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ABSTRACT In this paper, a noise-immune Bat-inspired Graphical visualization network Guided by the
radiated ultrasonic call (Bat-G2 net) that can reconstruct 3D shapes of a target from ultrasonic echoes is
presented. The Bat-G2 net achieves noise-resiliency by emulating bat’s auditory system that processes echoes
along with the highly correlated radiated ultrasonic call (RUC). In order to extract the information contained
in the echoes robustly and effectively, two implementation ideas have been applied to the Bat-G2 net:
(1) RUC-guided attention, and (2) non-local attention. The Bat-G2 net is trained with ECHO-4CH dataset
acquired by a custom-made Bat-I sensor. Noise-resistant property of the Bat-G2 net is demonstrated by
comparing the reconstructed images with those from current state-of-the-art ultrasonic image reconstruction
network under low SNR conditions. This study clearly demonstrates the implementation feasibility of the
new modality of ’seeing by hearing’ in practical environments.

INDEX TERMS 3D reconstruction, biologically inspired vision, deep learning: applications, methodology,
and theory, graphics, vision applications and systems, vision for robotics, visual reasoning.

I. INTRODUCTION
Recently, sensors and information processing technologies
have led to the growth of unmanned systems (UMS) such
as drones, autonomous vehicles, and robots. For UMS to
reach a fully autonomous level that does not require human
intervention, the sensors employed in UMS must be able to
detect surroundings irrespective of dynamic environmental
obstacles such as weather, temperature, and noise. To reach
this goal, UMS is typically designed to use a combination of
sensors (RGB-D cameras, RADARs, LIDARs, and ultrasonic
sensors), which are complementary to each other. RGB-D
cameras and LIDARs provide sophisticated visual informa-
tion. However, their accuracy and visibility are susceptible
to deterioration depending on the environment and weather
conditions.While, RADARs and conventional ultrasonic sen-
sors, which measure time-of-flight from a target object, are
robust to the environmental interferences, they provide only
low-resolution ranging information [1], [2]. In conclusion,
there is a growing consensus on the need for 3D imag-
ing sensors that are virtually unaffected by environmental
conditions.
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Lately, there has been a promising attempt to meet this
demand. A high-resolution ultrasound 3D imaging system
referred to as a Bat-G network has been proposed, which
employs a feed-forward neural network emulating the echolo-
cation mechanism of a live bat [3]. The Bat-G net is designed
to reconstruct the 3D representation of a target object from
hyperbolic frequency-modulated (HFM) echoes reflected
from the target object. In case the object has the small sonar
cross section (SCS) or has been measured in a noisy envi-
ronment, the signal-to-noise ratio (SNR) of the received echo
drops below 0 dB. In such low SNR condition, the imaging
accuracy can be compromised significantly since the Bat-G
net cannot distinguish between the received echo and noise.
Since it is a challenge to ensure high SNR sensor data in
practical unmanned system environments, it is essential to
classify the sensory input data into echoes that plays a crucial
role in 3D imaging, and unnecessary signals, for robust 3D
imaging under low SNR conditions.

In this paper, we propose a robust noise-immune
ultrasound 3D imaging network referred to as a Bat-inspired
Graphical visualization network Guided by the radiated ultra-
sonic call (Bat-G2 net) that visualizes 3D spaces under low
SNR conditions like live bats. Such immunity is achieved by
actively utilizing a radiated ultrasonic call (RUC) during the
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FIGURE 1. (a) Bat’s echolocation utilizing RUC and 3D ultrasound imaging
system utilizing RUC. (b) Radiated Ultrasonic Call (RUC) and ultrasonic
echo (4 channels).

