
SPECIAL SECTION ON GEOMETRIC ALGEBRA IN SIGNAL PROCESSING

Received October 7, 2020, accepted October 13, 2020, date of publication October 16, 2020, date of current version October 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031812

DCG-Net: Dynamic Capsule Graph Convolutional
Network for Point Clouds
DENA BAZAZIAN 1 AND DHANANJAY NAHATA2
1Geomatics Department, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), 08860 Barcelona, Spain
2Computer Science Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain

Corresponding author: Dena Bazazian (dena.bazazian@cttc.es)

ABSTRACT This article introduces DCG-Net (Dynamic Capsule Graph Network) to analyze point clouds
for the tasks of classification and segmentation. DCG-Net aggregates point cloud features to build and update
the graphs based on the dynamic routing mechanism of capsule networks at each layer of a convolutional
network. The first layer of DGC-Net exploits the geometrical attributes of the point cloud to build a graph
by neighborhood aggregation while the deeper layers of the network dynamically update the graph based
on the feature space of convolutions. We conduct extensive experiments on public datasets, ModelNet40,
ShapeNet-Part. Our experimental results demonstrate that DCG-Net achieves state-of-the-art performance
on public datasets, 93.4% accuracy on ModelNet40, and 85.4% instance mIoU (mean Intersection over
Union) on ShapeNet-Part.

INDEX TERMS Convolutional networks, dynamic capsule graph, point clouds, segmentation and
classification.

I. INTRODUCTION
Point clouds are a rich and fundamental representation of 3D
raw data structures broadly employed as a storage format by
3D sensing devices. The importance of point clouds is due
to their geometrical information and wide range of appli-
cations such as robotics, remote sensing, photogrammetry,
autonomous driving and virtual/augmented reality [1], [2].
Principally two tasks of classification and segmentation are
performed on point clouds in order to apply them for these
aforementioned applications. Segmentation is a process of
grouping point clouds into multiple homogeneous regions
with identical properties whereas classification is a task that
labels these regions. The regions can be considered as a part
of an object or a whole object. The main aim of this work is
to tackle the problems of classification and segmentation on
unorganized point clouds data. Point clouds obtained by 3D
scanner devices such as LiDAR scanners or line scanners are
unorganized, noisy and sparse. These devices scan a scene
line by line in order to render streams of depth information.
The information cannot be represented in a single lattice
when data is combined from several sensors types. Therefore,
3D point clouds data from multiple sensors is combined in
an unorganized (non-ordered) format with color or inten-
sity information of each point. This non-uniformity attribute

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

of 3D point clouds causes challenges of using them in com-
parison with other types of data (namely 2D images). Despite
the recent tremendous progress of deep learning approaches,
there are still various challenges in applying CNNs (Convolu-
tional Neural Networks) for point clouds because of unstruc-
tured and unorganized attributes of point clouds. Pioneering
techniques for employing point clouds directly based on deep
learning algorithms were introduced in [3], [4], whereas the
previous techniques were based on pre-processing steps such
as converting a point cloud to a 3D mesh or mapping it
to a 2D space. These methods were time-consuming and
with a possibility of missing some essential data [5], [6].
Graph-based approaches have been recently applied for point
clouds processing by CNN techniques [7]–[11] due to their
robustness for combining features on local and global sur-
faces. Dynamic graphs unlike graph CNNs are not fixed and
dynamically updated after each layer of the network [7].
In DGCNN [7], a neighborhood aggregation graph is built
based on the point’s nearest neighbors to contribute to its
convolution. Contrary to [7], in this work, we do not select
the neighbors based on L2 norm to calculate the euclidean
distances between points. The selection of the neighbors of
each point is based on performing a dynamic routing mecha-
nism among all the points of a point cloud. The features of the
points are represented in capsules. The most similar points of
each point are explored based on the agreement that can be
inferred from dynamic routing between capsules. The idea of

188056 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1229-4494
https://orcid.org/0000-0002-8174-6167

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

dynamic routing between capsules was initiated in [12], but to
sthe best of our knowledge, we are the first to apply dynamic
routing between capsules to select the neighbor points from
raw point cloud data in order to build graphs by neighborhood
aggregation. Each capsule is a set of units that represents a
specific type of entity such as an object or a part of an object.
Furthermore, we construct the capsules at the first layer of the
network, based on the feature similarities of the points within
the point cloud in a combination of euclidean, eigenvalues
and geometrical spaces. The geometrical features that char-
acterize each point, i.e. omnivariance, planarity, sphericity,
sharp edges, etc., are determined by the computation of the
eigenvalues of their covariance matrix of each point which
in turn depends on the points selected to be in the neigh-
borhood of each point. In contrast to [8] where neighbors
are defined as nearest neighbors in euclidean and eigenvalues
spaces, we consider the geometrical features additionally to
determine the similarities between points, and we define a
capsule graph at each layer in order to disentangle the geo-
metrical features of point clouds to build the neighborhood
aggregation graph. We also update the graph dynamically at
each layer of the network.

The robustness of this work stems from the essence of
the dynamic capsule graph itself. Unlike CapsGNN [13] and
GCAPS-CNN [14] approaches where the capsules are fixed,
our proposed capsule graph is dynamically updated at each
layer of the network. Our capsule graph is initialized by the
geometrical similarities of the points and the features of the
capsule graph evolving from layer to layer of the network and
arising from the sequence of voting and agreement between
the latent capsules. Moreover, the inputs of the networks
in [13], [14] are based on graph structure data. However,
the input of our proposed network are a raw point cloud data;
and we employed the capsules for solving the issues of build-
ing graphs from raw data, whereas [13], [14] applied the cap-
sules to solve the problems regarding the graph classification
and graph embeddings. In GCAPS-CNN [14] scalar features
of graphs are extended to vector-valued capsules without any
routing mechanism. CapsGNN [13] applied a routing mecha-
nism between the network layers in order tomaintainmultiple
information properties of graphs for generating graph embed-
dings. However, the key idea of this work is to apply a routing
mechanism to find the similarities between all the points
of a point cloud in order to build a graph by neighborhood
aggregation from a raw data.We apply the routingmechanism
at each layer to update the graph dynamically through the
network. Therefore, contrary to CapsGNN [13], we define
an individual routing mechanism module at each layer of the
network, whereas in CapsGNN [13] the routing mechanism
is applied between the layers of the network.

In this article, we tackle the drawbacks of DGCNN [7]
and GS-Net [8] regarding: 1) neglecting the geometrical fea-
tures; 2) selecting the nearest neighbors based on L2 norm.
To pave the way for these issues, we consider geometri-
cal features as one of the inputs of the network in order
to improve the training process of our proposed model by

capturing features in both local and global spaces. Further-
more, we apply a dynamic routing mechanism instead of L2

norm in order to select the nearest neighbors through a voting
agreement process. The neighborhood aggregation graphs
built by this process are more accurate because of the certain
number of iterations that is considered for voting agree-
ment in the dynamic routing mechanism between the cap-
sules. Moreover, we tackle the drawbacks of Caps-GNN [13],
GCAPS-CNN [14] and GS-Net [8] regarding neglecting
to update the graph at each layer of the network. Our
proposed model dynamically updates the graphs based on
feature space through the network. It has the advantage
of exploring the nearest neighbors based on the similari-
ties in the convolutional feature space. In addition, unlike
GS-Net [8] that feeds down-sampled features of point cloud
at each layer of the network, our model after the first layer
updates the graphs merely based on the feature space. There-
fore, it leads to a significant improvement in the aspect of
computational time at each forward pass of the network.

