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ABSTRACT Highly accurate state of charge (SOC) estimation of lithium-ion batteries is one of the key tech-
nologies of battery management systems in electric vehicles. The performance of SOC estimation directly
influences the driving range and safety of these vehicles. Due to external disturbances, temperature variation
and electromagnetic interference, accurate SOC estimation becomes difficult. To accurately estimate the
SOC of lithium-ion batteries, this article presents a novel machine-learning method to address the risk of
gradient explosion and gradient decent using the dynamic nonlinear auto-regressive models with exogenous
input neural network (NARX) with long short-term memories (LSTM).The proposed hybrid NARX model
embeds LSTM memory, which provides jump-ahead connections in the time-unfolded model. These jump-
ahead connections provide a shorter path for the propagation of gradient information, therefore reducing
long-term dependence on the recurrent neural network. Experimental results show that the estimation
performance root mean square error (RMSE) of the proposed model is less than 1%, and this model has
better multitime prediction performance. Finally, the hybrid NARX and LSTM model is compared with the
standard back propagation neural network based on particle swarm optimization (BPNN-PSO), the least-
squares support vector machine (LS-SVM) and LSTM existing models under urban dynamometer driving
schedule (UDDS) and dynamic stress test (DST) conditions. The proposed hybrid NARX-LSTMmodel yield
relative to othermethods and can estimate the battery SOCwith high accuracy. The RMSE of proposedmodel
is improved by approximately 60% compared with the standard LSTM

INDEX TERMS Electric vehicles, state of charge, lithium-ion batteries, NARX, LSTM.

I. INTRODUCTION
Environmental protection and energy consumption reduction
have gained widespread attention in the twenty-first century,
and electric vehicles (EVs) have also developed rapidly [1].
Lithium-ion batteries are widely used in the field of EVs
owing to their superior life cycle, high energy density and
low self-discharge rate [2]. As one of the most important
technologies of EVs, an increasing number of researchers
have turned their focus to the battery management system
(BMS) in recent decades [3]. The state of charge (SOC) of the
battery is one important parameter in the BMS, as the accu-
rate estimation of SOC greatly affects battery management
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technology [4], [5]. The accurate estimation of the SOC
ensures the safety, stability and efficiency of EVs [6]. How-
ever, due to the influence of external disturbances, tem-
perature variations and electromagnetic interference, SOC
estimation for lithium-ion batteries is a typical, nonlinear
instability problem.

Currently, methods for SOC estimation are divided into
four categories: the characterization parameters method,
the ampere hour integration method, the physical model
method, and the data-driven method [7]–[10]. A method
based on characterization parameters is represented by the
open circuit voltage (OCV) method. The relatively stable
OCV-SOC relationship is often used in the industry to cal-
ibrate the SOC of batteries, but the accurate measurement of
the OCV takes a long time [11]. The ampere hour integration
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method uses the definition of SOC to estimate the SOC. How-
ever, an accurate value of the initial SOC is difficult to obtain,
and the degradation of battery performance affects the accu-
rate estimation of SOC [12]. Physical model methods include
the Kalman filter [13], [14], sliding mode observer [15],
[16], and particle filter [17], [18], among other methods.
The Kalman filter is widely used, including, for example,
the extendedKalman filter [19], unscentedKalmanfilter [20],
and adaptive Kalman filter [21]. Although the Kalman fil-
ter method has better robustness and estimation accuracy,
the accurate battery equivalent circuit model is difficult to
build due to the changing internal resistance and changing
capacitance [22]. At present, with the rapid development of
artificial intelligence and machine learning methods, data-
driven estimation methods have been used to estimate the
SOC of lithium-ion batteries. The data-driven method can
effectively solve the problems of nonlinearity and instability
in battery data collection [23]. This method is based on a large
amount of experimental offline data, and the characteristics
of current, voltage and temperature are trained to establish
a mapping model of the SOC, including neural network
(NN) [24], [25], support vector machine (SVM) [26] and deep
learning methods.

