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ABSTRACT Many real-world problems are modeled as multi-objective optimization problems whose
optimal solutions change with time. These problems are commonly termed dynamic multi-objective opti-
mization problems (DMOPs). One challenge associated with solving such problems is the fact that the Pareto
front or Pareto set often changes too quickly. This means that the optimal solution set at period t may likely
vary from that at (t+1), and thismakes the process of optimizing such problems computationally expensive to
implement. This article proposes the use of adaptive mutation and crossover operators for the non-dominated
sorting genetic algorithm III (NSGA-III). The aim is to find solutions that can adapt to fitness changes in the
objective function space over time. The proposed approach improves the capability of NSGA-III to solve
multi-objective optimization problems with solutions that change quickly in both space and time. Results
obtained show that this method of population reinitialization can effectively optimize selected benchmark
dynamic problems. In addition, we test the capability of the proposed algorithm to select robust solutions
over time. We recognize that DMOPs are characterized by rapidly changing optimal solutions. Therefore,
we also test the ability of our proposed algorithm to handle these changes. This is achieved by evaluating
its performance on selected robust optimization over time (ROOT) and robust Pareto-optimality over time
(RPOOT) benchmark problems.

INDEX TERMS Convergence, diversity, dynamic multi-objective optimization, inverted generational
distance, reference points.

I. INTRODUCTION
Many real-world problems are modeled by parameters which
change over time [1]–[4]. Rather than model such prob-
lems as static optimization problems, they are best described
using dynamic optimization problems. With respect to mul-
tiple objectives, dynamic problems are characterized by a
moving, constantly changing Pareto front (PF) or Pareto
set (PS). A dynamic multi-objective optimization problem
(DMOP) is generally considered to be a changing sequence
of multi-objective optimization problems [5]. Some real-
world instances of DMOPs are solved in [6] and [7]. The
fitness landscape of a DMOP is dynamic because of time-
varying objective functions and/or constraints. In this article,
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we consider a DMOP as consisting of multiple objective
functions of the form:

minx f (x, t) =


f1 (x, t)
.

.

fn(x, t)


subject to: x ∈ β(t) (1)

where β(t) is the decision variable space. β(t) ⊂ <m where
m is the number of feasible decision variables. The deci-
sion variables are constituted such that there are generally u
inequality constraints and v equality constraints according to:

β (t) = xεRm
: au (x, t) ≤ 0 and bv (x, t) = 0

for u = 1.., k and v = 1.., l (2)
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With regard to the Pareto optimal front (POF), an objective
function vector ct dominates another vector dt when ct ≤ dt .
In other words:

cj,t ≤ dj,t ∀j = 1, 2, .......n (3)

Therefore, all the elements in cj,t constitute the non-
dominated POF. The Pareto optimal solution (POS) set is
obtained from the decision vector β(t) in which there exists
a subset of β(t) called:

x′(t) =
[
x ′1(t), x

′

2(t), . . . , x
′
f (t)

]
(4)

such that no other vector in β(t) dominates x′(t).
One important point to note in the optimization of DMOPs

is that a balance between convergence and diversity of the
POS must be maintained despite the dynamic fitness land-
scape [8]. In other words, there must be a balance between
the ability of a search algorithm to effectively explore the
solution space without failing to select locally non-dominated
solutions that may eventually constitute the POS or POF.
One such approach is to effectively reinitialize the search
population after a change has occurred within the solution
space over time. From literature, one technique of ensur-
ing that this happens is by adapting the search algorithm’s
mutation and crossover operators [5]. The crossover operator
is used to search for feasible solutions within the solution
space. Mutation operator alters the genes of the offspring.
In other words, it improves fitness level of candidates within
the solution space. Therefore, these two operators can signifi-
cantly improve the quality of the PF in dynamic optimization
problems if they are well tuned.

In this article, we propose the use of adaptive crossover and
mutation operators for the NSGA-III evolutionary algorithm
in the presence of time-varying objective functions. We call
this dynamic version of NSGA-III, dynamic NSGA-III
(dyNSGA-III). The aim of this proposed approach is to
address the problem of high-dimensionality, or changing
dimensionality associated with DMOPs. The main contribu-
tions of this article include:
• The proposal of a principal component analysis
(PCA) strategy with n-mutation to improve selection
pressure and diversity of original NSGA-III under
high-dimensionality.

