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ABSTRACT Aspect-Based Sentiment Analysis (ABSA) involves two sub-tasks, namely Aspect Mining
(AM) and Aspect Sentiment Classification (ASC), which aims to extract the words describing aspects of
a reviewed entity (e.g., a product or service) and analyze the expressed sentiments on the aspects. As AM
and ASC can be formulated as a sequence labeling problem to predict the aspect or sentiment labels of each
word in the review, supervised deep sequence learning models have recently achieved the best performance.
However, these supervised models require a large number of labeled reviews which are very costly or
unavailable, and they usually perform only one of the two sub-tasks, which limits their practical use. To this
end, this paper proposes a SEmi-supervised Multi-task Learning framework (called SEML) for ABSA.
SEML has three key features. (1) SEML applies Cross-View Training (CVT) to enable semi-supervised
sequence learning over a small set of labeled reviews and a large set of unlabeled reviews from the same
domain in a unified end-to-end architecture. (2) SEML solves the two sub-tasks simultaneously by employing
three stacked bidirectional recurrent neural layers to learn the representations of reviews, in which the
representations learned from different layers are fed into CVT, AM and ASC, respectively. (3) SEML
develops a Moving-window Attentive Gated Recurrent Unit (MAGRU) for the three recurrent neural layers
to enhance representation learning and prediction accuracy, as nearby contexts within a moving-window in a
review can provide important semantic information for the prediction task in ABSA. Finally, we conduct
extensive experiments on ABSA over four review datasets from the SemEval workshops. Experimental
results show that SEML significantly outperforms the state-of-the-art models.

INDEX TERMS Aspect-based sentiment analysis, semi-supervised learning, multi-task learning, end-to-end
learning, cross-view training, moving-window attention.

I. INTRODUCTION
Product and service reviews posted by their users have been
drawn a lot of attentions from both industry and academic
communities. Document-level or sentence-level sentiment
analysis tells an overall opinion about a review or sentence,
whereas Aspect-Based Sentiment Analysis (ABSA) provides
more fine-grained information by mining aspects and ana-
lyzing aspect-level opinions for a discussed entity [1], [2].
For instance, a user posts a review on a laptop: ‘‘I love
the operating system but not the preloaded software’’ which
contains two aspects, i.e., ‘‘operating system’’ with a pos-
itive sentiment and ‘‘preloaded software’’ with a negative
sentiment.
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Generally, ABSA can be divided into two sub-tasks,
namely Aspect Mining (AM) and Aspect Sentiment Classifi-
cation (ASC) [1]. The AM sub-task extracts the aspect words
from each sentence of reviews, which has been extensively
studied by applying unsupervised models [3]–[5], supervised
models [6]–[13], or semi-supervised techniques [14]–[19].
The ASC sub-task that aims to predict the sentiment polar-
ities on these aspects also has been increasingly discussed
recently [20]–[25]. However, these works [3]–[25] only focus
on one of the sub-tasks. As a result, it is required to train
two different models and pipeline them together for ABSA.
Nonetheless, the literatures [26], [27] show that the pipeline
method is usually not the best solution for highly related
tasks in Natural Language Processing (NLP) and an inte-
grated method is more effective by jointly training different
and related tasks. Thus, increasing attention has been paid
on this integration direction [28]–[30]. As aspect words and
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sentiment words often co-appear and can help find each
other, AM and ASC are strongly related sub-tasks; a jointly
trained method for the two sub-tasks in ABSA is promising.
Moreover, most existing works [6]–[13], [21]–[25] adopt
supervised learning for the AM or ASC sub-tasks and require
a large amount of labeled reviews. The manual labeling on
training data is very costly, especially for domain-dependent
aspects, i.e., different domains may have different aspect
spaces. Researchers are motivated to develop more effective
semi-supervised learning models for ABSA [31]. Thus, our
two main concerns are: (1) whether we can fully use both
labeled and unlabeled reviews and (2) whether we can per-
form both AM and ASC sub-tasks in an end-to-end architec-
ture at the same time. Our previous work [19] has addressed
the first concern, in which the proposed model can leverage
both labeled and unlabeled reviews only for the AM sub-task
in the unified framework.

In this paper, we propose a new SEmi-supervised Multi-
task Learning framework (called SEML) to enhance ABSA
on user reviews. SEML follows the method in our previous
work [19] to alternately learn a model on a mini-batch of
labeled reviews and a mini-batch of unlabeled reviews from
the same domain based on Cross-View Training (CVT) [32]
to enable semi-supervised learning. In the CVT, one primary
prediction module for either AM or ASC is trained with the
standard supervised learning on labeled reviews and four aux-
iliary prediction modules with different views on unlabeled
reviews are trained to agree with the AM or ASC primary
prediction module. CVT switches training on labeled and
unlabeled reviews to improve both review representations and
prediction modules.