Our proposed model similar to other graph convolutional
models [7], [8], [13], [14] is designed to be invariant to the
ordering of neighbors, therefore it is invariant to permutation
of each point of a point cloud. Furthermore, DCG-Net is
differentiable and can be plugged into existing architectures
for point cloud processing.

In a nutshell, the novelties of this work are to provide a
dynamic capsule graph network that is initializes by geomet-
rical features and builds neighborhood aggregation graphs
based on the dynamic routing between capsules; it also
updates the capsule graphs dynamically through the network.
The main contributions of this article can be summarized as
follows:

• We present a novel Dynamic Capsule Graph Network as
DCG-Net by constructing a capsule graph based on geo-
metrical features initialization and updating the capsule
graph dynamically at each layer of the network.

• We formulate a novel technique to construct graphs by
neighborhood aggregation through a dynamic routing
mechanism between capsules based on the features sim-
ilarities.

• We prove the robustness of our proposed DCG-Net by
experimentally demonstrating the capabilities of the net-
work with achieving the state-of-the-art in classification
and part segmentation tasks on major public datasets.

The remainder of this article is organized as follows;
Section II describes the background and literature review.
In Section III, DCG-Net is introduced. The experimental
results are shown in Section IV. Finally, we conclude this
article in Section V.

II. RELATED WORK
Point cloud processing has been applied in a broad range of
applications such as autonomous driving [15], robotics [16],
CAD (Computer Aided Design) and sharp edge extrac-
tion [17], [18], photogrametry [19], and remote sensing [20].

VOLUME 8, 2020 188057

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

Although CNNs have achieved remarkable success for var-
ious computer vision tasks, it still is an open challenge to
integrate CNNs with 3D point clouds due to their unorga-
nized and non-uniformity attributes. Deep learning on raw
point clouds is currently attracting a lot of attention. Since
the proposal of PointNet and PointNet++ [3], [4], many
state-of-the-art methods have been developed [21]–[23]. The
problems of point cloud analysis commonly concentrate on
the tasks of classification and segmentation. Classification
models are for finding the label of a given point cloud object.
Segmentation models are for extracting parts of a point cloud
into segments which are conceptually meaningful or simple
for further analysis. A complete review of deep learning
techniques for point clouds can be found in [6].

1) GRAPH-BASED METHODS
Graphs and manifolds are non-euclidean domains. Recently,
various studies are devoted to making CNNs applicable for
learning on graphs and manifolds. Geometric deep learning
field focuses on generalizing the definition of convolution to
functions on manifolds or graphs [24]. The challenging issue
in geometric deep learning is because of the complexity of
applying convolutionwhen the space does not contain a group
action, andwhen the input data is comprised of various shapes
or graphs, where it is challenging to determine an alterna-
tive for convolutional filters [25]. To address this drawback,
DGCNN [7] proposed a model by grouping points both in
euclidean space and in semantic space. In this case the model
learns the features on edge relationships of graph instead
of the relative positions of points. KPConv [26] combines
features locally according to the 3D geometry in order to be
capable of capturing the deformations of the surfaces instead
of combining features on local surface patches in graph con-
volution models while being invariant to the deformations
of those patches in euclidean space. SPG [11] is built based
on partitioning the points into geometrically homogeneous
elements, which is then fed into a graph neural network.
PointWeb [27] concentrates on the interaction between points
in each local neighborhood region by exploring the context
information between all point pairs. MHNet [28] constructed
a non-directional probability graph from input points in order
to mitigate the influence of noise points in the segmentation
task of point clouds. GAC [29] is a graph attention convo-
lution network that dynamically assigns adequate attentional
weights to different neighboring points by merging their spa-
tial positions and feature attributes. DPC [9] tackled the prob-
lem of small receptive field size of point cloud convolutional
networks and proposed a dilated point convolution network
based on a k-nearest neighbor graph. Following the same
idea, PointAtrousGraph [10] proposed to enlarge receptive
fields of filters by presenting a sampling rate in order to equiv-
alently sparsely sample the neighboring point features and to
preserve multiscale local geometrical details hierarchically.
GS-Net [8] introduced a connection modules which exploit to
group the points with similar and relevant geometrical data,

and collect features from neighbors in both the euclidean
and eigenvalues spaces. GS-Net [8] feeds the network just
based on euclidean and eigenvalues features, however our
model considers geometrical features (i.e. planarity, spheric-
ity, sharp edges, change of curvature) in addition to euclidean
and eigenvalues features. Accordingly, we build graphs based
on the feature similarities in euclidean, eigenvalues and geo-
metrical spaces. Furthermore, unlikeGS-Net [8], wemaintain
the dynamic strategy to update the graph dynamically at each
layer of the network. In addition, we build the graphs based
on dynamic routing between capsules instead of L2 norm.

2) CAPSULE NETWORKS
The concept of capsule networks was initially mentioned
in [30] as a local component of artificial neural networks
in which each capsule learns to recognize an implicitly
defined visual entity over a limited domain of viewing con-
ditions. This idea of capsules was later developed into a
dynamic routing mechanism between capsules in [12] as
CapsNet (capsule networks). In this model, the information
is stored at the vector level instead of scalar and capsules
are groups of neurons that act together. CapsNet [12] used
the concept of iterative routing-by-agreement and squashing
function on the output vector to get the activation capsules.
Capsule network recently has been applied in various lines
of research; a thorough review of capsule networks can be
found in [31]. Furthermore, this concept has been applied in
point clouds processing research [32]–[35]. 3D Point Cap-
sule Networks [32] proposed an auto-encoder designed to
process sparse 3D point clouds while maintaining spatial
arrangements of the input data. Geometric capsules intro-
duced in [33] to learn object representations from 3D point
clouds by bundles of geometrically interpretable hidden units
based on pose and features. Quaternion equivariant capsule
networks [34] proposed to learn a pose-equivariant repre-
sentation of objects by building a hierarchy of local refer-
ence frames where each frame is modeled as a quaternion.
3DCapsule [35] replaced the common fully connected clas-
sifier with a 3D capsule architecture in order to determine
the spatial relationship between feature vectors by mapping
feature vectors to capsules. GCAPS-CNN [14] is designed
to improve the performance of graph classification task by
considering a vector-valued capsule function in lieu of scalar
function of graph structure without applying dynamic routing
between capsules. CapsGNN [13] is a capsule graph neural
network architecture and uses node features extracted from
GNN (Graph Neural Network) to generate graph embed-
dings. In this model, basic capsules are from extracted node
features based on GNN, and then high-level graph capsules
and class capsules are generated through a routing mecha-
nism. Contrary to [13], our DCG-Net is not fixed but rather
is dynamically updated after each layer of the network. Fur-
thermore, we initialized it based on the geometrical fea-
tures and adapt it for employing in point cloud processing
tasks.