• Testing capability of proposed strategy to obtain robust
solutions to problems with multiple time-varying PF
and PS.

The results of the proposed approach would be compared
to the performance of three other well-performing dynamic
multi-objective evolutionary algorithms (DMOEAs) in terms
of sensitivity to changing fitness landscape. We use the
robust moving peaks benchmark (RMPB) test suite for single
objective and robust Pareto-optimality over time (RPOOT)
for up to three objectives. The rest of the paper is orga-
nized as follows: Section II discusses successfully imple-
mented strategies for tackling DMOPs. Section III presents
the proposed approach to effectively track the moving POF

characterizing DMOPs. Section IV presents the test problems
and performance parameters for estimating the ability of
the proposed algorithm to retain robust solutions. Section V
discusses results obtained and Section VI concludes the
paper.

II. STRATEGIES FOR IMPROVING DYNAMIC
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
Several researchers have proposed improvements to the capa-
bility of EAs to handle dynamic, multimodal problems. How-
ever, several challenges remain [9]. One of these challenges
is difficulty in establishing the right balance between conver-
gence and diversity. Convergence describes the ability of an
MOEA to settle on the final non-dominated solution or set of
solutions that most accurately solves the problem. Diversity
is concerned with the spread of non-dominated solutions
within the solution space. This problem is considered by
many researchers to be the most significant for MOEAs.
Another problem is as the number of objectives increases, the
distance between suitable mates also increases. This means
that when such candidates mate, their offspring will be far
away from both mates. This means that more effort would
have to be made to recombine candidates to ensure effective
convergence and diversity of the non-dominated solution set.
A third challenge is when the number of objectives exceeds
two, it becomes challenging to estimate the performance of
MOEAs due to high dimensionality of the solution space.
Therefore, it becomes difficult to compare the performance
of several MOEAs. Examples of most used performance
metrics include inverted generational distance (IGD) and
hypervolume (HV) metrics. Lastly, when the number of
objectives describing a problem is large (typically beyond
five), it becomes difficult to visualize the non-dominated
solution space.

In recent years, several approaches have been proposed by
various researchers to improve the optimization of DMOPs.
In [10], a prediction strategy based on reference points was
used to partition the population into subpopulations. With
this strategy, a sequence of subpopulation centers in the
previous environments was attached to one reference point
and was used to predict the center of the new environ-
ment. The performance of the proposed algorithm was com-
pared to population prediction strategy (PPS) and dynamic
search strategy (DSS) for various dynamic environments.
The proposed algorithm outperformed the other two algo-
rithms for highly dynamic problems. In [11], a squirrel
search algorithm was proposed to optimize DMOPs. This
algorithm was based on decomposition with both evolution-
ary direction prediction and bidirectional memory popula-
tions. The proposed direction prediction strategy involved
the use of modification vectors and judgment individu-
als. Therefore, there was no need for threshold settings.
In terms of the bidirectional memory populations, two cases
were considered: when the population evolved along the
evolutionary direction of the previous environment, and
when it evolved against the previous evolutionary direction.
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The proposed algorithm’s performance was compared with
3 other well-performing dynamic optimization algorithms
for 6 dynamic multi-objective optimization problems. The
test parameters considered involved both severity and fre-
quency of change within the solution space. The proposed
algorithm outperformed the other three dynamic optimization
algorithms.

In [12], a strategy was proposed to predict the dynamic
location of the Pareto set by clustering the population into
several representative groups. The number of clusters was
adapted to the intensity of environmental change. The pro-
posed method was compared with 5 other well-performing
algorithms including multi-objective evolutionary algorithm
based on dominance (MOEAD) and dynamic non-dominated
sorting genetic algorithm (dNSGA-II). The algorithms were
tested on 10 DMOPs; performance indices included spac-
ing metric, dynamic hypervolume metric and mean inverted
generational distance. The proposed algorithm outperformed
the other algorithms, particularly problems involving rotating
Pareto set with dynamic environments.