Meanwhile, as AM and ASC are highly coupled together,
SEML applies multi-task learning by sharing the represen-
tation learning in different layers for performing AM and
ASC in the same framework. More specifically, three stacked
bidirectional recurrent neural layers are employed to learn
representations of reviews, in which the representations from
the first layer are fed into the four auxiliary prediction
modules of CVT to leverage unlabeled reviews, the represen-
tations from the second layer are fed into the primary predic-
tion module for AM, and the representations from the third
layer are fed into the primary prediction module for ASC.
Moreover, each upper layer uses the representations from
lower layer as inputs, so SEML enables multi-task learning
and interaction between different sub-tasks to improve the
aspect and sentiment prediction.

Further, SEML considers a significant observation that
nearby contexts of a word in a sentence provide impor-
tant semantic information for a prediction task in ABSA.
For instance, the past nearby aspect words (e.g., ‘‘operating
system’’) should be more significant than other words to
guide the extraction of subsequent aspects (e.g., ‘‘preloaded
software’’), and a closer sentiment word is more likely to be
the corresponding opinion for the aspect (e.g., ‘‘love’’ for
‘‘operating system’’ and ‘‘not’’ for ‘‘preloaded software’’).
Therefore, SEML devises a Moving-window Attentive Gated

Recurrent Unit (MAGRU) as the neural unit in the three
bidirectional recurrent neural layers; MAGRU extends Gated
Recurrent Unit (GRU) [33] with an attention mechanism to
encode the information within a moving-window.

In general, the contributions of this paper can be
summarized as below.
• We propose the first semi-supervised deep multi-task
learning framework for both AM and ASC sub-tasks in
ABSA, which introduces CVT to use unlabeled reviews
to improve the representation learning within a unified
end-to-end architecture.

• We enable multi-task learning to perform AM and ASC
sub-tasks in the same framework with three stacked
bidirectional recurrent neural layers and corresponding
prediction modules.

• We develop a moving-window attention mechanism
within the GRU, i.e., MAGRU, to capture significant
past nearby information for the aspect and sentiment
prediction.

• We conduct extensive experiments to evaluate the per-
formance of SEML for AM, ASC and complete ABSA
based on the four review datasets from the SemEval
workshops. Experimental results show that SEML is
significantly better than the state-of-the-art models.

The reminder of this paper is organized as follows.
Section II discusses related works. Then, we present our
SEML framework in Section III. Section IV shows the exper-
imental results. Finally, Section V concludes this paper.

II. RELATED WORKS
A. ABSA AS SEQUENCE LABELING
Sequence labeling is a very common problem in NLP (e.g.,
part-of-speech tagging and named-entity recognition) and
aims to assign a label to each element in a sequential input.
Both AM and ASC can be formulated as a sequence labeling
problem, in which a label is given to each word in the review.
Formally, AM predicts a label sequence {yA1 , . . . , y

A
T } for

a given sentence with T words {x1, . . . , xT }, where yAt ∈
{ASPECT,NONASPECT}, and the label space changes to
ySt ∈ {SENTIMENT POLARITIES} for ASC. For instance,
the reference [6] defines a set of labels to distinguish
feature aspects, component aspects and function aspects,
and trains hidden Markov models to label each word in
a review. Further, the researchers [7] simplify these labels
and apply {B, I,O} scheme, where B, I and O identify the
beginning of an aspect, the continuation of the aspect, and
other words, respectively. The {B, I,O} scheme can well
handle aspects expressing in phrases and has been applied
for AM [9], [18] and aspect-opinion term co-extraction
[11], [12]. In the ASC sub-task, as aspects are assumed
to be known, the prediction model only needs to assign a
sentiment polarity to each aspect with {POS,NEG,NEU,O}
scheme [24], [25], where POS, NEG and NEU denote posi-
tive, negative and neutral sentiment, respectively, and O for
other words. Recently, a collapsed labeling scheme is applied
to perform ABSA as a single sequence labeling task [29],
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in which aspects and sentiments labels are combined
as {B-{POS,NEG,NEU}, I-{POS,NEG,NEU},O} scheme.
We do not follow this collapsed scheme in our SEML, as we
consider the interaction between two sub-tasks can improve
the aspect and sentiment prediction. Thus, our SEML uses
the {B, I,O} and {POS,NEG,NEU,O} labeling schemes.

B. SEMI-SUPERVISED APPROACHES
Most existing semi-supervised methods for ABSA are pro-
posed only for AM. One direction is to use prior domain
knowledge to guide an unsupervised topic model (e.g., Latent
Dirichlet Allocation). For instance, some methods manually
choose domain specified seed words [14]–[17] for topic mod-
eling. However, this kind of methods often need manually
defined domain knowledge and do not fully use labeled
reviews. Another direction takes full advantage of unlabeled
reviews in the same domain to improve supervised mod-
els. The idea of pre-training has been applied in the AM
model [18] to learn domain-specific word embeddings from
unlabeled reviews in advance which then fed into normal
supervised models. However, instead of pre-training, our
previous work [19] learns both task- and domain-specific
representations of reviews in a unified framework, which
improves the AM sub-task. For the sentiment classification
problem, some researchers [20], [28], [31], [34], [35] pre-
fer to use external linguistic resources to catch the affec-
tive information of words, which can be considered as the
special case of semi-supervised approaches. For example,
people propose commonsense knowledge networks to per-
form concept-level sentiment analysis [20], [31], [34], [35];
the authors of the work [28] try to encode commonsense
knowledge into their attentive neural network for ASC. The
literature [36] uses data augmentation method to generate
more labeled training data to achieve semi-supervised learn-
ing for ABSA. Nonetheless, supervised deep learning mod-
els currently have achieved great successes when applied
to AM [9]–[13], ASC [21]–[25] and complete ABSA [29].
To the best of our knowledge, we are the first to propose
an end-to-end semi-supervised deep learning framework that
can leverage labeled and unlabeled reviews for both the AM
and ASC sub-tasks.