echo processing as a prior knowledge, as shown in Fig. 1(a).
Live bats utilize the ultrasound echoes reflected from target
objects to localize and discriminate objects, which is called
echolocation [4]. Bats can discriminate 10-15 ns fine delay
even in an acoustically harsh environment where dozens of
bats are simultaneously emitting ultrasonic calls [4]. Such
exceptional sensing capability is attributed to the bat’s audi-
tory system that utilizes the fact that informative received
echo is highly correlated with the RUC, as shown in Fig. 1(b)
[5]. From this, we can deduce that the proper use of RUC is
the key to building a noise-resilient ultrasonic 3D imaging
system, as shown in Fig. 1(a). In order to utilize the informa-
tion contained in RUC effectively, two implementation ideas
have been applied to the Bat-G2 net: (1) RUC-guided atten-
tion, and (2) Non-local attention. (1) RUC-guided attention
- Conventional self-attention creates attention maps from the
extraction of its features. In case the SNR of the received sig-
nal is low, the generated self-attention map from the received
ultrasound signal is inadequate to distinguish the echoes from
target objects and the pure noise. To overcome this prob-
lem, the proposed network employs a RUC-guided attention
method, generating learnable attention kernels by employ-
ing both reflected echoes and high SNR RUC, as shown
in Fig. 1(a). (2) Non-local attention - Because the shape
and ranging information of target objects are encoded in the
spectral pattern over a wide frequency range in the received
ultrasonic signal, as shown in Fig. 1(b), a non-local atten-
tion module is adopted in order to decode such a pattern

existing at non-local spatial locations in the sensory input
image.

II. RELATED WORK
Airborne ultrasonic sensors have been one of the leading
range detection sensors for decades due to their simplicity.
These sensors calculate the distance to an object by emit-
ting a single frequency ultrasonic signal and measuring the
time-of-flight (TOF) of the echo reflected from the object.
There have been approaches to localize/classify a target
object or reconstruct the shape of an object, as shown
in Table 1. Representative 3D localization strategies include
calculating the TOF difference between two pairs of micro-
phones [6] and concentrating signals to a designated direc-
tion using beamforming (BF) techniques [7]. In another
line of research, classification of a target object has been
achieved by employing the angle/distance between the 3D
sensor array and an object as the classification parameters
[8] or by applying the principal component analysis (PCA)
method to 16 TOF vectors (4 TXs and 4 RXs) [9]. How-
ever, because such techniques relies on a lookup table, only
simple objects such as planes, corners, and edges are dis-
criminated. On the other hand, [10] makes an attempt to
classify the cubes and tetrahedrons by analyzing the spectrum
of echoes employing neural networks (NN). Nevertheless,
such an effort did not exploit the full potential of the NN
approach due to limited datasets and primitive NN structure.
In addition to 3D localization and classification of target
objects, there have been other attempts to reconstruct the
3D shape of objects from the received echoes by solving
ill-posed inverse problems. Such attempts include BF [11]
and holography [12] methods using a large number of TRX
arrays. An approach has been made to reconstruct cuboids
in sparse scenes using Compressive Sensing (CS), a subset
of the inverse problem approach, in the simulation domain
[13]. However, these inverse problem approaches demand
rigorous calibration and heavy computational power and time
to process the incoming data from a large number of arrays.
In [3], a feed-forward NN emulating the auditory neural
network of bats reconstructs the 3D representation of vari-
ous objects. However, such NN is not readily applicable to
UMS because the reconstruction performance is susceptible
to significant deterioration under low-SNR environmental
conditions. In this paper, a robust noise-resilient Bat-G2 net
visualizing 3D spaces from the ultrasonic echoes is proposed.
The proposed network has been designed with the inspiration
from remarkable RUC-involved imaging capability of live
bats in acoustically challenging environments.

III. PRELIMINARIES
In order to understand the 3D spatial perception mechanism
of live bats that represent 3D space from an ultrasonic
echo, it is necessary to understand the bat’s auditory system,
which consists of three main elements: (1) cochlear and
(2) temporal cue analysis and (3) spectral cue analysis block.
(1) Cochlear - The basilar membrane in the cochlear of a bat
with frequency selectivity according to its location can be
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TABLE 1. Summary of Related Works.