In [13], a novel raccoon family optimization (RFO) algo-
rithmwas proposed to solve the task of planning and schedul-
ing of multiple projects. The objective of the mathematical
model was tomaximize total net profit of themultiple projects
while considering early completion bonus, late completion
penalty cost and resource cost. The performance of RFO
algorithm was found to be superior to raccoon optimization
algorithm (ROA), artificial bee colony (ABC) algorithm and
genetic algorithm (GA) at 95% confidence interval. A Pareto-
based guided artificial bee colony (PGABC) algorithm was
proposed to handle the multi-objective optimization problem
of lotsizing and mixed model scheduling for flexible produc-
tion lines in [14]. Taguchi methodwas used to tune the param-
eters for PGABC and the algorithm was tested on 9 different
problem instances based on demand and production system.
Three conflicting objectives were considered: lotsizing and
mixed model sequencing to minimize makespan, balancing
workload among parallel production lines, and maximizing
net profit in production lines. PGABC outperformed multi-
objective artificial bee colony (MOABC), non-dominated
sorting genetic algorithm III (NSGA-III) and improved
strength Pareto evolutionary algorithm (SPEA2) for Pareto
front (PF) improvement. Particularly, performance metrics
were PF spread and proximity to true PF that optimized
the problem. In [15], a hybrid spider monkey optimization
(HSMO) algorithm was proposed to solve an integrated
planning and scheduling problem for printed circuit board
(PCB) assembly lines. The multi-objective problem involved
line assignment to PCB models, component allocation to
machines, and component placement sequencing to maxi-
mize net profit. The performance of HSMO was compared to
ABC, GA, particle swarm optimization (PSO) and simulated
annealing (SA) algorithms on a real-world problem adapted
from a PCB manufacturing industry in China. It was reported
that HSMO achieved near-optimal solutions compared to the
other 4 algorithms.

Several other innovations with respect to solving dynamic
optimization problems can also be found in [16]–[19].
In [16], a single randomly mutating time-variant archive
was used to balance convergence and diversity of the
dynamic Pareto front (PF). The Gee-Tan-Abbass (GTA)
test suite was used to evaluate performance on problem
dimensions of 500 and 1500, respectively. Local fitness
approximation and prediction approach was used in [17]
to locate optimal solutions to DMOPs. In this approach,
the solutions that were sought were those that changed
slowly over time. Adaptive gradient refinement based on a
multi-layer co-evolutionary approach was proposed in [18].
This approach attempted to solve the problem of rapidly
changing PF associated with finding suitable solutions to
selected DMOPs. Maintaining both diversity and fitness of
solutions in time-varying search environment was empha-
sized. In [19], a two-archive evolutionary algorithm was
proposed to tackle the problem of changing shape of PF in
the presence of changing number of objectives. One archive
tackled convergence of the PF, while the other maintained its
diversity.

In this article, we propose the use of adaptive crossover
and mutation operators to improve the capability of the
NSGA-III algorithm to handle dynamic Pareto sets. We will
test the ability of the proposed dyNSGA-III to maintain fit
and robust solutions as the candidate landscape changes over
time. The methodology for achieving this is discussed in the
next section.

III. PROPOSED METHODOLOGY
The non-dominated sorting genetic algorithm III (NSGA-III)
is capable of handling optimization problems with many
objectives. It does this by using reference points that are
positioned in the hyperplane representing the multi-objective
optimization problem [20], [21]. NSGA-III solves both con-
strained and unconstrained optimization problems. Regard-
ing constrained problems, NSGA-III effectively handles three
scenarios: when the Pareto front is optimal with an infea-
sible barrier, when the Pareto front is partly infeasible, and
when it is wholly infeasible [21]. These capabilities deter-
mined our decision to improve the performance of NSGA-III
to handle dynamic multi-objective optimization problems.
Several techniques of mutation and crossover operator tuning
have been reported [19]. We will focus on adaptive principal
component analysis (PCA) mutation and n-point crossover,
respectively. PCA is suitable for problems with high dimen-
sionality because it selects features with highest covariance.
This means that correlation among similar features in the
problem variables is reduced [22]. The n-point crossover
approach is selected to increase the randomness with which
offspring for successive generations are generated [23]. This
results in dimensionality reduction of the given problem,
which improves visualization of the solution space. A real-
coded genetic algorithm (GA) generally uses a population
comprising N chromosomes, with each chromosome com-
prisingM genes. The chromosome population is represented
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Algorithm 1 Adaptive Mutation for dyNSGA-III
Start
Initialize pop. size (Np), reference points (pr), mutation prob-
ability (pm)
While (stopping criterion ∗ = false)
Adaptively vary pm and measure Euclidean distance from
E(c)
Output COV, θj, γj, P
End

as:

c =


c1
c2
.