Neural networks are widely used in data-driven methods.
According to whether the structure of the network has recur-
rent terms, neural networks are divided into the dynamic
neural network (with recurrent terms) and static neural net-
work (no recurrent terms). Static neural networks are repre-
sented by back propagation neural networks (BPNNs) and
the radial basis function (RBF)[27]. Although these meth-
ods have good estimation performance, the estimation accu-
racy is low and time-consuming. The dynamic nonlinear
auto-regressive models with exogenous input neural network
(NARX) has a good memory function and can also be used
to process time series [28], [29]. However, when the value
of the gradient is greater than 1.0 during the process of
training, the error increases exponentially with the step length
of the reverse learning time, resulting in the phenomenon of
an exploding gradient; when the gradient is less than 1.0,
the error decreases exponentially with the increase of the
backward learning time step, falling into the local optimal
solution and causing the phenomenon of a vanishing gra-
dient. With the increase in the reverse learning step time,
the NARX neural network will lose long-term memory once
the phenomenon of exploding gradients or vanishing gradi-
ents have occurred [30]. As a new machine learning tech-
nology, the long and short time series (LSTM) cell is used
to replace the cell nucleus of the traditional recurrent neural
network [31]. The important information is fed to the hid-
den layer by the LSTM cell, including forgetting gate, input
gate, and output gate. To overcome the issues of exploding
gradients or vanishing gradients, long and short time series
(LSTM) is used in the NARX model for SOC prediction of
lithium-ion batteries [32]–[34]. Therefore, a method combin-
ing LSTM and NARX neural networks for SOC estimation
of lithium-ion batteries.

FIGURE 1. Structure of the NARX dynamic neural network.

In this article, the autoregressive model and machine learn-
ing methods for SOC estimation of lithium-ion batteries are
combined. A fusion model of the NARX dynamic neural
network and LSTM is proposed to solve the phenomenon
of gradient disappearance and gradient explosion in NARX
dynamic neural networks and improve estimation accuracy
of SOC for the lithium-ion batteries. The estimation per-
formance and multivariate time series for future forecasting
of hybrid models are verified by experiments and ana-
lyzed under urban dynamometer driving schedule (UDDS)
and dynamic stress test (DST) conditions. By comparison
with back propagation neural network- particle swarm opti-
mization (BPNN-PSO), least-square support vector machines
(LSSVMs) and LSTM, the superiority of the proposed
method is verified. The structure of this article is as follows:
Section 2 introduces the NARX dynamic neural network and
LSTM neural network. The model of the hybrid NARX and
LSTM is proposed in Section 3. Section 4 includes the results
and discussion and Section 5 includes the conclusion.

II. ESTIMATION MODELS FOR BATTERIES
A. TYPES OF NARX DYNAMIC NEURAL NETWORK
The nonlinear autoregressive model applies a dynamic neural
network to time series forecasting, resulting in powerful fore-
casting performance. The NARX structure primarily includes
an input layer, feedback layer, output layer, input delay and
output delay [35]. TheNARXmodel is defined by Equation 1,
and the structure is shown in Fig. 1.

y(t) = f (y(t − 1), y(t − 2) . . . , y(t − ny),
u(t − 1), u(t − 2) . . . , u(t − nu))

(1)

where un is the input at time n and yn is the output. nu
and ny are input memory order and output memory order,
respectively. Fig. 1 is a classic closed-loop NARX dynamic
neural network, which feeds the output of the standard NARX
neural network to the input.

The open-loop NARX neural network feeds back the real
values to the input, and the structural expression is defined by
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FIGURE 2. Structure of the LSTM recurrent neural network.

Equation 2.

ŷ(t) = f̂ (yo(t − 1); u(t − 1)) = f̂ (y(t − 1), y(t − 2)

. . . , y(t − ny), u(t − 1), u(t − 2) . . . , u(t − nu))(2)

The closed-loopNARX neural network feeds the estimated
values to the input, and the structural expression is defined as
Equation 3.

ŷ(t) = f̂ (yo(t − 1); u(t − 1)) = f̂ (y(t − 1), y(t − 2)

. . . , y(t − ny), u(t − 1), u(t − 2) . . . , u(t − nu))(3)

where, ŷ is estimation SOC, yn is the output, un is the
input, nu and ny are input memory order and output memory,
respectively.

To obtain a more accurate estimation of SOC, the open-
loop NARX neural network is used [36]. However, the phe-
nomenon of the exploding gradient and vanishing gradient
has become an important factor restricting the NARX neural
network, and therefore, the NARX dynamic neural network
combined with LSTM is proposed to estimate the SOC of the
battery.

B. LSTM NEURAL NETWORK
As a newmachine learning technology, the LSTM neural net-
work uses the traditional recurrent neural network to address
the problem of the exploding gradient and vanishing gradi-
ent [37]. The LSTM cell nucleus is used to replace the cell
nucleus of the traditional dynamic neural network; therefore,
it has long-term memory capabilities. The information for-
gotten by the LSTM cell nucleus feeds important information
to the hidden layer, including the forgetting gate, input gate,
and output gate [38]. The memory cell of an LSTM recurrent
neural network is shown in Fig. 2.