188058 VOLUME 8, 2020

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

FIGURE 1. Dynamic Capsule Graph Network (DCG-Net) architecture. The architecture of classification model is illustrated in the top branch and the
architecture of segmentation model is depicted in the bottom branch. ⊗ stands for concatenation. In the preprocessing step, we concatenate the features
from euclidean, eigenvalues and geometrical spaces. The input features of CG-Conv module at the first layer of the main network are based on the
combination of features from euclidean, eigenvalues and geometrical spaces. In the next layers, CG-Conv performs merely on the feature space based on
convolutions. The classification model takes N points as input, calculates neighborhood aggregation graph features for each point at an CG-Conv layer.
The output features of the last CG-Conv layer are stacked up to form an 1D global descriptor, which is employed to calculate classification scores for Ccls
classes. The segmentation model expands the classification model by inserting the 1D global descriptor and for each point all the CG-Conv outputs are
considered as local descriptors. The segmentation scores are calculated as per-point scores for Cseg semantic labels.

III. PROPOSED METHOD
In this work we introduce DCG-Net for two tasks of classifi-
cation and part segmentation as shown in Figure 1. The details
of DCG-Net are explained in the following sections.

A. CAPSULE GRAPH
In this work instead of operating on each point to build a
neighborhood aggregation graph, we exploit the local features
based on the dynamic routing between capsules. We incor-
porate the concept of dynamic routing inspired from [12]
to select the k nearest neighbors. In this work, we do not
exploit the neighbors based on the L2 norm, but we select
the neighbors based on the similarity between the features of
each point, and we extract the similarities by dynamic routing
between capsules. The difference of our proposed technique
with [12] is that we omit the usage of the convolutional
layers for computing the features of the child capsule layer.
We directly compute the features of the child capsule layer
from the features extracted at each stage of the model and
apply the dynamic routing mechanism to search for the k
nearest neighbor features. This dynamic routing mechanism
is based on the child and parent capsule approach as shown
in Figure 2.

Initially, all the features are present in the layer of child
capsules, and for each point, we search to find the neighbor-
ing points with similar features. The points with similar fea-
tures are present in the parent capsule. We focus on designing
the routing mechanism between the child and parent capsules
in such a way that those features which are similar to the
parent capsule, will contribute more and those points which
are not similar will contribute less from the child capsule.

The first step is to compute the features of the child
capsules fi. The child capsule layer consists of the features
f = {f1, f2, . . . , fn} where n is the number of capsules.

FIGURE 2. Child and parent capsule approach for dynamic routing
mechanism between capsules in order to search for k nearest neighbors
based on the vector level similarities between the points of a point cloud.

Here, we consider the number of capsules equal to the number
of points in the point cloud. The features (f) are computed by
f = X TX , where X = {x1, . . . , xn} ⊂ RF , F represents the
feature dimensionality of a given input. The fact of multiply-
ing each input (X) with its transposed (X T) is to reproduce
the features of each point by multiplying with features of
the other points, including itself. Then, after computing f ,
we apply the dynamic routing mechanism between the child
and parent capsule.

In the dynamic routing mechanism, there are coupling
coefficients denoted by C between the parent and child cap-
sule layers, where C = {C11,C12, . . . ,Cij, . . . ,Cnn}, where
i stands for child capsules and j stands for parent capsules,
1 ≤ i ≤ n, 1 ≤ j ≤ n, and the summation of all of them is
equal to one as shown in Figure 3. The coefficient values are
computed by a routing softmax which is initially defined by
bij. The bij represents the logit of i-th index of the child cap-
sule and j-th index of the parent capsule. The bij is initialized
with 0 at the first iteration of dynamic routing mechanism,
then it is rectified by evaluating the agreement between the
current output of each capsule iteratively. Hence, coupling
coefficient values are computed as Cij =

exp(bij)∑n
z=1 exp(biz)

, where

VOLUME 8, 2020 188059

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

FIGURE 3. The coefficient values between capsules, where
∑n

j=1 C1j = 1
and 1 ≤ j ≤ n. The number of capsules is n which is equal to the number
of points in the given point cloud.

z represents the iterator through all the parent capsules. The
coupling coefficients are the log prior probabilities that the
child capsule layer i should be coupled to parent capsule
layer j, and they are updated by the iterative routing process.
Afterward, by multiplication of all the features of the child

capsules f with the routing coefficient C , we obtain the list of
prediction vectors

−→
P = {

−→
P 11,
−→
P 21, . . . ,

−→
P ij, . . . ,

−→
P nn}

for each vector of child capsule
−→
P ij = Cijfi. Each vector

in parent capsules layers consists of a weighted sum (Sj)
of all prediction vectors in order to connect child capsules
layers with the parent capsules Sj =

∑n
i=1
−→
P ij. The list of

prediction vectors
−→
P represents the probability of similarities

of features with respect to the features of each point. Hence,
in order to define more similar prediction vectors close to
1 and less similar prediction vectors close to 0, we apply a

non-linear squashing function [12], Vj =
‖Sj‖2

1+‖Sj‖2
Sj
‖Sj‖

, where
Vj is the vector output of capsule j and Sj is its total input.
The output vector after performing the routing mechanism

represents a probability to indicate the similarity of the neigh-
boring points with the individual point. The points with sim-
ilar features tend to have a higher probability in comparison
with the points with fewer feature similarities. Therefore,
at each iteration of the routing mechanism, the vector length
is reduced close to 0 for dissimilar features and is increased
close to 1 for similar features. This process is performed
by updating the routing coefficients as bij = bij + Vj.fi
(i.e. we make a dot product of Vj and fi). After the routing
mechanism, we get the most similar features for each point
and thus getting the most similar neighbors for constructing
the local graph. An overview of the dynamic routing mecha-
nism is illustrated in Algorithm 1.

For simplicity, an example is shown in Figure 4. Here,
we consider three features f1, f2 and f3 in three child capsules
contributing to the parent capsule. The coupling coefficients
C11,C21 and C31 are updated using dynamic routing, where
we search to find the similarity of the resultant vector with
each of the individual vectors. Prediction vectors are denoted
by
−→
P 11,

−→
P 21 and

−→
P 31. Each prediction vector

−→
P ij from

a child capsule to a parent capsule is computed by multi-
plication of the correspondent feature fi with the coupling
coefficient Cij, hence,

−→
P i1 = Ci1fi, where 1 ≤ i ≤ 3. The

output of the parent capsule is denoted by S1, and is generated
by the summation of prediction vectors S1 =

∑3
i=1
−→
P i1. The

squashed output of the parent capsule is denoted by V1, where

Algorithm 1 Dynamic Routing of Capsule Graph
Result: Neighborhood aggregation graphs of point clouds.
Initialization: Features from euclidean, eigenvalues,
geometrical spaces or feature space from convolutions.
Procedure: Routing (fi, r, l)
for child capsule i in layer l and parent capsule j in layer
(l + 1): bij← 0
for r iterations do

for all capsule i in layer l: Cij← softmax(bij)
for all capsule i in layer l:

−→
P ij← Cijfi

for all capsule j in layer (l + 1) : Sj←
∑n

i=1
−→
P ij

for all capsule j in layer (l + 1) : Vj← squash(Sj)
for all capsule i in layer l and capsule j in layer
(l + 1) : bij← bij + Vj.fi

return Vj

FIGURE 4. The visualization of computing the vectors of capsules in
dynamic routing mechanism. f1, f2 and f3 are features for child capsules.
C11, C21 and C31 are coupling coefficients between child and parent
capsules.