.

cN

 (5)

In general, each chromosome cab(where a and b denote chro-
mosome position and generation respectively) is composed
of genes gab such that gab ∈

[
gl,b , gu,b

]
· gl,b and gu,b

are the real-coded lower and upper bounds of the search
space respectively. The PCA mutation approach involves the
compression of high-dimensional input data into a lower
dimensional space [19].

The input data set represented by Equation (5) can be
viewed as a collection of N points within an m-dimensional
Euclidean solution space equidistant from the mean value
E(c). The PCAmutation then looks for solutions in directions
of maximum variance. The covariance matrix is obtained
according to:

COV = E{(c− E(c))(c− E(c)T )} (6)

Eigenvalues (γj) and eigenvectors (θj) are obtained according
to:

COV θj = γjθj ∀j = 1, ....m (7)

The solution space is then re-centered using the PCAmutated
eigenvectors to obtain the modified population as:

P = (c− E(c)) · θ (8)

where θ = [θ1, θ2, . . . , θj] is the matrix of eigenvectors.
The algorithm for the adaptive mutation of the solution space
using PCA is shown in Algorithm 1.

The crossover operator enables offspring of the mutated
chromosomes to find suitable solutions within the search
space, varied according to the distance of potential solutions
from the optimum solution(s). The n-point crossover (recom-
bination) has been selected so that the number of genes for
recombination can be varied according to the distance of
potential solutions from the optimum solution(s). For n-point
crossover, n genes are randomly selected from both parents.
These are swapped between the parents and then they are
recombined to produce the offspring. In this article, we con-
sider the single arithmetic recombination strategy [24]. In this
method, the arithmetic average of both parent chromosomes

Algorithm 2 Adaptive Recombination for dyNSGA-III
Start
Initialize pop. size (Np), reference points (pr), crossover rate
(cr)
While (stopping criterion ∗ = false)
Adaptively vary cr and modify offspring chromosomes
according to Equation (9)
Output best local choffspring
End
∗ For Algorithms 1 and 2, the stopping criterion is taken to be maximum

Euclidean distance with respect to Np and COV.

TABLE 1. Parameters for dyNSGA-III algorithm.

is taken at a random point at which an allele is located. This
is then used to create an offspring according to:

choffspring = x1, ...., xl−1, η · yl + (1− η) · xl, xl+1, ...., x

(9)

where xn and yn are genes from parents, η is recombination
operator.

The algorithm for describing the adaptive crossover oper-
ation is detailed in Algorithm 2.

The search parameters for the proposed dyNSGA-III algo-
rithm are specified in Table 1. The test problems used to
test the performance of the proposed algorithm are from the
Gee-Tan-Abbass (GTA) benchmark test suite for dynamic
multi-objective optimization [25]. Five additive and five
multiplicative forms of the DMOPs were used to test the
performance of dyNSGA-III. GTA1a – 6m are bi-objective
DMOPs, while GTA9m – 12m are tri-objective. Themain dif-
ferences between the additive and multiplicative forms of the
DMOPs are in terms of their lower bounds and modality [25].

There is a degradation of selection pressure of MOEAs
as the number of objectives increases. dyNSGA-III remedies
this problem by adopting the strategy proposed in [26]. Here,
a less computationally expensive approach is used to generate
reference points for the m-dimensional vector 0j using a
random function. Also, a clustering operator is used to obtain
a normalized PF based on the following:

do (x) =
∥∥∥v(x)T0j∥∥∥ / ∥∥0j∥∥ (10)

dp (x) =

∥∥∥∥∥v(x)−do (x) ( 0j∥∥0j∥∥ )
∥∥∥∥∥ (11)

where 0j = [γj,1, γj,2, . . . . . . , γj,m], v(x) is the normalized
objective vector, do (x) is distance between a line passing

188930 VOLUME 8, 2020



I. O. Essiet, Y. Sun: Tracking Variable Fitness Landscape in Dynamic Multi-Objective Optimization

FIGURE 1. PCA selection of line with potential solutions.

through the origin and a point p in the objective function
space, dp (x) is perpendicular distance between v(x) and the
line through the origin.

To illustrate the use of PCA to improve solution diversity
of the PF, consider a hypothetical 2-objective hyperplane
in Fig. 1. The line through the origin with least varying
solutions is eliminated while a line with greater variance with
respect to potential solutions for the PF is selected.