C. CROSS-VIEW TRAINING
Normally, a deep learning model works best when it is
trained on a large amount of data with reliable labels.
However, for domain-dependent aspects, manual labeling
could be a huge investment. One solution is to apply effec-
tive semi-supervised learning to leverage a plenty of unla-
beled reviews. Current semi-supervised learning models [18]
separate the training process into two phases: pre-training
and supervised learning. A key disadvantage of such mod-
els is that the first phase on representation learning does
not benefit from any labeled reviews. More sophisticatedly,
CVT [32] implements semi-supervised learning by alter-
nately switching the training process on labeled data and
unlabeled data, which is the meaning of Cross-View. Note

that, the term Cross-View may refer to multi-view learning
in some works [37], [38], in which the models learn from
multi-view data (e.g., images taken from different view-
points) instead of switching between labeled and unlabeled
data. Our previous work [19] has showed that CVT can
well leverage both labeled and unlabeled reviews. Thus,
the SEML framework is also based on CVT, but it has a more
task-specific architecture that combines CVT with multi-task
learning to jointly train multiply models at the same time.

D. MULTI-TASK LEARNING
Extensive works [26], [27] show that the models jointly
trained for closely related tasks can outperform those mod-
els for a single task. For ABSA, a multi-task supervised
model with two coupled GRU layers is proposed to co-extract
aspects and sentiment words [12]. The authors of the paper [9]
employ a neural network with three Long Short-Term
Memory (LSTM) layers to perform the multi-task learning
for AM. Further, they add an attention mechanism into the
AM model [13]. The multi-task learning is also applied
for ASC. For example, people propose the Sentic LSTM
(a two-step attentive LSTM) [28] to perform aspect cate-
gorization and ASC; the researchers of the literature [29]
propose the E2E-TBSAmodel for ASC based on two bidirec-
tional LSTM layers and the collapsed labeling scheme; and
an interactive multi-task learning network (IMN) [30] is pro-
posed to learn the model from the token-level AM and ASC
sub-tasks as well as the document-level tasks. However, all
the aforementioned studies are based on supervised learning
that relies on large amounts of labeled reviews to guarantee
good performance. In contrast, our SEML framework can
leverage unlabeled reviews to enhance supervisedmodels and
alleviate the costly demand on data labeling.

III. THE FRAMEWORK SEML
In this section, we present our semi-supervised deep learning
framework SEML for ABSA. First, we formulate the two
sub-tasks AM and ASC into sequence labeling problems.
Then, we present the technical details of the key components
in SEML.

A. PROBLEM STATEMENT
Suppose there are one set (Du) of unlabeled reviews from
a domain (or an entity) and two sets (DAM

l and DASC
l ) of

labeled reviews from the same domain which are annotated
for AM and ASC, respectively. The AM sub-task is to learn
a classifier from the reviews in DAM

l and Du to extract a set
of aspects, while the ASC sub-task is to train a model from
the reviews in DASC

l and Du to predict the sentiment polari-
ties for the aspects. These two sub-tasks can be formulated
as different sequence labeling problems by using different
tagging schemes. Specifically, we use the {B, I,O} scheme
for AM, where B, I, and O indicate the beginning of, the con-
tinuation of, and the out of the aspect, respectively (refer to
Section II-A). For the ASC sub-task, the {POS,NEG,NEU,
O} scheme is applied, where POS,NEG, andNEU express the
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TABLE 1. An example on AM and ASC as sequence labeling problems. Y A shows the aspect labels for each word, and Y S means the sentiment polarities
for the aspect.

FIGURE 1. The architecture of our SEML framework. Refined word embedding and char-features are fed into three
stacked BiMAGRU layers. The first BiMAGRU layer is shared with CVT to leverage unlabeled reviews, in which four
auxiliary prediction modules are trained to agree with both AM and ASC (i.e., the primary prediction modules).
The second BiMAGRU layer trains the AM model to extract aspects, and the third layer trains the ASC model to predict
sentiment polarities.

positive, negative, and neural sentiment respectively, and O
means the NULL sentiment for a word. Then, each word xt in
the review sentence X = {x1, . . . , xT } should be assigned as
one of Y A ∈ {B, I,O} and one of Y S ∈ {POS,NEG,NEU,O}
(see TABLE 1 for instance).