−→
P 11,

−→
P 21 and

−→
P 31 are prediction vectors. V1 is the squashed

output of the parent capsule. Output of the parent capsule is

S1 =
∑3

i=1
−→
P i1 and its squashed is V1 =

‖S1‖
2

1+‖S1‖
2

S1
‖S1‖

. The benefit of

squashed function is to divert the short vectors to almost zero length and
long vectors to a length slightly below one.

V1 =
‖S1‖2

1+‖S1‖2
S1
‖S1‖

. After calculating the output vector S1,
the aim is to find the similarity of the resultant vector with
each of the individual vectors, and this process is performed
by applying dot product of each of individual vectors with
the resultant vectors. The resultant dot product will be high
for the

−→
P 11, and the resultant dot product will be less for

the
−→
P 31 in comparison with the

−→
P 21. Thus, the resulting

vector comparison will be
−→
P 11 >

−→
P 21 >

−→
P 31, which

demonstrates the contribution of all these three prediction
vectors in the resultant vector V1 at the parent capsule. The
agreement process is performed according to a log likelihood
and it is added to the initial logit, bij before calculating each
new value of each coupling coefficient.

After the dynamic routing mechanism, we obtain the vec-
tors to exploit the similarities between all the points of a point
cloud. Then, for each point, we select the k points with the
most similar features to build the Neighbors Graph as shown
in Figure 5 inside the Capsule Graph block. The Neighbors
Graph applies to define the structure and topology of the

188060 VOLUME 8, 2020

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

FIGURE 5. Capsule Graph Convolution (CG-Conv) module. The input of this module is a point cloud of shape N × F . By a dynamic routing
mechanism the k most similar points of each point are exploited, and a neighbors graph is built of a shape N × k × F . The Features Concatenation
function gives an output containing all the features and differences of features of the neighbors of each point and in a shape of N × k × 2F . The
edge features of the graphs are computed by a convolution of shape N × F × A in order to obtain an edge-weighted graph in a shape of N × k × A.
Afterward, a max-pooling applies on edge-weighted graph in order to obtain a point cloud of N × A. In DCG-Net pipeline, the output of each
CG-Conv module is the input of the next CG-Conv module. Hence, the structure of the input and output are the same, but they are with different
dimensionalities. The parameters of F and A are feature dimensionalities at each layer of the network, and they are variable at different layers of
the network.

graph without the weights of the graph’s edges. Afterward,
from the k nearest neighbors of each point, we compute the
features of those similar points by a Features Concatenation
function shown in Figure 5. In this function, we compute
the differences between features as it was proven by [8].
Afterward, we concatenate the features of each anchor point
with the difference in feature values for the neighbor points.
This concatenation gives an output shape of N × k × 2F ,
where N is the number of points in a point cloud, k is the
number of neighbors and F is the feature dimensionality of
the given input. The obtained 2F dimensionality is because
of concatenating the features and their differences, some
examples are illustrated in Table 1. Afterward, the output
of Features Concatenation function serves as the input of a
convolutional layer to create an edge-weighted graph data
structure as described in III-B.

B. CG-CONV: CAPSULE GRAPH CONVOLUTION
In the CG-Conv (Capsule Graph Convolution) module,
we apply the convolutional operation on the features of
the capsule graph module that we obtained based on the
dynamic routing between capsules and feature concatenation
function as explained in III-A. Afterward, the output from
the convolutional operation is an edge-weighted graph that
passes through a max-pooling layer, thus we receive a final
output in a point cloud structure. The input and output of
each CG-Conv module are in a point cloud structure but
with different dimensionalities. This is because of the fact
that the output of each CG-Conv serves as the input of the
next CG-Conv layer. The CG-Conv operation acts on the
edge features, which correspond to the weights of the edges,
emerging from each vertex. The CG-Conv operation is illus-
trated in Figure 5.
The convolutions for each point of the capsule graph can

be formulated by the convention definition of continuous con-
volutions [9] in a F-dimensional space. For a F-dimensional
point cloud X with N points the dimension F represents the

feature dimensionality of a given layer. Continuous convolu-
tions are defined as:(

f ∗ g
)
(xi) =

∫
∞

−∞

f (xj)� g(xi − xj) dxj (1)

where� is an element-wise-product of the continuous feature
function f : RF

→ RA assigning a feature-vector f (xj) ∈
RA to each position xj ∈ RF and the continuous kernel
function g : RF

→ RA mapping a relative position to a
kernel weight. The edge function is defined as eij, where xi
is an anchor point and xj is a neighbor point. Then, for this
convolution operationwe have: eij = g(xi−xj), 1 ≤ i, j ≤ N ,
where recent methods [7], [9] implement the kernel function
g(·) as a learned parametric function based on a shared MLP
(Multi Layer Perceptron) as: g(x;�) =MLP(x;�), where x
is the correspondent position between two points and � is a
set of learned parameters.

From the convolutional layer of CG-Conv, we compute a
directed edge-weighted graph G = (V, E) representing point
cloud structure based on its features, where the vertices are
V = {V1, . . . , VN } and the edges are E ⊆ V × V . We con-
struct G as a k-NN edge-weighted graph in RA, where the k
nearest neighbors are based on the similarities of the points
in X , and the similarities are exploited by dynamic routing
mechanism between capsules. The edge-weighted graph G is
constructed by connecting all the nearest neighbours in shape
of N ×k×A. The graph G includes self-loops, meaning each
vertex also points to itself.

Afterward, the max pooling operator applies on the
edge-weighted graph to collect and output the resulting point
features in shape of N × A. This operation is invariant
with respect to the permutation of the features, since it is a
channel-wise symmetric function.

CG-Conv is designed independently of the ordering of
the neighbours, this follows the property of permutation
invariance.

In DCG-Net architecture, the output of each CG-Conv
module is the input of the next CG-Conv module. Hence,

VOLUME 8, 2020 188061

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

FIGURE 6. The range of the values from the geometrical features of a point cloud with N points. The variety of each of the geometrical features in
γ ∈ R8 (Sum of eigenvalues (γ 1

i), Omnivariance (γ 2
i), Eigenentropy (γ 3

i), Linearity(γ 4
i), Planarity(γ 5

i), Sphericity (γ 6
i), Change of curvature (γ 7

i) and
Sharp Edges (γ 8

i), where 1 ≤ i ≤ N) illustrates the capability of building a graph beyond euclidean distances between the points and relying on the
shape similarities between the points of a point cloud.

the structure of the input and output of CG-Conv are the same,
but they are with different dimensionalities. The parameters
of F and A are feature dimensionalities at each layer of
the network, and they are variable at different layers of the
DCG-Net.