This approach significantly improves selection pressure
of the original NSGA-III by balancing convergence and
diversity as the number of objectives increases. Therefore,
PCA handles perturbation of the population and improves
dyNSGA-III performance on RPOOT problems.

IV. PERFORMANCE WITH ROBUST OPTIMIZATION OVER
TIME (ROOT) AND ROBUST PARETO-OPTIMALITY OVER
TIME (RPOOT) BENCHMARK PROBLEMS
The idea of ROOT and RPOOT is because certain solutions
in dynamic environments become sub-optimal as the search
space changes over time. This means that a solution that
optimizes problem parameters at a given feature evaluation
instance may not do so in the next instance. This scenario
is likely to be computationally expensive in real-life appli-
cations since the DMOEA parameters would need to be
reconfigured to suit the new problem landscape. Therefore,
it is important to test the ability of the DMOEA to obtain
robust solutions which can optimally solve a DMOP over at
least two feature instances of the DMOP [27]. In this section,
we will examine the ability of the dyNSGA-III algorithm to
obtain robust solutions which remain optimal over time. The
performance of the proposed algorithm would be compared
with the dNSGA-II, SGEA and dMOPSO DMOEAs.

Without loss of generality, we assume according to [27]
that a solution or sequence of solutions is robust when
such solutions can be used to solve a DMOP for at least
2 consecutive instances of the problem. Therefore, due to
the characteristics of ROOT and RPOOT, there are specified
benchmark problems which are used to test the robustness of
the DMOEA. These are presented in the next subsection.

A. ENHANCING DYNSGA-III PERFORMANCE TO HANDLE
ROOT AND RPOOT BENCHMARK PROBLEMS
With ROOT, solutions are selected in such a way that
they remain effective even as environmental changes in the

solution space take place over time. This is a more real-
istic approach to solving dynamic optimization problems
as opposed to continually tracking a single global moving
optimum. This therefore means that we must incorporate pre-
diction into the solution-finding process based on the time-
changing solution space. Regarding the benchmark problems
being considered, we adopt the approach in [17]. In this
approach, we use a radial basis function (RBF) model as
an approximator, and an autoregression (AR) model as a
predictor. We note that ROOT problems are to test the capa-
bility of dyNSGA-III to provide robust solutions for a single
objective, while RPOOT problems test robustness for up to
three objectives at a time. Details of the approach can be seen
in [17].

B. ROOT BENCHMARK PROBLEMS
The problems used to test the robustness of the proposed
DMOEA are based on [28]. The problems are collectively
referred to as robust moving peaks benchmark (RMPB) and
they are divided into two subsets. The first problem subset
(RMPB-I) consists of six test problems which describe the
maximization of the average fitness of solutions obtained
by the DMOEA with respect to ROOT. The second subset
(RMPB-II) consists of another six test problemswhich is used
to determine the maximum time that a solution or solution
sequence remains the optimal solution of the DMOP. Accord-
ing to [29], the average fitness and survival time are described
according to Equations (12) and (13).

ρa(x, t) =
1
T

T−1∑
j=0

fa,t+j(x) (12)

ρs(x, t) =


0 if fa,t (x) < F
1+max{p, ∀ j ∈ (t, t + 1, .......t + p)}

if fa,t (x) ≥ F
(13)

where T is the DOP lifecycle, fa,t (x) is the average fitness
of a solution describing the parameter vector x, F is the
solution fitness threshold, p is the time step increase over the
interval [0,T ].
The baseline fitness function in RMPB-I for average fitness

maximization is specified according to [28] as:

ρf ,t (x) =
1
D

D∑
i=1

max{habt − w
ab
t ∗

∣∣∣xb − cabt ∣∣∣} (14)

Also, the baseline fitness function for RMPB-II for survival
time maximization is according to Fu, [28] as:

ρs,t (x) =
n

min
b=1
{

m
max
a=1
{habt − w

ab
t ∗

∣∣∣xb − cabt ∣∣∣}} (15)

D is the dimension of the parameter vector x, while habt ,
wabt and cabt represent the height, width and centre of peak
function a for dimension b at time t . Varying the height, width
and centre of a given peak function introduces dynamics
into the solution space over time, which represent changes in
the parameter space for many real-life problems. Regarding
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RMPB-I and –II, six different dynamics are considered which
include: small step, large step, random, chaotic, recurrent, and
recurrent with noise dynamics [28].