B. FRAMEWORK ARCHITECTURE
Our motivation is to fully use the labeled and unlabeled
reviews and simultaneously perform both AM and ASC
within an end-to-end framework. As shown in FIGURE 1,
our SEML framework consists of four components including
representation learning, AM, ASC and CVT. Since recur-
rent neural networks (RNNs) can naturally represent the
sequential information, our framework employs deep RNNs
as the basic architecture to build the shared contextualized
representation learning component for both AM and ASC
sub-tasks. Specifically, three stacked bidirectional recurrent
neural layers with MAGRU are employed to build the shared

memory; MAGRU extends GRUwith moving-window atten-
tion mechanism to encode nearby semantic significances.
We give a detailed design of MAGRU in Section III-C.

Moreover, each stacked Bidirectional MAGRU (BiMA-
GRU) layer is designed to learn representations for differ-
ent tasks. Specifically, the first layer is shared with CVT
to train four auxiliary prediction modules for AM or ASC
by leveraging unlabeled reviews; the second layer uses the
representations from the first layer as inputs and trains one
primary prediction module for AM; and the third layer inputs
the representations from the second layer and trains the other
primary prediction module for ASC. As each upper layer uses
the outputs from the lower layer as inputs, our SEML enables
not only multi-task learning but also the interaction between
different sub-tasks to improve the aspect extraction and senti-
ment prediction. The detailed representation learning process
is presented in Section III-D.

To enable semi-supervised learning, our SEML framework
trains on both labeled and unlabeled reviews for two sub-tasks
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FIGURE 2. An illustration of the proposed Moving-window Attentive GRU
(MAGRU).

(AM and ASC) in ABSA by applying CVT. While perform-
ing CVT, the primary prediction modules for AM and ASC
are trained with the standard supervised learning on labeled
reviews; on unlabeled reviews, four auxiliary predictionmod-
ules (namely ppast, pfwd, pbwd, and pfuture) with different
views on the input data are trained to agree with the primary
prediction modules. We discuss the specific multi-task CVT
in Sections III-E and III-F.

C. MOVING-WINDOW ATTENTIVE GRU
As introduced above, our framework employs deep RNNs
to build the shared representation learning component.
However, in ABSA, the information from past nearby steps
provide useful clues for a prediction, e.g., the aspect label ‘‘I’’
cannot follow ‘‘O’’, and the previous aspects can guide
the extraction of subsequent aspects. Though RNNs with
(LSTM) [39] or GRU [33] can well encode long period of
sequential information, they are difficult to pay attention to
exactly useful nearby contexts at each time step. To this
end, our framework extends GRU with a Moving-window
Attention mechanism (called MAGRU) that can capture past
nearby significances.

We prefer extending GRU as it has a simpler structure and
less parameters than LSTM but shows competitive perfor-
mance in many NLP tasks [40]. Specifically, as shown in
FIGURE 2, MAGRU has three gates, namely reset gate r ,
update gate z, and attention gate a. The update gate zt at time
step t is obtained as follow:

zt = σ (Uzxt +Wzht−1), (1)

where ht−1 is the previous hidden state, xt is the input of
current step, Uz and Wz indicate gate parameters, and σ is
the sigmoid activation function. At the same time, the reset
gate rt is computed by:

rt = σ (Urxt +Wrht−1). (2)

Thus, the new candidate hidden state h̃t without any attentions
for current time step can be obtained by using tanh activation
function:

h̃t = tanh(Uhxt +Wh(rt ∗ ht−1)). (3)

The above update and reset gates are the same with
GRU. However, we add a new attention gate to encode
past nearby significances. Specifically, the moving-window
attention considers the most recent N (moving-window size)
hidden states. At step t , we calculate the normalized signifi-
cance score sti of each cached past state hi (i ∈ [t−N , t− 1])
as follow:

sti = Softmax(Ua · tanh(W 1
a hi +W

2
a xt )), (4)

where tanh is the activation function,Ua,W 1
a , andW

2
a are the

attention parameters. Then the attention gate at is given by:

at = ReLU

(
t−1∑

i=t−N

stihi

)
, (5)

where we compute the weighted sum of the cached previ-
ous N hidden states hi with the score weights sti , and apply
the ReLU activation function.

Finally, to calculate current moving-window attentive
hidden state ht at step t , our framework considers all the three
gates:

ht = (1− zt ) ∗ ht−1 + zt ∗ h̃t + at , (6)

in which h̃t is determined by the reset gate to combine the
new input with the previous hidden state. The update gate
defines how much of the previous information to keep, and
the attention gate gives the past nearby significance.

D. REPRESENTATION LEARNING
Pre-trained general word embeddings (e.g., GloVe [41])
have been widely used in recent NLP models, which
became a essential component to convert texture information
into contextualized vectors for later computation. However,
the researchers [42] discover that these general word embed-
dings often represent opposite sentiment words (e.g., good
and bad) with similar vectors, which affects the final senti-
ment classification. Thus, they propose an adjusting method
to use a sentiment lexicon that refines the embeddings of sen-
timent words to be closer to sentimentally similar words and
farther away from sentimentally different ones, and improves
the classification performance on many sentiment related
tasks. SEML also applies the same method [42]. Moreover,
because combining general embeddings with char-features
can help handle misspelling words [43], SEML represents
each word in the input sequence as the concatenation of
the refined embedding vector and char-features from a
character-level Convolutional Neural Network (CNN) [43].
Then the concatenation vectors are fed into the deep bidirec-
tional RNN.