In this approachwe update the graphs by a dynamic routing
mechanism after each layer of the network. At each layer
the nearest neighbours of each point are updated, thus the
graph is dynamically updated at each layer of the network.
The advantage of this approach is due to the differences of
the proximity in the nearest neighbors of input point cloud
and feature space.

C. INPUT FEATURES
We consider a S-dimensional point cloud with N points,
denoted by X = {x1, . . . , xN } ⊂ RS . Each point of a point
cloud commonly contains 3 coordinates xi = (x1i , x

2
i , x

3
i),

whichmeans that S = 3. Furthermore, it is possible to include
further coordinates such as representing color information,
normal vectors.

In order to build a neighbors graph, we select the k neigh-
bors of each point based on a dynamic routing mechanism
between capsules as explained in III-A. We build the first
Capsule Graph, by extracting the k nearest neighbors of
each point of a raw point cloud in a preprocessing step
before feeding the features into the main blocks of the net-
work as it shown in Figure 1. Then, we exploit a combina-
tion of euclidean, eigenvalues and geometrical features of
input point clouds before applying the convolutional oper-
ation. To this end, we compute the covariance matrix to
extract the eigenvalues. Covariance is a measurement that
explores the variance of each dimension from the mean
with respect to each other. From a point cloud with N
points, for a 3-dimensional sample point xi = (x1i , x

2
i , x

3
i),

where 1 ≤ i ≤ N , the 3 × 3 covariance matrix Ci is
given by:

Ci =

Cov(x1i , x1i) Cov
(
x1i , x

2
i

)
Cov

(
x1i , x

3
i

)
Cov

(
x2i , x

1
i

)
Cov

(
x2i , x

2
i

)
Cov

(
x2i , x

3
i

)
Cov

(
x3i , x

1
i

)
Cov

(
x3i , x

2
i

)
Cov

(
x3i , x

3
i

)
 (2)

where, for instance Cov(x1i , x
2
i) is the covariance of x

1
i , x

2
i by

k nearest neighbor points is computed as:

Cov
(
x1i , x

2
i

)
=

∑k
j=1

(
x1j − x̄

1
i

)(
x2j − x̄

2
i

)
k − 1

, (3)

where x̄1i is the average of the neighbors of xi over the first
dimension and x̄2i is the average over the second dimension.
The eigenvalues and eigenvectors of xi are computed as:
CiVi = λiVi, where Ci is a 3× 3 covariance matrix, Vi is the
eigenvectors and λi is the eigenvalues. Then, the eigenvalues
of the covariance matrix of the point cloud are defined as λ =
{λ1, . . . , λN } ⊂ R3, each point of a point cloud contains three
values in eigenvalues space denoted by λi = (λ1i , λ

2
i , λ

3
i) and

ordered as: λ1i ≤ λ
2
i ≤ λ

3
i .

In the next step, we define the values of each point in the
geometrical space by extracting eight geometrical features.

We define geometrical features of each point of a point
cloud in γ = {γ1, . . . , γN } ⊂ R8. Hence, each point of a
point cloud contains 8 values in geometrical space as γi =
(γ 1
i , γ

2
i , . . . , γ

7
i , γ

8
i). Each one of the geometrical features

is stated in (4), namely: Sum of eigenvalues (γ 1
i), Omnivari-

ance (γ 2
i), Eigenentropy (γ 3

i), Linearity(γ
4
i), Planarity(γ

5
i),

Sphericity (γ 6
i), Change of curvature (γ 7

i) as explained
in [36], [37] and Sharp Edges (γ 8

i) as identified in [18], [38].

γ 1
i =

3∑
ı=1

λı
i , γ 2

i =

(3∏
ı=1

λı
i

) 1
3

,

γ 3
i =

3∑
ı=1

λı
i ln(λ

ı
i), γ 4

i =
λ2i − λ

1
i

λ2i
,

γ 5
i =

λ1i − λ
0
i

λ2i
, γ 6

i =
λ0i

λ2i
,

γ 7
i =

λ0i

λ0i + λ
1
i + λ

2
i

, γ 8
i =

λ0i

λ2i − λ
0
i

. (4)

The geometrical behavior of each one of these features shown
in Figure 6.

To initialize the network, we exploit the k most similar
points of each point in a combination of the features from

188062 VOLUME 8, 2020

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

euclidean, eigenvalues and geometrical spaces by theCapsule
Graph module as explained in section III-A.

The concatenation of all the features from the euclidean,
eigenvalues, and geometrical spaces gives us the capability
of capturing both local and holistic geometrical features,
like symmetry, curvature, convexity, and connectivity. The
points in eigenvalues space provide more information about
the geometry of the whole point cloud in comparison with
the euclidean space which depends just on the euclidean
distances between points. Eigenvalues features associate the
anchor points with points having similar local geometry, even
though these points are far apart from each other in euclidean
space. Features in geometrical space are capable of capturing
the similarities of the local and global features in the whole
shape.

The process of Capsule Graph in the first layer of
DCG-Net is different from the other layers. The dynamic
routingmechanism ofCapsuleGraphmodule at the first layer
is based on the the concatenation of features from euclidean,
eigenvalues and geometrical spaces. However, for the next
layers, the dynamic routing mechanism is merely based on
the features from the previous convolution layer. Therefore,
the graphs are updated dynamically based on CG-Conv mod-
ule by feature space information which is learned by the
preceding convolution layers.

D. DYNAMIC CAPSULE GRAPH UPDATE
The advantages of a dynamic graph were shown in
DGCNN [7] to recompute the graph by nearest neighbors in
the feature space produced at each layer. This is a remarkable
privilege of dynamic graph CNN methods from graph CNNs
based on a fixed input graph. Updating the graphs dynami-
cally yields the benefit of achieving a receptive field as large
as the diameter of the given point cloud. The key difference
of our method with DGCNN [7] is due to the dynamic routing
between capsules for building the graphs at each layer of
the network. Moreover, the other difference of our technique
is due to the distinct initialization approach for building the
graph based on the geometrical consistency at the first layer
of the network.

DCG-Net architecture learns how to build the graph G
at each layer instead of feeding it as a fixed constant con-
structed. At each layer we have a different graph G(l)

=

(V (l), E (l)), where G(l) denotes the graph at the l-th layer of
the network. We initialize the construction of the graph based
on the similarities in euclidean, eigenvalues, and geometrical
spaces to extract the closest point by voting and agreement of
the capsules. Afterward, for the next layers, the closest points
for every single point are taken by voting and agreement
of capsules based on the feature space. The robustness of
this approach stems from the differences in the similarities
between the nearest neighbors at the first layer and the next
layers of the network. The nearest neighbors at the first layer
are selected based on the similarities of the points due to
euclidean, eigenvalues, and geometrical spaces of the input

point clouds, but at the next layers, the nearest neighbors are
based on the similarities in the convolutional feature space.