The LSTM recurrent neural network is an architecture
that maps the output series (SOC) through the input series
(voltage, current, temperature, etc.). The input gate is used as
an evaluation index for updating current information. Before

generating new memories, the gate network needs to deter-
mine whether the current information is important and decide
whether to remember. The forgetting gate only evaluates the
information of the past memory cell and evaluates whether
to forget information from the past. The self-recurrent con-
nection generates new memories after merging the past and
current memory information. The purpose of the output gate
is to separate the final memory. The mathematical expression
is as follows:

it = σ (wxixt + whixt−1 + bi) (4)

ft = σ (wxf xt + whf xt−1 + bf ) (5)

ot = σ (wxoxt + whoxt−1 + bo) (6)

ct = ftct−1 + tanh(wxcxt + whcht−1 + bc) (7)

ht = ot tanh ct (8)

Among them it , ft , ot and ct represent the input, forget,
output, and cell state at time t , respectively. σ and tanh are
the sigmoid activation function and the hyperbolic tangent
activation function, respectively.

III. HYBRID NARX AND LSTM MODEL
The model combining NARX and LSTM is proposed to
integrate the advantages of each model and obtain stronger
estimation performance. The most important feature of the
hybrid NARX dynamic neural network is the embedding of
LSTM memories, which provide jump ahead connections in
the time-unfolding network. These jump ahead connections
provide a shorter path for the propagation of gradient infor-
mation, reducing the long-term dependence on the recurrent
neural network. Due to address the nonlinear system iden-
tification and latching problem, NARX dynamic neural net-
work is chosen for estimation SOC. The proposed model not
only improves the estimation accuracy but also prevents the
overfitting caused by long-term dependence in the structure
of the recurrent neural network. In addition, our embedded
LSTM memory is not sophisticated embedded memory cells
and simply consists of tapped delayed information to other
neurons. The hybrid NARX and LSTM model is shown
in Fig. 3.

The hybrid NARX and LSTMmodel is mainly divided into
two sections. First, the SOC of the battery is preliminarily
predicted by the NARX recurrent neural network using the
input current and voltage. Second, the initial predicted SOC
andmeasured current and voltage are transferred to the LSTM
recurrent neural network to predict the SOC.

ỹ = f (
n∑
i=1

αi) (9)

Y (t) = g(ỹ,
n∑
i=1

αi (10)

(11)

where ỹ is the SOC estimated by the NARX dynamic
neural network, Y is the final SOC estimated by the
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FIGURE 3. Schematic diagram of the hybrid NARX and LSTM model for SOC estimation.

hybrid NARX and LSTM, and αi is the input data.
To explain the proposed method clearly, the algorithm of
hybrid NARX and LSTM model is presented, as shown in
table 1.

IV. RESULTS AND DISCUSSION
In this study, the data are collected on the lithium-
ion phosphate battery under UDDS conditions and the
18650 lithium-ion battery under DST conditions. The
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TABLE 1. The algorithm of hybrid NARX and LSTM.

FIGURE 4. Current, Voltage, and SOC under UDDS conditions.

EVT500-500 equipment test system, host computer, Fluke
data recorder, and related devices are used for data col-
lection at 20◦C to obtain training data and test data. The
collected data of the two working conditions are shown
in Fig. (4, 5)

To evaluate the performance of the proposed algorithm,
mean absolute error (MAE), root mean square error (RMSE)
and mean absolute percentage error (MAPE) are used. The
mathematical formulas of MAE, RMSE, and MAPE are as
follows:

MAE =

∑n
1 |Ye − Yi|

n
(12)

RMSE =

√∑n
1 (Ye − Yi)

2

n
(13)

MAPE =
1
n

n∑
1

|Ye − Yi|
|Yi|

(14)

FIGURE 5. Current, Voltage, and SOC under DST conditions.

A. THE HYPER-PARAMETERS OF HYBRID
NARX AND LSTM
Although the standard NARX neural network can effectively
address the nonlinear problem with time series, as time
passes, some problems such as gradient explosion and gra-
dient disappearance can occur. To address this problem,
the hybrid NARX and LSTM model is proposed. However,
the number of hidden layers is an important hyper-parameter
of the hybrid NARX and LSTM model. Fig. (6, 7) show the
estimation results of the proposed model with the number
of hidden layers at 50, 60, 70, and 80 under UDDS and
DST conditions. According to the results, although the esti-
mated SOC of lithium-ion batteries can be better obtained
using different hidden layer numbers, the best performance
is estimated when the number of neurons is 70. Therefore,
70 is selected as the number of hidden layers for the hyper-
parameters of the hybrid NARX and LSTM.
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FIGURE 6. Results of SOC estimation using different hidden layer
numbers (UDDS).