represented by an array of band-pass filters (BPFs) followed
by a half-wave rectifier and a low-pass filter (LPF) at the
output of each BPF [14], [15]. As a result, the filter banks
decompose the emitted/received sound signal into band-pass
filtered signals according to the frequencies. Then, the signal
intensity (or power) of each frequency channel is extracted
by a subsequent rectifier and an LPF. Such processes convert
the acoustic time-domain signal into a time-frequency rep-
resentation that is similar to the spectrogram. (2) Temporal
cue analysis (TCA) - Elapsed time between the emitted
sound signal and its echoes are measured by the TCA block.
The elapsed time is calculated by delay-tuned neurons and
coincidence detection neurons carrying out cross correla-
tion function of the emitted and the received sound signal.
(3) Spectral cue analysis (SCA) - The TCA block mechanism
cannot discriminate the fine delay produced by overlapping
echoes reflected from two nearby glints. These fine delays
are deciphered by the SCA block analyzing spectral cues
such as notches and nulls [14], [16], [17], [19], [21]. Since
a target object is acoustically composed of several glints
and reflective surfaces, the spectral cues of a target object
consist of the summation of echoes reflected from several
glints and surfaces [22]–[26]. In other words, the shape of
an object is represented by its spectral fingerprint [15], [27],
[28]. Consequently, sophisticated spectral pattern recognition
of the received ultrasonic echoes is the key to ’Seeing by
hearing’.

IV. APPROACH
This section describes two key design schemes resulting
in noise-resilient NN-based echolocation system: a radiated
ultrasonic call (RUC) guided attention method and a
non-local operation.

A. RUC GUIDED ATTENTION METHOD
Bats live as groups in habitats with significant reverbera-
tion, which exposes them to jamming effect by voices of
other bats. Such a severe circumstance makes it quite chal-
lenging for bats to perceive their surroundings using ultra-
sound. In order to survive in this acoustically harsh envi-
ronment, bats establish an auditory system that can detect
preys in the order of centimeters by actively utilizing the
fact that the received echoes are especially correlated with
the RUC. Therefore, the mechanism effectively processing

FIGURE 2. (a) Bat’s auditory system utilizing RUC. (b) Matched filter
utilizing RUC. (c) Adaptive noise cancellation using RUC. (d) RUC guided
attention method.

echoes along with correlated RUC is critical for the bat’s
extraordinary performance in extremely noisy environments,
as shown in Fig. 2(a). In order to discriminate the echo from
noisy received signals, a 3) RUC GUIDED ATTENTION
METHOD is proposed and is compared with two conven-
tional noise cancelingmethods: 1)MATCHEDFILTER and
2) ADAPTIVE NOISE CANCELLATION.

1) MATCHED FILTER
A technique applied to human-made systems such as
RADAR or SONAR detects the echo signal in the noisy
received signal by calculating the correlation of the received
signal with RUC, as described in Eq.(1)-Eq.(3) (see Fig. 2(b)).

Y [n] = HTX [n]+ N [n], (1)

ŶMF [n] = (HTX [n]+ N [n]) ∗ X [n], (2)

ŶMF [n] = HTRXX [n]+ RXN [n], (3)

where X [n] is RUC, HT is the impulse response of target
object, N [n] is the additive stochastic noise, Y [n] is the
noisy received signal, ŶMF [n] is the output of the matched
filter guided by correlating with RUC X [n], as described in
Eq.(2), RXX [n] is the auto-correlation function of the signal
and RXN [n] is the cross-correlation function of the noise
and signal. Matched filter technique on the basis of direct
correlation with RUC achieves outstanding detection of the
echo signal in an environment with white noise (∵ RXX [n]
� RXN [n]). However, in case the environmental noise is
correlated with the RUC (∵ RXX [n] ≯ RXN [n]) such as
reverberation (see Eq.(3)), the matched filter method fails to
detect echoes effectively.
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2) ADAPTIVE NOISE CANCELLATION (ANC)
An adaptive filtering technique supresses various interferences
as well as the noise effectively by subtracting an adap-
tively approximated noise using an optimization algorithm
(e.g. Least Mean Squares (LMS)) from the noisy received
signal, as shown in Fig. 2(c). The noise reduction process
of the ANC employing the RUC can be simply described as
follows: Eq.(4)-Eq.(6),

Y [n] = HTX [n]+ N [n], (4)