C. ROOT PERFORMANCE EVALUATION METRICS
We consider performance of individual solutions obtained by
the DMOEAs being compared using the average error eav and
sensitivity to changing environment θs [27]:

eav =
1
Na

p0+Na−1∑
b=p0

|ρb − ρi| (16)

where Na is total number of problem instances for a given
peak function a, p0 is the initial problem instance, ρb is the
fitness value of the global optimum of the problem instance
b, ρi is the fitness value of solution Si.

θs =

√√√√√ 1
Na − 1

po+Na−1∑
b=p0

(|ρb − ρi| − eav)2 (17)

The fitness of a sequence of robust solutions is determined
by considering the length of the sequence solutions (ls) with
respect to best sequence error (ebest,s), average sequence error
(eav,s), worst sequence error (eworst,s) and sequence sensitiv-
ity (2s). These parameters are defined according to [27]:

ebest,s =
j

min
i=1

ei (18)

eav,s =
1
j

j∑
i=1

ei (19)

eworst,s =
j

max
i=1

ei (20)

2s =

√√√√ 1
j− 1

j∑
i=1

(ei − eav,s)2 (21)

where ei is average error of the solution sequence Si.
In general, the performance measure of the DMOEA with

respect to ROOT is estimated using the relation according
to [28]:

Performance =
1
N

N∑
i=1

F(xi) (22)

where F(xi) is the robustness of the solution sequence Si.
In terms of the robustness estimation, the T metric measures
average fitness with respect to a time window, while the
V metric measures survival time with respect to a fitness
threshold. In this article, T is set to 10, while V is set to 20.

D. PERFORMANCE OF DYNSGA-III ON RPOOT PROBLEMS
We further investigate the capability of dyNSGA-III to handle
robust Pareto-optimality over time (RPOOT) for multiple
objectives [30]. We consider test instances of dynamic multi-
objective benchmark functions.We test based on 4 classic test
instances (F1-F4) [31] and 3 instances for complicated Pareto

front (F9-F11) [32]. According to [29], we use performance
metrics of robust survival time (tr ), robust inverted genera-
tional distance (dr ) and robust spacing (sr ). Details of these
metrics are as follows:

tr =
1
T

∑T

i=1
ti (23)

where T is the length of the survival time window for Pareto-
optimal solutions and ti is the survival time for the i-th robust
Pareto-optimal solution. A larger tr indicates that the solu-
tions adapt better to changing environments over time.

dr =
1
M

∑M

i=1
max j=ki1 ,.....,ki+Mki

IGD(j) (24)

where M is the total number of robust Pareto-optimal solu-
tions, and max j=ki1 ,.....,ki+Mki

IGD(j) is the inverted gener-
ational distance of the j-th robust solution. dr measures
the average inverted generational distance of robust Pareto-
optimal solutions over their survival time.

sr =
1
M

∑M

i=1

(
1

|1(i)| − 1

∑|1(i)|

j=1
(d − dj)2

)1/2

(25)

where dj is minimum Euclidean distance between fitness
values of j-th robust solution in robust Pareto front (1(i)) and
true Pareto front, and d = 1

|1(i)|
∑|1(i)|

j=1 dj. Robust spacing
measures average distribution of the Pareto-optimal solution
set. For the simulation, population size was set to 100 for
F1-F4 and 500 for F9-F11 [29]. Threshold was set to η = 0.4
and time window was T = 2. Simulations were run 20 times
for dyNSGA-III, SGEA and dMOPSO.

V. DISCUSSION OF RESULTS
The performance of the proposed dyNSGA-III algorithm was
compared with three other well-performing dynamic multi-
objective evolutionary algorithms (DMOEAs), namely:
dynamic non-dominated sorting genetic algorithm II
(dNSGA-II), multi-objective particle swarm optimization
based on decomposition (dMOPSO) and steady-state and
generational evolutionary algorithm (SGEA). Performance
metrics considered are the hypervolume (HV) and the mean
inverted generational distance (MIGD) (Table 2 and III
respectively). The results are the mean values with the stan-
dard deviation in parentheses. Results in boldface indicate the
best-performing algorithm. The additive and multiplicative
forms of the DMOPs from the GTA test suite were used to
test the DMOEAs. The severity (st) and frequency (ft) of
the dynamic search space were tuned in such a way that we
consider the behavior of the DMOEAs for cases where st <
ft, st = ft, and st > ft.
From the results obtained, it can be seen that dyNSGA-III

outperformed the other three DMOEAs in terms of both
HV and MIGD performance metrics. dyNSGA performed
very well on the multimodal problems (GTA9m – GTA12m),
which demonstrates its ability to adapt well to prob-
lems involving many optima. It scaled well against the
decomposition-based PSO (dMOPSO), which has the ability
to adapt to changing search spaces and shifting PFs. One
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TABLE 2. Mean and standard deviation values of dmoeas for hypervolume (hv) metric. standard deviation values in parentheses.

