention-BiLSTM was able to
track the change in the real value in a timely manner, thus
yielding a better real-time prediction performance.

Using Eq. 21, we calculated the attention scores at each
time interval of motion behavior. This score represents the
contribution of encounter behavior at a given time to the risk
level, with a higher score representing a greater impact of
ship behavior on risk. The respective attention score results
are shown in the sub-images on the right in Figs. 7(a), (b),
and (c). From the results, it is seen that a high score reflects
the portion of motion in which the state changes to some
extent. Intuitively, an area with a high attention score will
essentially represent a turning point of the trace or the point
at which the two ships begin to approach. The results indicate
that the attention mechanism is very sensitive to changes in
the ship motion state and is therefore useful in predicting
the collision risk in a timely manner. It is, in fact, apparent
that the changes in the attention score are more significant
in high-risk windows, which also explains why the proposed
model has a higher recall rate for high-risk situations and
demonstrates how the attention mechanism can effectively
quantify the differential influence of encounter behavior on
risk.

To further assess the effectiveness of theAttention-BiLSTM
risk prediction algorithm, we focused on the areas in which
the risk changes under different situations. In Fig. 8, the corre-
sponding areas in Figs. 7(a), (b), and (c) have been enlarged to
enable a more detailed analysis of the risk prediction results.
The far-left histogram shows the future risk level, which is the
ground truth. The degree to which a histogram of predicted
risk is consistent with the ground truth is proportional to
the prediction accuracy of the associated algorithm. It is
seen that the Attention-BiLSTM model is more consistent
than the LSTM with the change in true risk. In Fig. 7(a),
the risk level MH lasts for two minutes and, while LSTM
does not detect it, Attention-BiLSTM senses this risk level
a minute and a half in advance. These results are con-
firmed in Figs. 8(b) and (c), in which the Attention-BiLSTM
algorithm demonstrates better risk prediction performance
than LSTM in both head-on and overtaking situations. The
original LSTM does not update as the risk changes and tends
to retain the risk predicted during the previous moment,
an approach that is inappropriate for the early risk warning
task.
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FIGURE 7. Comparison of the predicted results between original LSTM and Attention-BiLSTM in various encounter situation. In the order from left
to right, the first picture shows the real risk level of the future, the second picture represent the predicted risk level by original LSTM, the third
picture show the predicted risk level by Attention-BiLSTM, the fourth picture represent the attention weight calculated by attention mechanism.
(a) The crossing situation. (b) The head-on situation. (c) The overtaking situation.

The results in Fig. 7 and 8 validate the early risk prediction
performance of Attention-LSTM. Here, we further analyze
the mechanism underlying the attention mechanism, discuss
the interpretability of the model, and explore the relationship
between attention score and ship motion behavior. In the field
of text classification, the attention score can be used to repre-
sent high-level model information. For example, words with
high attention scores contribute significantly to the text cate-
gory because high-scoring words better reflect the high-level
semantic information related to the text. Inspired by the text
classification task, we can evaluate the relationship between

the calculated attention score and ship motion behaviors in
different encounter scenarios. Themaximal information coef-
ficient (MIC) is a nonlinear correlation coefficient used to
calculate the correlation between an input motion feature and
the calculated attention score. It is worth noting that this score
is calculated under a supervised process in which the label is
the future risk level. Therefore, a higher MIC correlation with
the score will correspond a greater degree of contribution of
the motion behavior to the future risk.

Figs. 9 (a), (b), and (c) present heat maps of the correlation
coefficients between the set of ship behavior features and
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FIGURE 8. The histogram of the predicted results original LSTM and Attention-BiLSTM. (a) The crossing situation. (b) The head-on
situation. (c) The overtaking situation.

FIGURE 9. Heat map of the correlation coefficient MIC between the motion behaviors and the attention score. (a) The crossing situation. (b) The head-on
situation. (c) The overtaking situation.

the set of attention scores {αt } in the crossing, head-on, and
overtaking scenarios, respectively. The diagonal elements of
the heat map represent theMIC values between the respective
attention scores and the individual features. For example,
the value of 0.22 in the first row/first column of Fig. 9(a) rep-
resents the MIC between the relative course A and the atten-
tion scores {αt } in the crossing situation. The non-diagonal
elements represent the MICs between the products of the
abscissa and ordinate features and the attention scores. For
example, 0.31 in the first row/second column represents the
correlation between the attention score and A ∗ D. Higher
MIC values in the heat map correspond to a greater degree
of contribution of the corresponding motion feature to the
risk prediction in the corresponding scenario. For example,
it is seen from Fig. 9(a) that V and D have a greater impact
on future risk, a result that is consistent with the fact that
the distance and relative speed are important in determining
whether a collision will occur between two ships involved
in a crossing situation. In the encounter case (Fig. 9(b)),
both the distance and the azimuth of the ship-pair have a
significant contribution to the risk prediction. In this case,
it is more meaningful to consider the azimuth of the two
ships synthetically than it is to consider each angle separately
because 0.32 > 0.24 and 0.33 > 0.28. The overtaking
situation is more complex. As seen from Fig. 9(c), the MIC

value distribution is relatively uniform at each position, indi-
cating that the impacts of the six different motion features
on future risk are balanced, and it is difficult to obtain the
most prominent one or two factors to explain the formation
of risk. The value range ofMIC across all scenarios in Fig. 9 is
[0.17− 0.49], indicating that there is a nonlinear correlation
betweenmotion features and attention scores. Thismeans that
the attention score reflects the influence of different behaviors
on risk. By using the attention mechanism, the Attention-
BiLSTM can capture the complex and uncertain relationship
between motion behavior and future risk.

V. CONCLUSION
In this study, an approach to collision risk early warning
based on deep learning techniques was investigated. Based on
the consideration that the motion behavior can determine the
subsequent collision risk, a novel deep learning architecture
was proposed as a method for modeling the complex relation-
ship between spatial-temporal motion behaviors and future
risk. Under this approach, the motion behavior sequence
over a specified time interval is labeled with its correspond-
ing near-future risk level. Time series classification is then
employed to classify the behavior sequence that results in a
predicted risk. Using this approach, effective and timely risk
prediction is achieved. In particular, the spatial dependencies
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of encountering ship pairs can be represented by transform-
ing AIS data into a sequence of behavioral features. The
bidirectional structure of LSTM is incorporated by the pro-
posed architecture to capture the temporal correlation among
motion behaviors, while the attention mechanism is adopted
to quantify the different effects of ship behavior on risk at
different time frames. The Attention-BiLSTM algorithm was
experimentally validated in terms of its prediction accuracy,
stability, and real-time performance. The approach developed
in this study should be applicable in the early risk warning of
ship collision accidents, and future research should provide
more valuable insights into situational perception.
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