E. LOSS FUNCTION
Each task is supervised by applying a one-hot encoding
cross-entropy loss function:

Loss = −
nc∑
i=1

(
h(ti) log(pi)+

(
1−h(ti)

)
log(1−pi)

)
, (5)

where h is a one-hot encoding function of target labels (t),
hence, h(t) refers to one-hot encoded classes which can be
considered as labels; and p refers to softmax applied on
prediction probabilities, log is a natural logarithm in (5), nc is
the number of classes, referring either to segmentation classes
(Cseg) or to classification classes (Ccls), depending on each
task.

IV. EXPERIMENTAL RESULTS
We apply DCG-Net on two tasks of classification and part
segmentation.

A. CLASSIFICATION
1) DATASETS
We evaluate our proposed method for the classification task
on ModelNet40 [40] dataset which contains 12311 CAD
models from 40 categories. 9843 models are used for training
and 2468 models are for testing. We have made experiments
by extracting and sampling 1024 and 2048 points from the
mesh faces, and re-scale it to form a unit sphere, i.e. we feed
only the (x, y, z) coordinates of each of the point to the model.
We followed the configuration in PointNet [3] to sample
points uniformly from the mesh models.

2) ARCHITECTURE
The model used for the classification task is depicted in the
top branch of Figure 1. We applied four CG-Conv layers for
extracting the features at different scales at the main blocks
of the classification model. For the preprocessing CG-Conv
layer, we extract features of euclidean, eigenvalues, and geo-
metrical spaces. For each one of these features, we consider
the differences to the input features inspired by [8]. Therefore,
by concatenating all the features from these three spaces and
their differences, we have 28 channels in the first layer of the
model. The computation of channels is described in Table 1.
For the rest of the layers, we build the graph by the features of
the CG-Conv at each layer and feed it as the input for the next
CG-Conv layer. Each layer consists of Batch-Normalization
layer [43] and Leaky-ReLU [44] activation function with
a negative slope of 0.2. After these four CG-Conv Layers,
we use a fully connected layer to accumulate all the fea-
tures which are computed by these four CG-Conv layers
(i.e. 64+ 64+ 128+ 256) to form a 512 dimensional point
cloud. These multi-scale features are concatenated using the
skip-connections. We also employ the global max/sum pool-
ing function for collecting the global features and two-fully

VOLUME 8, 2020 188063

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

TABLE 1. Number of channels for each input features. i denotes index of
anchor point and j denotes its neighbors’ indices. x : coordinates in
euclidean space, λ: eigenvalues, γ : values in geometry space. Euc:
features in euclidean space and their differences, Eig: features in
eigenvalues space and their differences, Geo: features in geometrical
space and their differences.

connected layers at the end for transforming these features.
The dropouts [45] are applied with these fully-connected
layers, with a keep probability of 0.5.

3) TRAINING AND RESULTS
We trained the classification model by ADAM optimizer [46]
with a learning rate of 0.001, momentum of 0.9, and reduce
the learning rate by Cosine annealing untill 0.0001. Cosine
Annealing is a learning rate scheduler that has the effect of
starting with a large learning rate that is relatively rapidly
decreased to a minimum value before being increased rapidly
again [47]. We kept the batch-size as 32 and 16 during
training and testing respectively, and made the training for
250 epochs. We have initialized the classification network
with different features of euclidean, eigenvalues, geometrical,
and combinations of them. In all experiments, the number of
neighbors (k) is either equal to 20 or 40 when we respectively
sampled either 1024 or 2048 points. Furthermore, we have
performed an experiment on GS-Net [8] architecture by
aggregating features from geometrical space in GS-Net [8]
model as well as the features from euclidean and eigenval-
ues spaces. In this experiment, in the Eigen-Graph module
of [8], we obtained the k nearest neighbors of geometrical
space along with the k nearest neighbors of euclidean and
eigenvalues spaces. Afterward, in GSC (Geometry Similarity
Connection) module of [8], we concatenated the features
from the three spaces through GroupLayer function of [8].
We followed the exact architecture and setup of GS-Net [8]
model for classification by considering the above mentioned
changes in Eigen-Graph and GSC modules. The results are
summarized in Table 2. Our model achieves state-of-the-art
performance (93.4%).

B. PART SEGMENTATION
1) DATASETS
Part segmentation task is a challenging task for shape analy-
sis. We evaluate our method for this task on ShapeNet-Part
benchmark [42]. ShapeNet-Part consists of 16880 models
from 16 shape categories and 50 different parts in total, with
14006 models for training and 2874 models for testing split.
We sampled 2048 points from each model. Each point cloud
is annotated with 2 to 6 parts.

TABLE 2. Classification results (%) on ModelNet40 dataset. In our
experiments, we initialize the network in euclidean space [Euc]
eigenvalues space [Eig], geometrical space [Geo], euclidean and
eigenvalue spaces (Euc+Eig) and euclidean, eigenvalue and geometrical
spaces [Euc+Eig+Geo]. In GS-Net [8] [Euc+Eig+Geo] experiments,
we preserved the architecture of GS-Net by the modification of
concatenating the features and neighbors from all the three spaces at
each layer.

2) ARCHITECTURE
The architecture of the part-segmentation network is illus-
trated in Figure 1 in the bottom branch. In this model,
we employed three CG-Conv layers for features extraction
at multiple stages, and a fully-connected layer to aggre-
gate all the information from the previous layers using
the skip-connections. Batch-Normalization, dropouts, and
Leaky-ReLU activation function are used similarly as in
the classification architecture model. There is a categorical
vector in this architecture that provides a categorical label
based on each part of the point cloud for each point in 64
dimensions. Then, by concatenating it with 1D tensor of the
point cloud size as 1024, we have an output of size 1088.
Then, we concatenate it with the outputs of each one of the
layers of this model and pass it to a fully-connected layer to
obtain a point-wise score for each part of the point cloud.

3) TRAINING AND RESULTS
The training setup for part segmentation is the same as the
classification. We trained our model for 200 epochs. The
number of neighbors (k) is set to 40 for 2048 sampled of
each model at all the experiments. We choose mIoU (mean
Intersection over Union) as the evaluation metric which is
averaged across all categories and instances. The results are
summarized in Table 3. DCG-Net achieves 82.3% on cate-
gories mIoU and 85.4% on instances mIoU. Our method can
effectively deal with point clouds with geometric character-
istics. Some qualitative results are shown in Figure 7.

188064 VOLUME 8, 2020

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

TABLE 3. Part segmentation results (%) on ShapeNet-Part dataset. Mean IoU over categories (Cat.) and instances (Ins.).

FIGURE 7. Part segmentation examples of ShapeNet dataset.