The RNN employs three stacked BiMAGRU layers to build
the shared memory for both AM and ASC sub-tasks, in which
each upper layer uses the hidden states from the lower
layer as inputs. Specifically, we feed the inputs forwardly
and backwardly to MAGRUs and combine them as one
BiMAGRU layer, because both forward and backward infor-
mation is important for the prediction on the current position.
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Formally, let V = {v1, . . . , vT } be the concatenation vectors
of refined word embeddings and char-features. The hidden
representations for each layer are derived by concatenating
the outputs of both forward

−−−−−→
MAGRU and backward

←−−−−−
MAGRU

as follows:

h1t = [
−−−−−→
MAGRU (vt )⊕

←−−−−−
MAGRU (vt )], (7)

h2t = [
−−−−−→
MAGRU (h1t )⊕

←−−−−−
MAGRU (h1t )], and (8)

h3t = [
−−−−−→
MAGRU (h2t )⊕

←−−−−−
MAGRU (h2t )], (9)

in which t ∈ [1,T ] and ⊕ denotes the concatenation
operation, h1t is the hidden representations from the first
BiMAGRU layer at t time step, h2t is from the second layer,
and h3t is from the third layer.

E. PREDICTION MODULES
SEML trains models on both labeled reviews and unlabeled
reviews for two sub-tasks (AM and ASC) in ABSA. SEML
learns one primary prediction module from labeled reviews
and four auxiliary predictionmodules from unlabeled reviews
with restricted views of inputs for each sub-task (AM or
ASC). Suppose yAt is the aspect label for the word xt ∈ X . The
primary predictionmodule for AMdetermines the probability
distribution p(yAt |xt ) over the aspect labels {B, I ,O} from the
representations (h1t and h

2
t ) from the first and secondMAGRU

layers with a simple one-hidden-layer neural network, given
by:

p(yAt |xt ) = Softmax(UA
p · ReLU (WA

p (h
1
t ⊕ h

2
t ))+ b

A), (10)

in which UA
p , W

A
p and bA are the model parameters.

Further, since ASC relies on the position of aspects,
the aspect boundary information from the primary module
for AM is delivered into the third BiMAGRU layer for ASC.
Therefore, the moving-window attention in the third layer can
help the primary module for ASC focus on the corresponding
sentiment words and maintain the consistency of sentiment
labels assigned tomulti-word aspects. The primary prediction
module for ASC adopts the similar architecture as in AM,
given by

p(ySt |xt ) = Softmax(US
p · ReLU (W S

p (h
1
t ⊕ h

2
t ⊕ h

3
t ))+ b

S ),

(11)

where ySt ∈ {POS, NEG, NEU, O}.
As mentioned above, SEML shares the first BiMAGRU

layer with the auxiliary prediction modules that have
restricted views of unlabeled reviews. There are four different
auxiliary prediction modules (ppast, pfwd, pbwd, and pfuture) in
the framework for each sub-task (AM or ASC), where ppast
means, for the prediction of current word, this module only
has a view of all past words on the left of current word in
the sentence; pfwd has a view of past (left) and current words;
pbwd observes current and words on the future (right); and
pfuture only observes all future words on the right, as shown
in FIGURE 1. BiMAGRU can easily provide these restricted

views without additional computation as follows:

ppast(ykt |xt ) = nnpast(
−→
h 1
t−1), (12)

pfwd(ykt |xt ) = nnfwd(
−→
h 1
t ), (13)

pbwd(ykt |xt ) = nnbwd(
←−
h 1
t ), (14)

pfuture(ykt |xt ) = nnfuture(
←−
h 1
t+1), (15)

where k ∈ {A, S}, nnpast, nnfwd, nnbwd, and nnfuture denote
the neural network with the structure given in Equation (10)
or (11). Since the second and third BiMAGRU layers have
already seen all words, we can only feed the hidden repre-
sentations

−→
h 1 and

←−
h 1 from the first BiMAGRU layer to the

auxiliary prediction modules in order to restrict their view on
an input sequence.