challenge of dynamic multi-objective optimization is that
it becomes increasingly difficult to locate optimum solu-
tions when there are both multiple objectives, and a time-
changing Pareto front. The proposed approach adapts well
to both multiple objectives and a dynamic Pareto front by
adjusting both the fitness and orientation of the search can-
didates within the solution space. The problem of premature
convergence and poor exploitation of the solution space is
also addressed by satisfying the stopping criterion specified
in Algorithms 1 and 2. We ensure that the best possible
Euclidean distance is achieved by the algorithm with respect
to the mean value E(c).
Fig. 2 shows the convergence rate of each one of the

four tested DMOEAs over 5,000 feature evaluations. From
the Figure, we see that dyNSGA-III and dMOPSO are the
best performers. We observe that dyNSGA-III converges at
a slightly slower rate than dMOPSO over the feature eval-
uations. This slower rate of convergence is advantageous in
highlymultimodal problemswhere the exploitative capability
of the search algorithm is tested.

Regarding the ability of dyNSGA-III to obtain robust
solutions to dynamic optimization problems over time, we
compare its performance with that of the other three spec-
ified DMOEAs for optimizing a single objective. We also
evaluate performance for the RPOOT benchmark problems
for multiple objectives. We compare the performance of

FIGURE 2. Average convergence of 4 tested DMOEAs.

dyNSGA-III with SGEA and dMOPSO since dNSGA-II
is worst performer for robust single-objective optimization.
Details of ROOT benchmark test problems used are specified
in Section IV(B). Performance metrics used are specified in
Section IV(C).

From the results obtained in Table 4 and V, we see
that robustness average fitness and survival time results
obtained are mostly higher for dyNSGA-III compared to
SGEA, dNSGA-II and dMOPSO. The ROOT problems used
are denoted as RMPBxy (where x indicates the problem
baseline, and y indicates the kind of dynamic that charac-
terizes the problem). Results in boldface indicate the best-
performing metric. We use feature evaluations as time steps
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TABLE 3. Mean and standard deviation values of dmoeas for mean inverted generational distance (migd) metric. standard deviation values in
parentheses.

TABLE 4. Performance comparison of DMOEAs for Error and Sensitivity
Indices for Noisy Instances of RMPB-I and -II.

to evaluate performance of the DMOEAs at various instances
in the simulation. We observe that dyNSGA-III performs
very well on RMPB-I problems with time window T set to
10 (Table 5).

For the RMPB-II problems, we set the fitness threshold V
to 20 to evaluate the survival time of the selected DMOEAs.
From the results obtained, the dyNSGA-III algorithm outper-
formed the other three DMOEAs for most of the instances of
the test problems. However, we further examined the suscep-
tibility of the proposed algorithm to noise dynamics which
is characterized by RMPB16 and RMPB26. We consider the
error metrics as well as the solution sequence sensitivity
for each of the DMOEAs for the two selected problems
to further establish the robustness of dyNSGA-III. Results
are shown in Table 4 with best-performing results indi-
cated in boldface. Therefore, we observe that dyNSGA-III
performs better than dMOPSO for the multiplicative forms
of the DMOPs (GTA9m – 12m). These problems have
many local minima, which means that search agents
can easily become trapped before reaching the global
optimum.

Details of RPOOT benchmark problems and performance
metrics are specified in Section IV(D). The RPOOT bench-
mark problems used to test the ability of dyNSGA-III to
obtain robust solutions over changing multi-objective space
include: F1-F4 which present complexities such as non-
convexity, disconnectedness and deceptiveness [31]. F9-F11
present additional complexities including changing Pareto
set (PS) and Pareto front (PF) [32]. These complexities are
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TABLE 5. Performance of DMOEAs over featrure evaluations for RMPB-I and –II with Time Window T = 10 and Fitness Threshold V = 20.