C. ABLATION STUDY
We perform an ablation study to analyze the effectiveness
of our method’s components on ModelNet40 bench-mark for
the classification task. The results are summarized in Table 2.
All experiments in the ablation study are conducted using
1024 points for each point clouds. In Table 4, we summarized
the behavior of accuracy for different numbers of neigh-
bors (k) and different initialization metric for selecting the
neighbors.

TABLE 4. The behaviour of DCG-Net classification accuracy (%) with
different initialization parameters and number of neighbors.

Furthermore, another ablation study of our proposedmodel
is based on determining the adequate number of the applied
CG-Conv module in the classification architecture. These
experiments are performed on ModelNet40 bench-mark for
the classification task. All the experiments are conducted
using 1024 points for each point cloud, with 20 being
the number of neighbors and initialized by a combined
parameters from euclidean, eigenvalue and geometrical
spaces. The results are summarized in Table 5.

D. COMPLEXITY ANALYSIS
In our approach, we do not employ any convolutional layer
in dynamic routing mechanism for finding similar features.
Hence, it leads to a decrease in the computational time.

TABLE 5. Classification accuracy (%) based on the number of CG-Conv
modules at the corresponded architecture of DCG-Net.

Our model uses a few parameters which prove that DCG-Net
is cost-effective in terms of both time and model size in
comparison with 3DCapsules [35]. Moreover, we achieved a
better forward-time in comparison with GS-Net [8] because
of dynamically updating the graphs and avoid inserting
down-sampled features of point clouds at each layer of the
network.We evaluate themodel complexity in terms ofmodel
size and forward time in Table 6. This experiment is con-
ducted on a system with a single GeForce RTX 2080 Ti
GPU and implemented by Pytorch. As illustrated, our method
made a competitive performance in terms of accuracy by
maintaining a reasonable speed and model size.

TABLE 6. Complexity analysis of DGC-Net in classification.

V. CONCLUSION
In this article, we presented DCG-Net as a novel, robust,
and efficient approach for point cloud analysis. In DCG-Net,
we applied a dynamic routing mechanism between capsules
to find similar points based on the features from three dif-
ferent spaces to construct the graphs at the first layer, and
then we updated the graphs dynamically at each layer of the
network based on the feature space and by dynamic routing
between capsules. We have evaluated our proposed tech-
nique on ModelNet40 and ShapeNet-Part datasets for clas-
sification and part-segmentation tasks respectively. We have
identified that the concatenation of features from euclidean,
eigenvalues, and geometrical spaces along with the proposed
capsule graph convolution module yields a superior perfor-
mance on classification and part-segmentation tasks of point
clouds. We have proven that DCG-Net is computationally
efficient in terms of time and it also achieved state-of-the-art
results on both classification and part-segmentation tasks.
In future work, we plan to extend this approach to seman-
tic segmentation applications in large scale point clouds.

VOLUME 8, 2020 188065

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

Furthermore, we plan to employ CG-Conv module to design
a network architecture to be applied on bioinformatics and
social network datasets.

REFERENCES
[1] W. Liu, J. Sun, W. Li, T. Hu, and P. Wang, ‘‘Deep learning on point clouds

and its application: A survey,’’ Sensors, vol. 19, no. 19, pp. 4188–4210,
2019.

[2] E. Grilli, F. Menna, and F. Remondino, ‘‘A review of point clouds seg-
mentation and classification algorithms,’’ ISPRS-Int. Arch. Photogramm.,
Remote Sens. Spatial Inf. Sci., vol. 42, pp. 339–344, Feb. 2017.

[3] R. Q. Charles, H. Su,M. Kaichun, and L. J. Guibas, ‘‘PointNet: Deep learn-
ing on point sets for 3D classification and segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 652–660.

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘PointNet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5099–5108.

[5] D. Griffiths and J. Boehm, ‘‘A review on deep learning techniques for 3D
sensed data classification,’’ Remote Sens., vol. 11, no. 12, pp. 1499–1528,
2019.

[6] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, ‘‘Deep learn-
ing for 3D point clouds: A survey,’’ 2019, arXiv:1912.12033. [Online].
Available: http://arxiv.org/abs/1912.12033

[7] Y.Wang, Y. Sun, Z. Liu, S. E. Sarma, M.M. Bronstein, and J. M. Solomon,
‘‘Dynamic graph CNN for learning on point clouds,’’ ACM Trans. Graph.,
vol. 38, no. 5, pp. 1–12, Nov. 2019.

[8] M. Xu, Z. Zhou, and Y. Qiao, ‘‘Geometry sharing network for 3D point
cloud classification and segmentation,’’ 2019, arXiv:1912.10644. [Online].
Available: http://arxiv.org/abs/1912.10644

[9] F. Engelmann, T. Kontogianni, and B. Leibe, ‘‘Dilated point convolutions:
On the receptive field size of point convolutions on 3D point clouds,’’ in
Proc. Int. Conf. Robot. Automat. (ICRA), May 2020. [Online]. Available:
https://francisengelmann.github.io/DPC/

[10] L. Pan, C.-M. Chew, and G. H. Lee, ‘‘PointAtrousGraph: Deep
hierarchical encoder-decoder with point atrous convolution for unor-
ganized 3D points,’’ 2019, arXiv:1907.09798. [Online]. Available:
http://arxiv.org/abs/1907.09798

[11] L. Landrieu and M. Simonovsky, ‘‘Large-scale point cloud semantic seg-
mentation with superpoint graphs,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 4558–4567.

[12] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between cap-
sules,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3856–3866.

[13] Z. Xinyi and L. Chen, ‘‘Capsule graph neural network,’’ in Proc. Int. Conf.
Learn. Represent., 2019, pp. 1–16.

[14] S. Verma and Z. Zhang, ‘‘Graph capsule convolutional neural networks,’’
in Proc. Joint ICML IJCAI Workshop Comput. Biol., 2018, pp. 1–12.

[15] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, ‘‘RandLA-Net: Efficient semantic segmentation of large-
scale point clouds,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2020, pp. 11108–11117.

[16] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, ‘‘Learning ambidextrous robot grasping policies,’’ Sci.
Robot., vol. 4, no. 26, pp. 1–11, 2019.

[17] P. Raina, S. Mudur, and T. Popa, ‘‘Sharpness fields in point clouds using
deep learning,’’ Comput. Graph., vol. 78, pp. 37–53, Feb. 2019.

[18] D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo, ‘‘Fast and robust edge
extraction in unorganized point clouds,’’ in Proc. Int. Conf. Digit. Image
Comput., Techn. Appl. (DICTA), Nov. 2015, pp. 1–8.

[19] D. Moon, S. Chung, S. Kwon, J. Seo, and J. Shin, ‘‘Comparison and uti-
lization of point cloud generated from photogrammetry and laser scanning:
3D world model for smart heavy equipment planning,’’ Autom. Construct.,
vol. 98, pp. 322–331, Feb. 2019.

[20] S. Puttagunta, F. Chraim, A. Gupta, S. Harvey, J. Creadore, and G. Mills,
‘‘Real timemachine vision and point-cloud analysis for remote sensing and
vehicle control,’’ U.S. Patent 10 549 768, Feb. 4, 2020.