F. MULTI-TASK CROSS-VIEW TRAINING
The key idea of CVT is to use unlabeled reviews from the
same domain of labeled reviews to enhance the representation
learning and alternately learn primary and auxiliary predic-
tion modules on a mini-batch of labeled reviews or unlabeled
reviews. In order to perform multi-task learning, i.e., to train
one primary module and four auxiliary modules for AM or
ASC, we randomly choose a sub-task (AM or ASC) with its
labeled reviews at first. Then the Cross-Entropy (CE) loss is
utilized to train the corresponding primary prediction module
p(yAt |xt ) or p(y

S
t |xt ):

LkSUP =
1

|Dkl |

∑
xt ,yt∈Dkl

CE(yt , p(ykt |xt )), k ∈ {A, S}. (16)

For the unlabeled reviews Du, the framework first infers
p(yAi |xi) as well as p(y

S
i |xi) (xi ∈ Du) based on the primary

modules for AM and ASC and then trains the auxiliary pre-
diction modules to match two primary prediction modules by
using the Kullback-Leibler (KL) divergence function as the
loss:

LCVT =
1
|Du|

∑
xi∈Du

∑
k

∑
j

KL(p(yki |xi), pj(y
k
i |xi)), (17)

where j ∈ {left, fwd, bwd, right}, k ∈ {A, S}, and the param-
eters of the primary modules are fixed during training. The
auxiliary prediction modules can learn to enhance the shared
representations, because the new words that are not in labeled
reviews may have been encoded into the model and be useful
for making predictions on aspects and sentiments. Reviews
labeled across both tasks are useful for multi-task models,
but most publicly available labeled reviews are only for one
particular task (e.g., either AM or ASC). SEML utilizes
unlabeled reviews for both sub-tasks and actually constructs
all-tasks-labeled examples from unlabeled reviews.

Finally, we combine the supervised and CVT losses and
minimize the total loss L with stochastic gradient descent:

L = LASUP + L
S
SUP + LCVT. (18)

In particular, we randomly choose a sub-task and alternately
minimize LASUP or LSSUP over a mini-batch of corresponding
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labeled reviews and LCVT over a mini-batch of unlabeled
reviews.

IV. EXPERIMENTS
In this section, we evaluate the performance of our pro-
posed SEML framework and compare it with the state-of-
the-art approaches for both AM and ASC sub-tasks in ABSA.
Moreover, we test SEML to perform complete ABSA and
compare it to those pipeline and unified approaches.

A. EXPERIMENTAL SETTINGS
1) DATASETS
We conduct experiments over four benchmark datasets from
the SemEval workshops [44], [45]. TABLE 2 shows their
statistics. DAM

laptop and DAM
rest contain reviews of the laptop

and restaurant domain for the AM sub-task, while DASC
laptop

and DASC
rest are for the ASC sub-task. In the AM datasets,

the sentiment polarities for aspects are not given. In the
ASC datasets, both aspects and their sentiment polarities are
known. As some testing sentences in one sub-taskmay appear
in the other sub-task’s training dataset, we simply remove
those sentences from the training dataset for fair comparison.

TABLE 2. Statistics of labeled datasets.

Moreover, SEML needs unlabeled reviews for CVT
(semi-supervised learning).We collect unlabeled reviews cor-
responding to two domains (laptop and restaurant) of labeled
datasets to train the model, which include laptop reviews
from Amazon Review Dataset (230,373 sentences) [46] and
restaurant reviews from Yelp Review Dataset (2,677,025 sen-
tences) [47]. For comparison, we also train the model on
a general unlabeled dataset (One Billion Word Language
Model Benchmark) [48] to see whether perform CVT on
general texts can improve the supervised model for AM and
ASC. As some sentences in the testing dataset may also
appear in unlabeled reviews, we remove these sentences in
unlabeled reviews to make the comparison fair.

2) COMPARED MODELS
We first compare SEML with the state-of-the-art models for
the AM sub-task, including:
• CMLA [12] applies a multi-layer architecture with
coupled-attentions to locate aspect words.

• MIN [9] consists of three LSTM layers for multi-task
learning, in which a sentiment lexicon (to find opinion
words) and dependency rules are used to extract corre-
sponding aspects.

• DE-CNN [18] is based on CNNs and utilizes both gen-
eral word embeddings and domain-specific embeddings
learned from unlabeled reviews.

• EMOVA [19] uses the CVT and moving-window atten-
tion mechanism to leverage both labeled and unlabeled
reviews.

Then, we compare SEML with the state-of-the-art models
for the ASC sub-task, including:

• RAM [49] employs the multiple attentions on
multi-layer RNNs to combine hidden word features in
each layer.

• TNet [24] utilizes a CNN layer instead of an attention
layer to extract the salient features from the representa-
tions learned by deep RNNs.

• MGAN [25] applies transfer learning to leverage
knowledge learned from a rich-resource source domain
to improve the learning in a low-resource target
domain.

In addition, since BERT [50] is one of the key inno-
vations in the recent progress of language modeling and
achieves the state-of-the-art performance onmanyNLP tasks,
we fine-tune the pre-trained BERT model on the datasets for
both AM and ASC as a baseline:

• BERT [50] can learn better representations by training a
deep languagemodel on large amounts of texts, we apply
BERTBASE on the datasets as the baseline to perform
AM and ASC as well as complete ABSA.

We also investigate the performance of important variants
of SEML:

• SEML-SUP is our supervised model but without CVT
on unlabeled reviews, so it is a purely supervised
multi-task learning model.

• SEML-GNL is the full framework but only performing
CVT on the general unlabeled text (One Billion Word
Language Model Benchmark) [48] which is not specific
to the laptop or restaurant domain.

• SEML-AM is the single task model for AM with CVT
on unlabeled reviews.