FIGURE 7. Results of SOC estimation using different hidden layer
numbers (DST).

B. SOC ESTIMATION RESULTS
Real-time data for lithium-ion batteries (current, voltage, and
SOC) are used as training data and testing data for the hybrid
NARX and LSTMmodels under UDDS and DST conditions.
The training data includes current and voltage, which is
divided into three parts (70% training data, 15% verifica-
tion data, and 15% test data). Input delay, feedback delay,
and hidden layers are set to 1:2, 1:2, and 20, respectively.
The training function is ‘trainlm’. The primary estimation of
SOC for lithium-ion batteries is obtained through the NARX
dynamic neural network, and then 3000 samples including
primary SOC estimations as well as initial current and voltage
are input into the LSTM model as training data. The LSTM
number is 70, the number of iterations is 100, and the learning
rate is 0.01. After training, the trained hybrid NARX and
LSTM model is used and the test samples are input for the
final SOC estimation. At the same time, in order to verify that
the proposed model has higher accuracy, it is compared and

FIGURE 8. Results of SOC estimation under UDDS conditions.

FIGURE 9. Results of SOC estimation under DST conditions.

analyzed with the standard LSTM model under UDDS and
DST conditions. The estimation results of the hybrid NARX
and LSTM model and the classic LSTM model are shown
in Fig. (8, 9)

From Fig. (8, 9), we can discern that the proposed hybrid
model and the standard LSTM model can estimate the SOC
of lithium-ion batteries with higher accuracy. According to
the enlarged image in the figures, it can be concluded that the
estimation accuracy of the hybrid NARX and LSTM model
is higher than the standard LSTM. The accuracy improves
because the proposed model has two stage feature prepro-
cessing and combines the estimation results of the standard
NARX dynamic neural network with the original input data
as the input data for the secondary training, which has high
estimation accuracy.

C. PERFORMANCE OF MULTIVARIATE TIMES
SERIES FORECASTING
Based on the real-time data of lithium-ion batteries collected
in experiments, a multivariable time series forecasting model
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FIGURE 10. Results of SOC estimation under UDDS conditions.

FIGURE 11. Results of SOC estimation under UDDS conditions.

of hybrid NARX and LSTM is established to extract the
dynamic trend characteristics of the SOC of lithium-ion bat-
teries and combine the real-time data of lithium-ion batteries
for future estimation. It is primarily divided into two steps.
The time series data from the first 2000 lithium-ion batteries
is used to establish a multivariable time prediction model
of NARX and LSTM for offline training. Online prediction
uses the trained prediction model to forecast the real-time
operating status of lithium-ion batteries. To verify that hybrid
NARX and LSTM have better performance than multivariate
time series forecasting, the performance of multivariate time
series forecasting is compared with standard NARX. The
prediction results of the hybrid NARX and LSTMmodel and
the classic NARX model are shown in Fig. (10, 11)

The results of multivariate time series forecasting are
shown in Fig. (10, 11) under UDDS and DST conditions.

It can be seen from the figures that when the hidden layer
number is set to 70, the prediction accuracy of the proposed
model is higher than that of the traditional LSTM model.
The RMSE of the prediction accuracy of LSTM is 0.64%

FIGURE 12. The result of SOC estimation under UDDS conditions.

FIGURE 13. Error of SOC estimation under UDDS conditions.

and 0.27% under UDDS and DST conditions, respectively.
The RMSE of the prediction accuracy of LSTM is 0.27%
under UDDS conditions; the RMSE of prediction accuracy is
0.13% under DST conditions. These results demonstrate that
the proposed model has better performance than multivariate
time series forecasting.

D. VERIFICATION WITH EXISTING METHODS
To further verify the effectiveness of the hybrid NARX and
LSTM model, the proposed model is compared with the
standard BPNN-PSO, LL-SVM, and LSTM models. The
estimation results and error are shown in Fig. (12-15). Due to
external interference and temperature variation, the real rate
of SOC presents a nonlinear and unstable trend. Although the
classic BPNN-PSO and LL-SVMcan better estimate SOC for
the lithium-ion battery, the estimation error is large for the
slope of the SOC curve, and the lithium-ion battery SOC esti-
mation fluctuates greatly during the entire estimation process.
It can be noticed that the proposed model is outperforming
the existing methods from the points between the real SOC
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FIGURE 14. Result of SOC estimation under DST conditions.