E[n] = Y [n]− Y ′[n] = Y [n]−ĤTX [n] = N ′[n], (5)

ŶANC [n] = Y [n]− E[n] = HTX [n]+ N [n]−N ′[n], (6)

where X [n] is RUC, HT is the impulse response of target
object, and N [n] is the additive stochastic noise. The param-
eter of the filter ĤT is adaptively adjusted to minimize the
error signal E[n]. The approximated noise N ′[n] is estimated
by subtracting the RUC-guided adaptive filter output ĤTX [n]
from the noisy received signal Y [n], as shown in Eq.(5).
Consequently, the noise reduction is achieved by subtracting
adaptively approximated noiseN ′[n] from noisy received sig-
nal Y [n], as shown in Eq.(6). However, this ANC technique
based on a linear filter does not lead to the full potential of
RUC guidance since the ANC technique is unable to suppress
nonlinearity or non-stationary noise/interference effectively.

3) RUC GUIDED ATTENTION METHOD
In order to compartmentalize the signal surrounded by var-
ious noise/interference, we adopted a neural network (NN)
known to operate as a universal approximator [29] for
the RUC guidance, as shown in Fig. 2(d). By introducing
non-linearity via an activation function, NN has extraor-
dinary capability to represent a wide variety of functions,
which makes it effective in handling the nonlinearity or
non-stationary noise. The structure of the proposed NN to
focus on the sensory signals is inspired by the ‘‘attention’’
concept distinguishing the informative regions to be empha-
sized. In recent years, attention mechanisms have shown
promising results in a variety of computer vision tasks such
as image classification [30]–[32], object detection [33], [34],
image captioning [35]–[37] and visual question answering
[35], [38]. Such conventional self-attention networks are
implemented by applying an adaptively trained attention
map from the extraction of its own features [39]. However,
applying the attention concept directly to a network handling
low-SNR sensory inputs cause unsatisfactory results. There-
fore, the proposed RUC-guided attention network employs a
learnable kernel relying not only on sensory input but also on
RUC with high SNR, as shown in Fig. 2(d).

B. NON-LOCAL OPERATION
The shape/location of an object is encoded in a spectral
fingerprint (see section III.) that appears at non-local spatial
locations in the echo spectrogram, as shown in Fig. 1(b).
For reliable long-range contextual feature extraction from
the ultrasonic echoes, we have adopted a non-local atten-
tion mechanism. The non-local attention method calculates

the correlation between all pixels in input features so that
a pixel in each position in the feature map is represented
with all other ones. By this means, non-local operation effec-
tively captures long-range contextual features placed even
in non-local spatial locations [40]. Eventually, the guided
non-local attentional module (GAM) has been introduced
by combining the non-local operation with the RUC-guided
attention approach.

V. ARCHITECTURE OF PROPOSED BAT-G2 NETWORK
In this section, the architecture of the proposed noise-resilient
Bat-G2 net reconstructing a 3D representation of a target
object from four-channel ultrasound echoes is presented.
The architecture is described in two perspectives: (A) an
encoder-decoder structure which emulates the central audi-
tory pathway of bats that individually process the tempo-
ral/spectral features and (B) a bat-inspired guided non-local
attention module (GAM) combining RUC-guided attention
and non-local operation for noise-immune echo decryption.

A. ENCODER-DECODER
The encoder-decoder architecture literally consists of an
encoder that extracts information from the received echoes
and a decoder that projects the output data of the encoder in
low dimensional manifold into the 2D depth image, as shown
in Fig. 3. The specific structure of each part is as follows.