• SEML-ASC is the single task model for ASCwith CVT
on unlabeled reviews.

Finally, our goal is to perform complete ABSA within
an end-to-end framework, but the baselines above are
for either the AM or ASC sub-task. While performing
ASC, the testing datasets in DASC

laptop and DASC
rest show

the golden aspects. In order to achieve complete ABSA,
these aspects labels are removed from the testing datasets,
denoted as DABSA

laptop and DABSA
rest , correspondingly. We com-

pare SEML with the following baselines on the new testing
datasets:
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• DE-CNN-MGAN is the pipeline method which com-
bines two state-of-the-art methods DE-CNN1 for AM
and MAGAN2 for ASC.

• LM-LSTM-CRF [51] is a competitive model on some
sequence labeling tasks in NLP. We train the model3 for
complete ABSA in a collapsed labeling scheme.

• E2E-TBSA [29] is the state-of-the-art supervised model
to perform complete ABSA in an unified framework
with a collapsed labeling scheme.

3) TRAINING SETTINGS
We use pre-trained GloVe 840B 300-dimension vectors [41]
and refine the sentiment vectors [42] to initialize the word
embeddings, and the char-feature size is 50. All of the weight
matrices except those in BiMAGRU are initialized from the
uniform distribution U (−0.2, 0.2). For the initialization of
the matrices in BiMAGRU, we adopt the Glorot Uniform
strategy [52]. We apply dropout and the rates are set as 0.5 for
labeled reviews and 0.8 for unlabeled reviews. The hidden
state size is set to 1,024, and the learning rate is 0.05. We set
the mini-batch size as 30 sentences, and the moving-window
size (i.e., the number of cached past nearby hidden states in
MAGRU) N is 5.

B. EXPERIMENTAL RESULTS
We report the results of CMLA, MIN, DE-CNN, EMOVA,
RAM, TNet and MGAN in their original works, since we
use exactly the same datasets. For the other models, we aver-
age the evaluation results of five runs. We follow the stan-
dard evaluation metrics of SemEval workshops to report the
F1 score for AM and the accuracy andMacro-F1 (MF1) score
for ASC.

1) MAIN RESULTS
Results on AM. TABLE 3 depicts the results of all the
evaluated models for AM, in which SEML performs the best.

TABLE 3. Comparison results on F1 for AM.

1https://github.com/howardhsu/DE-CNN
2https://github.com/hsqmlzno1/MGAN
3https://github.com/LiyuanLucasLiu/LM-LSTM-CRF

For example, compared to the competitive models including
CMLA, MIN, DE-CNN and EMOVA, SEML achieves abso-
lute gains of 5.57%, 5.79%, 1.78% and 1.65% on DAM

laptop,
and 5.47%, 4.80%, 3.87% and 3.06% on DAM

rest , respectively.
Even our pure supervised SEML-SUP (without CVT) can
perform better than CMLA and MIN. The main reason is
the effectiveness of MAGRU which can derive the signif-
icant information of nearby contexts of the aspects. More-
over, SEML-GNL with general unlabeled texts improves
SEML-SUP, which verifies the advantage of semi-supervised
learning. While comparing to the two-phase semi-supervised
approaches including DE-CNN and BERT, SEML shows the
great superiority; the two-phase training (i.e., pre-training and
supervised learning) cannot take advantage of labeled reviews
for learning representations in the pre-training step; however,
SEML learns domain- and task-specific representations alter-
nately over labeled and unlabeled reviews within an unified
end-to-end framework. Finally, EMOVA also employs CVT
but only performs the single AM task, so SEML records better
results than EMOVA by enabling the multi-task learning.

Results on ASC. TABLE 4 depicts the results of all
the evaluated models for ASC, where SEML also achieves
the best accuracy and MF1. More specifically, SEML-ASC,
i.e., the variant of SEML for the single ASC task already
outperforms all the supervised models including RAM, TNet
and MGAN, which shows that semi-supervised learning can
improve the prediction performance by taking full advantage
of unlabeled reviews. Interestingly, BERT gives a slightly
better accuracy (0.03%) than SEML-ASC on DASC

rest , our
explanation is that BERT learns representations by training
on much more domain-free texts than SEML-ASC and the
ASC sub-task is more domain-independent than the AM sub-
task, i.e., aspect words are more dependent on domains than
sentiment words. Fortunately, while performing multi-task
learning, the shared representations in SEML can get signifi-
cantly improved and then enhance the final prediction results.

TABLE 4. Comparison results on Accuracy and MF1 for ASC.

Results on ABSA. FIGURE 3 reports the F1 score for
ABSA based on the exact match, i.e., a joint labeling result
is considered to be correct only if it matches with both aspect
and sentiment labels. SEML obtains consistent improvement
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FIGURE 3. Comparison results on F1 for ABSA. Note that the testing
datasets DABSA

laptop and DABSA
rest are the same as in DASC

laptop and DASC
rest but

without the aspect labels.

over the pipeline model (DE-CNN-MGAN) and unifiedmod-
els (LM-LSTM-CRF and E2E-TBSA). The reason is that
SEML leverages a more integrated way for multi-task learn-
ing for highly coupled tasks (e.g., AM and ASC) than the
pipeline model. Further, compared to the unified models with
a collapsed labeling scheme, SEML also shows the effective-
ness of a joint model that considers the interaction between
two related sub-tasks in ABSA.