FIGURE 15. Error of SOC estimation under DST conditions.

and estimated SOC. The proposed hybrid NARX and LSTM
presents a high correlation as well as this model smoothly
follows the real data. Due to embed the LSTM memory and
time series, the error of proposed model exhibits a downward
trend with the increasing time. The standard LSTM and
hybrid NARX and LSTM models can accurately estimate
the SOC of the battery when compared with BPNN-PSO
and LS-SVM. Due to embed LSTM memories, long-term
dependence on the recurrent neural network is reduced. The
hybrid NARX-LSTM model not only effectively solves the
gradient descent and gradient disappearance of the NARX
dynamic neural network but also improves the estimation
accuracy relative to the standard LSTM model. Furthermore,
the embedded LSTM cells is not sophisticated embedded
memory and simply consists of tapped delayed information
to other neurons.

To further verify the effectiveness of the proposed model,
BPNN-PSO, LS-SVM, LSTM, and hybrid NARX-LSTM
are compared and analyzed under UDDS and DST condi-
tions, respectively. Table 2 describes the proposed model

TABLE 2. Prediction performance of tested methods.

and existing methods of prediction performance. According
to Table 2, under UDDS conditions, the RMSE, MAPE,
and MAE of the classic BPNN-PSO are 3.19%, 4.38%,
and 2.29%, respectively. Under DST conditions, the RMSE,
MAPE, and MAE are 1.45%, 2.23%, and 0.97%, respec-
tively. Among the four methods, the standard BPNN-PSO
method has the lowest estimation accuracy. The RMSE of
LS-SVM under UDDS and DST conditions is 1.71% and
1.17%, MAPE is 3.49% and 1.79%, and MAE is 1.84%
and 0.81%.

Although the estimation performance of LS-SVM is better
than that of BPNN-PSO, the error fluctuates greatly. In the
standard LSTMmodel, RMSE, MAPE, and MAE are 1.87%,
3.14%, and 1.72%, respectively, under UDDS conditions.
Under DST conditions, RMSE, MAPE, and MAE are 1.95%,
3.17%, and 1.77%, respectively. The classic LSTM has better
estimation performance. In the hybrid NARX and LSTM
model, the RMSE is 0.76% and 0.78% under UDDS and
DST conditions, respectively; MAPE is 1.28% and 1.24%,
respectively, and MAE is 0.72% and 0.69%, respectively.
The estimation accuracy of the proposed model is the highest
among the four methods, and the three evaluation indicators
basically fluctuate around 1%. Comparedwith LSTM,RMSE
is increased by 59% under UDDS conditions and 60% under
DST conditions.

V. CONCLUSION
To address the phenomenon of gradient explosion and disap-
pearance intrinsic to the traditional NARX recurrent neural
network, a model combining NARX and LSTM is proposed
to improve the estimation accuracy. The proposed model
combines the advantages of the NARX model and the LSTM
model. This model not only breaks the constraints of the
traditional physical model but also has LSTM memory cells
with external input nonlinearity, which can prevent gradi-
ent explosion and gradient disappearance. The preliminary
prediction of the NARX model combines the original col-
lected voltage and current as the training data of the LSTM
model. The appropriate number of hidden layers is selected,
and the estimation performance and multitime prediction
performance are verified under UDDS and DST conditions.
Under UDDS and DST conditions, the RMSE of the estima-
tion performance of this hybrid NARX and LSTM model is

VOLUME 8, 2020 189243



M. Wei et al.: SOC Estimation of Lithium-Ion Batteries Using LSTM and NARX Neural Networks

0.76% and 0.78%, respectively, and the performance of mul-
tivariate time series forecasting is 0.27% and 0.13%, respec-
tively. Experimental results show that the proposed model
has strong estimation performance and multitime prediction
performance. Finally, the proposed method is compared with
BPNN-PSO, LS-SVM and LSTM, which verifies that the
estimation accuracy of the proposed model is significantly
higher than existing methods, and the RMSE estimation per-
formance of the proposed model is improved by approx-
imately 60% compared with the classic LSTM estimation
model. This study presents the combination of autoregressive
model and machine learning methods for SOC estimation
of lithium-ion batteries. The proposed model obtains higher
estimation and prediction characteristics. In this respect, the
combination of autoregressive model and machine learning
methods in time series estimation presented by the proposed
model in this study opens the door for an accurate long term
estimation.
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