1) ENCODER
A Bat’s central auditory system is composed of neurons
that are particularly sensitive to either temporal- or spectral-
domain information [3]. Such neurons form a cluster of
neurons, referred to as a nucleus and each nucleus processes
domain-specific cues separately depending on the character-
istics of comprising neurons. Bat’s extraordinary perception
ability is originated from such separated processing of tem-
poral and spectral components in the bat’s central auditory
system [41]. In order to achieve such performance, the pro-
posed encoder is implemented with two separated path-
ways specialized for extracting temporal- or spectral-domain
features from the input spectrogram. In order to feed the
appropriate domain-specific input to each path, the recorded
sound signals on each channel (right, left, up, and down)
are transformed into two high-resolution spectrograms in fre-
quency/time using the short-time Fourier transform (STFT)
with long/short window (LW/SW). The spectrograms are
fed to the GAM, which will be covered in the following
subsection in detail. The output features of the GAM passes
through a residual block (RB)-2 that is composed of a convo-
lutional path (three 3× 3.2D convolution layers with a 2× 2
max-pooling layer) and a residual path (a 1× 1.2D convolu-
tion layers with a 2× 2 max-pooling layer). The RB-2 elicits
the spectral/temporal cues necessary for the reconstruction of
shape/position from each channel’s spectrogram. In addition,
the RB-2’s output feature maps are concatenated and then
fed to a 1 × 1 convolution layer with a successive RB-4
layer in order to extract the hidden clues in the time-of-flight
(TOF) differences in reflected signals between the channels.
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FIGURE 3. Overall architecture of the proposed Bat-G2 net.

Finally, the entire products of spectral- and temporal-pathways
are integrated and encoded in a form suitable for the decoding
process using series connected RB-4 and RB-2 modules.

2) DECODER
An inverse rendering decoder transforms the output features
of the encoder in the low dimensional manifold to the 2D
depth image inR64×64 vector space (see Fig. 3). Three decod-
ing residual blocks are applied to 4× 4 pixel inputs encoded
with 512 feature maps. Each residual block is composed of
one convolution transpose (or deconvolution) layer (stride-
2 2 × 2 or stride-4 4 × 4 kernels) and two convolution
layers (3 × 3 kernels and same padding with batch normal-
ization (BN) and rectified linear unit (ReLU)). To convert
256 output feature maps of the residual block into the desired
representation, a 3 × 3 convolution layer is inserted to the
final layer. Please refer to Fig. 3 for the detailed composition
of each layer.

B. GUIDED NON-LOCAL ATTENTION MODULE
The spectral/temporal cues for the shape/location of a target
object appears at a non-local location in the echo spectrogram
(see Fig. 1(b)). In order to decode such cues effectively,
an RUC-guided non-local attention module (GAM) is imple-
mented. In a typical neural network, the spatial information
contained in the feature map is flattened as the layer depth
increases, while the semantic information is enhanced. There-
fore, the GAM is placed at the forefront of the Bat-G2 net to
extract spatial information embedding the spectral/temporal

cues before the decrease of the resolution. However, large
input feature size resulting from such placement requires
tremendous computational resources due to high complexity
O(HW × HW ) of the spatial attention map, where H and
W are the height and the width of the feature map, respec-
tively. In order to reduce the computational cost, the core
of the GAM is designed to be encapsulated in sub-pixel
sampling layers including down pixel-shuffle block and up
pixel-shuffle block, so that the core attention method oper-
ates at low feature dimensions. In addition, such sub-pixel
sampling method preserves the spatial information because
the entire feature map is subsampled at a specific scale
ratio r, as shown in Fig. 4(b) [42]. The feature maps of the
RUC (Fr) and the echo signal (Fe) are subsampled by the
down pixel-shuffle block and then embedded into the low
dimensional manifolds ((f (FDr ) and g(F

D
e )) through two 1×1

convolutions f and g, respectively. The GAM computes the
attention map at a pixel as a weighted sum of two embedded
features f (FDr ) and g(F

D
e ) at all pixels as done in non-local

NN [40]. For ease of implementation using a network plat-
form, the attention map is implemented using the Gaussian
function ex

T x with a normalization factor C(f (FDr ), g(F
D
e )),

Atten_Map(FDr ,F
D
e )=

1
C(f (FDr ), g(FDe ))

ef (F
D
r )

T g(FDe ). (7)

Assuming the normalization factor C(f (FDr ), g(F
D
e )) =∑

∀j e
(f (FDr )