2) ABLATION STUDY
The key components of SEML include char-features, refined
word embeddings and auxiliary predictionmodules, as shown
in FIGURE 1. To show the significance of each key com-
ponent, we disable each of them and evaluate the F1 score
for AM and MF1 for ASC, as depicted in TABLE 5. Firstly,
we disable the char-features and the result shows only slight
effect in the row for w/o char-features. Then, we do not
refine the word embedding with sentiment lexicon before
training, the result drops slightly for AM but drops more for
ASC in the row for w/o refining, which shows the essen-
tiality of word embedding refining for the sentiment-related
task. To explore which auxiliary prediction modules are more
important, we only enable two of them (pfwd and pbwd, or pleft
and pright) at each time. We find that SEML w/o fwd & bwd
that do not see the current word is better than SEML w/o
left& right, whichmay be caused by themore restricted view
on the unlabeled input.

TABLE 5. Ablation study on the key components of SEML.

3) VISUALIZATION OF MOVING-WINDOW ATTENTION
We use an example to visualize the significance score in
Equation (4) for the moving-window attention with the
window size N = 5. FIGURE 4 shows the visualiza-
tion results in the second BiMAGRU for AM and the third
BiMAGRU layer for ASC. SEML pays more attention on
‘‘software’’ and ‘‘system’’ to identify the aspect label of
‘‘preloaded’’, and greatly attends on ‘‘not’’ and ‘‘slow’’ to
predict the sentiment polarity of ‘‘preloaded’’.

FIGURE 4. An example on the moving-window attention for ‘‘preloaded’’.

4) EFFECTS OF MOVING-WINDOW SIZE
We also evaluated the effects of the size of moving-window in
the MAGRU of our SEML framework, the results are shown
in FIGURE 5. It is hard to improve the overall performance by
simply increasing the moving-window size, i.e., SEML can
achieve better AM and ASC accuracy by focusing attention
on a certain number of nearby words. To reduce the com-
putation cost, the moving-window size N is set to 5 in our
experiments.

FIGURE 5. Effects of the moving-window size N .

5) EFFECTS OF MODEL SIZE
Most supervised models for ABSA use RNNs (e.g., LSTM
andGRU)with small hidden state sizes around 300 [12], [13],
[29], as a larger hidden state size may not surely improve the
performance of supervised model [53]. We exam the effects
of the hidden state size on our semi-supervised SEML and
supervised SEML-SUP. FIGURE 6 shows that SEML-SUP
without CVT also do not gain much from having a larger
model size. However, as SEML can learn from unlabeled
reviews by using CVT, the performance benefits from the
increase of the model size. As the consequence, SEML
enables the development of larger and more accurate models
for the domain with limited amounts of labeled reviews but
large numbers of unlabeled reviews, by using a large model
size, e.g., 1,024 in our previous experiments.
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FIGURE 6. Effects of the model (hidden state) size.

6) LESS LABELED TRAINING DATA
A very common situation in aspect mining is some domains
(or products) may not have large volumes of labeled data.
To this end, we explore how SEML scales with less data by
only feeding a subset (25%, 50%, and 75%) of the labeled
training datasets, as presented in FIGURE 7. SEML with
half of the training data can perform as well as SEML-SUP
without CVT that sees all the training data. Thus, SEML is
particularly useful when only a small set of labeled reviews is
available, which greatly reduces the cost on manual labeling.

FIGURE 7. Performance vs. percent of the labeled training set.

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the first end-to-end
SEmi-supervised Multi-task Learning framework (SEML)
for ABSA on customer reviews. The two related sub-tasks,
namely AM and ASC in ABSA are jointly learned in an
end-to-end fashion. Moreover, SEML derives the shared rep-
resentations of reviews based on three stacked and bidirec-
tional neural layers with Moving-window Attentive Gated
Recurrent Units (MAGRU); MAGRU extends GRU with the
moving-window attention mechanism to capture significant
nearby semantic contexts. Further, SEML employs CVT to
train auxiliary prediction modules on unlabeled reviews to
improve the representation learning in an unified end-to-end
architecture. Finally, we have conducted experiments for AM
and ASC sub-tasks as well as complete ABSA over four
datasets from the SemEval workshops and the experimental
results show that SEML significantly outperforms the state-
of-the-art models, even on much smaller labeled training
datasets.

We consider two future research directions. First, as SEML
directly delivers hidden representations between sub-tasks
that may bring inconsistency of AM and ASC results
(e.g., the ASC predictor may label sentiment polarities

on non-aspect words), we will design more constraints to
enforce stronger consistency between two sub-tasks in the
future. Second, in addition to labeled and unlabeled reviews,
we will try to encode linguistic knowledge (e.g., common-
sense knowledge bases) into the framework to improve the
performance.
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