[21] W. Wang, R. Yu, Q. Huang, and U. Neumann, ‘‘SGPN: Similarity
group proposal network for 3D point cloud instance segmentation,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2569–2578.

[22] M. Jaritz, J. Gu, and H. Su, ‘‘Multi-view PointNet for 3D scene under-
standing,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW),
Oct. 2019, pp. 1–9.

[23] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
‘‘PartNet: A large-scale benchmark for fine-grained and hierarchical part-
level 3D object understanding,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 909–918.

[24] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
‘‘Geometric deep learning: Going beyond Euclidean data,’’ IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[25] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, ‘‘SpiderCNN: Deep learning
on point sets with parameterized convolutional filters,’’ in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 87–102.

[26] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. Guibas, ‘‘KPConv: Flexible and deformable convolution for point
clouds,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6411–6420.

[27] H. Zhao, L. Jiang, C.-W. Fu, and J. Jia, ‘‘PointWeb: Enhancing local
neighborhood features for point cloud processing,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5565–5573.

[28] X. Liang and Z. Fu, ‘‘MHNet:Multiscale hierarchical network for 3D point
cloud semantic segmentation,’’ IEEE Access, vol. 7, pp. 173999–174012,
2019.

[29] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan, ‘‘Graph attention con-
volution for point cloud semantic segmentation,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10296–10305.

[30] G. Hinton, A. Krizhevsky, and S. Wang, ‘‘Transforming auto-encoders,’’
in Proc. Int. Conf. Artif. Neural Netw., 2011, pp. 44–51.

[31] M. K. Patrick, A. F. Adekoya, A. A. Mighty, and B. Y. Edward,
‘‘Capsule networks—A survey,’’ J. King Saud Univ.-Comput. Inf. Sci.,
to be published. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1319157819309322

[32] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, ‘‘3D point capsule net-
works,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 1009–1018.

[33] N. Srivastava, H. Goh, and R. Salakhutdinov, ‘‘Geometric capsule autoen-
coders for 3D point clouds,’’ 2019, arXiv:1912.03310. [Online]. Available:
http://arxiv.org/abs/1912.03310

[34] Y. Zhao, T. Birdal, J. E. Lenssen, E. Menegatti, L. Guibas, and F. Tombari,
‘‘Quaternion equivariant capsule networks for 3D point clouds,’’ 2019,
arXiv:1912.12098. [Online]. Available: http://arxiv.org/abs/1912.12098

[35] A. Cheraghian and L. Petersson, ‘‘3DCapsule: Extending the capsule
architecture to classify 3D point clouds,’’ in Proc. IEEEWinter Conf. Appl.
Comput. Vis. (WACV), Jan. 2019, pp. 1194–1202.

[36] H. Thomas, F. Goulette, J.-E. Deschaud, B. Marcotegui, and Y. LeGall,
‘‘Semantic classification of 3D point clouds with multiscale spherical
neighborhoods,’’ inProc. Int. Conf. 3DVis. (3DV), Sep. 2018, pp. 390–398.

[37] T. Hackel, J. D. Wegner, and K. Schindler, ‘‘Fast semantic segmentation of
3D point clouds with strongly varying density,’’ ISPRS Ann. Photogramm.,
Remote Sens. Spatial Inf. Sci., vol. 3, pp. 177–184, Jun. 2016.

[38] D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo, ‘‘Segmentation-basedmulti-
scale edge extraction to measure the persistence of features in unorganized
point clouds,’’ in Proc. 12th Int. Joint Conf. Comput. Vis., Imag. Comput.
Graph. Theory Appl., 2017, pp. 317–325.

[39] J. Li, B. M. Chen, and G. H. Lee, ‘‘SO-Net: Self-organizing network
for point cloud analysis,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 9397–9406.

[40] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, ‘‘3D
ShapeNets: A deep representation for volumetric shapes,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1912–1920.

[41] Y. Li, R. Bu,M. Sun,W.Wu, X. Di, and B. Chen, ‘‘PointCNN: Convolution
on X-transformed points,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31,
2018, pp. 820–830.

[42] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, ‘‘A scalable active framework for region annota-
tion in 3D shape collections,’’ ACM Trans. Graph., vol. 35, no. 6, pp. 1–12,
Nov. 2016.

[43] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[44] B. Xu, N. Wang, T. Chen, and M. Li, ‘‘Empirical evaluation of rectified
activations in convolutional network,’’ 2015, arXiv:1505.00853. [Online].
Available: http://arxiv.org/abs/1505.00853

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

188066 VOLUME 8, 2020

D. Bazazian, D. Nahata: DCG-Net: Dynamic Capsule Graph Convolutional Network for Point Clouds

[46] D. Kingma and J. Ba, ‘‘ADAM: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[47] I. Loshchilov and H. Frank, ‘‘SGDR: Stochastic gradient descent with
warm restarts,’’ in Proc. Int. Conf. Learn. Represent., 2017, pp. 1–16.

[48] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, ‘‘Generative and dis-
criminative voxel modeling with convolutional neural networks,’’ 2016,
arXiv:1608.04236. [Online]. Available: http://arxiv.org/abs/1608.04236

[49] M. Simonovsky and N. Komodakis, ‘‘Dynamic edge-conditioned filters in
convolutional neural networks on graphs,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3693–3702.

DENA BAZAZIAN received the Ph.D. degree
from the Computer Vision Center (CVC),
Autonomous University of Barcelona (UAB),
in 2018. She was a Postdoctoral Researcher at
the CVC, UAB. She had long-term research vis-
its at NAVER LABS Europe, Grenoble, France,
and the Media Integration and Communication
Center (MICC), University of Florence, Italy. She
was with the Universitat Politècnica de Catalunya
(UPC), from 2013 to 2015, working on sharp edge

extraction and feature description of unorganized point cloud. She is cur-
rently a Research Scientist at the Centre Tecnològic de Telecomunicacions
de Catalunya (CTTC). Her research interests include computer vision and
geometric deep learning algorithms to analyze 3D point clouds. She was
one of the organizers of Deep Learning for Geometric Computing (DLGC)
Workshop at CVPR2020, Women in Computer Vision (WiCV) Workshops
at CVPR2018 and ECCV2018, and Robust Reading Challenge on Omnidi-
rectional Video at ICDAR 2017.

DHANANJAY NAHATA received the bachelor’s
degree in engineering from the Birla Institute of
Technology and Science, Pilani, India, in 2019.
He is currently pursuing the master’s degree with
the Universitat Autònoma de Barcelona (UAB),
Barcelona, Spain, in the field of computer vision.
Before that, he was with the Research and Devel-
opment Department, SONY Corporation, Tokyo,
Japan, working in the field of generative adversar-
ial networks (GANs). He is currently one of the

Program Committee members of the Special Session of ‘‘Games for Sustain-
able Development Goals’’ at IEEE COG 2020. His research interests include
applications of deep learning and computer vision for post-earthquake dam-
age assessment.

VOLUME 8, 2020 188067