TABLE 6. Performance of Dmoeas for selected Rpoot benchmark problems.

created to test the ability of DMOEAs to adjust to time-
varying characteristics describing a given MOP, while main-
taining suitable solutions over time.

From the results obtained in Table 6, we observe
that dyNSGA-III and SGEA are the best performers for
RPOOT benchmark problems. However, dyNSGA-III could
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perform better for problems F9-F11 which involve compli-
cated PF. The computational complexity of dyNSGA-III is
O(2N 2logM−2N ) whereN is population size andM is dimen-
sionality of objective function vectors. This computational
complexity is comparable to that of SGEA, dMOPSO and
original NSGA-III.

VI. CONCLUSION
This article has proposed the use of adaptive mutation
and crossover operators to track the moving Pareto front
associated with dynamic optimization problems. Many real
world problems are modeled as multi-objective optimization
problems with time-dependent Pareto fronts. While several
researches have been presented which suggest approaches to
better track the moving Pareto fronts, the problem of subopti-
mal solutions due to premature convergence of the DMOEAs
still persists.

Optimal tuning of the mutation and recombination opera-
tors of genetic algorithms is vital for improving their ability
to select the best Pareto set to solve a DMOP. This is because
these operators determine the fitness of search candidates
within the solution space. Poor mating and reproduction of
parents will produce offspring that will not guarantee the
integrity of successive generations of search candidates. This
results in the inability of the DMOEA to keep track of the
moving Pareto front, particularly when the DMOP is also
multimodal.

In this article, we propose the use of Euclidean distance
measurement as a means of slowing down the movement of
the Pareto front. We achieve this by specifying a covariance
matrix with respect to the mean value within the search space.
We then ensure that the distance between mean value and a
potential candidate of the Pareto set is maximum, and this
constitutes our stopping criterion. From the results obtained,
we observe that our proposed dyNSGA-III algorithm scales
very well compared to other well-performing DMOEAs.
We observe that our proposed algorithm performs best for
multimodal DMOPs which demonstrates its capability to
adapt well to changing search environments. In terms of
convergence rate, we see that the proposed algorithm does not
converge too fast over the feature evaluations which means
that it has good exploitative capability. To test the capability
of the proposed dyNSGA-III algorithm to obtain robust solu-
tions to dynamic optimization problems over time, we test its
performance on the RMPB test suite. The reason for this is
because many real-life problems are characterized by rapidly
changing optima.

Overall, this research has highlighted prominent chal-
lenges that exist while attempting to solve DMOPs. These
include:
i. Maintaining balance between convergence and diversity.
ii. Effectively tracking changing PF due to time-varying

fitness landscape with respect to candidate solutions.
iii. Maintaining robust solutions despite a moving PF.

The algorithm proposed in this research has tackled the
above problems using the following methodology:

i. Ensuring effective mutation and crossover (recombina-
tion) of population candidates using PCA mutation and
n-point crossover.

ii. Using Euclidean distance measurement to slow down
movement of the PF by implementing covariance matrix
with respect to the mean value within the search space.

iii. Ensuring that performance of the proposed algorithm
(compared to other well-performing DMOEAs) is not
diminished by problems of high dimensionality and
rapidly changing objectives and PF. We achieved this
by using both HV and IGD performance metrics
(Tables II and III).

Future research will consider improving the performance
of the proposed dyNSGA-III algorithm on robust Pareto-
optimal solutions over time (RPOOT) for multiple objec-
tives with complicated PF. We will also consider the effect
of adaptive reference point placement in the search space
in addition to adaptively varying the crossover and muta-
tion rates for the NSGA-III algorithm. This will help us
to examine the possibility of further improving the capa-
bility of DMOEAs to handle highly dynamic, multimodal
problems. In addition, we will consider problems with more
than three objectives, which are representative of many real-
world problem models. Regarding the practical adaptability
of the proposed DMOEA, wewill also test its performance on
optimization of dynamic mathematical models representing
real-life systems which are susceptible to frequent environ-
mental changes over time. The efficacy of specific MOEAs
such as artificial bee colony algorithm (ABC), Hybrid Spider
Monkey algorithm (HSMA), and Raccoon family optimiza-
tion algorithm (RFOA) has been highlighted in recent lit-
erature. In future, we will compare the performance of the
improved dyNSGA-III algorithm with these MOEAs.
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