T
i ,g(F

D
e )j), where i is the index of a position in the

feature map and j is the index enumerating every possible
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FIGURE 4. (a) Structure of Guided non-local Attention Module (GAM).
(b) Operation of sub-pixel sampling (down pixel-shuffle and up
pixel-shuffle).

positions, the attention map is equal to the softmax func-
tion. Then, the feature map of the RUC-guided echo in the
subsampled dimension, FDre is

FDre = Atten_Map(FDr ,F
D
e )h(F

D
e )+ F

D
e

= softmax(f (FDr )
T g(FDe ))h(F

D
e )+ F

D
e , (8)

where h(FDe ) is the embedded feature of the echo signal
applying the attention. For training efficiency in practice,
the subsampled feature of an echo FDe is added as identity
mapping [43]. Finally, FDre is restored to the original fea-
ture dimension by using the up pixel-shuffle layer and the
RUC-guided echo Fre can be written by

Fre = (FDre)
U

= (softmax(f (FDr )
T g(FDe ))h(F

D
e )+ F

D
e )

U , (9)

where (FDre)
U is the up pixel-shuffle operation of the feature

FDre .

VI. EXPERIMENTS
A. DATASET AND TRAINING
Performance of the proposed Bat-G2 net is evaluated
using the ECHO-4CH dataset [3]. ECHO-4CH consists
of the measurements of 16.2k geometric object config-
urations using custom-made Bat-inspired imaging (Bat-I)
sensor (see Fig. 1). The Bat-I sensor emits a hyperbolic
frequency-modulated (FM) chirp in the frequency range
of 20-120kHz with the duration of 6ms and records echoes
reflected from target objects. Finally, the measured signal
is converted into two high-resolution spectrograms in fre-
quency/time using the short-time Fourier transform (STFT)

with long/short hamming window (133µs/33µs window size
with 90µs/22µs overlap). Therefore, we have built a large
ECHO-4CH dataset (49k data for training and 2.6k data
for evaluation). Each data is composed of eight spectro-
grams (2562 grayscale image) and one 2D ground-truth label
(642 pixels) which is projected from 3D model (detailed
in [3]).

The Bat-G2 Net is trained by employing a supervised
learning algorithm. The network is continuously fed with 49k
training data randomly selected from the ECHO-4CH dataset
with the batch size of 16. Adam optimizer with a learning
rate of 0.001 has been adopted for better convergence. In the
following experiments, we trained a network iteratively for
200 epochs (613k steps) on a GTX 1080 Ti GPU and a
Threadripper 1900X CPU using a Mean-Square Error (MSE)
as a loss function. The total time for learning is 85 hours
causing from taking 0.5 seconds/step.

B. EXPERIMENTAL RESULTS
We first conduct a qualitative analysis of the reconstruction
results of the proposed Bat-G2 network and the efficacy of
the GAM. Then, reconstruction performance is quantitatively
evaluated based on the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index. In such qualita-
tive and quantitative assessment, the current state-of-the-art
ultrasonic image reconstruction neural network, Bat-G net
[3], is employed as the baseline. The Bat-G2 net is evaluated
with 2.6k test data from the ECHO-4CH dataset.

1) RECONSTRUCTION
We conducted three qualitative assessments to verify the
performance of the Bat-G2 net: (1) 3D reconstruction with
object shape dependency, (2) 3D reconstruction sensitivity
with respect to SNR, and (3) 3D reconstruction under diverse
interferences. For visual comparison, 2D output image of the
Bat-G2 net is converted into volumetric 3D image using the
inverse projection of 2D label image. (1) 3D reconstruction
with object shape dependency - When a radiated ultrasonic
chirp is reflected from convex surfaces of target objects,
the 3D representation of the measured objects is correctly
reconstructed, as shown in Fig. 5(a)-(b). Since the shape
of an object is reconstructed using the reflected echoes,
the visualization of an object with small or slanted reflective
surface is difficult due to lack of information, as shown in
Fig. 5(c)-(d). (2) 3D reconstruction sensitivity with respect
to SNR - SNR of sensory input data varies depending on the
reflected signal power and the noise level. The signal power
is mainly determined by the sonar cross section (SCS) of an
object and the distance between the sensor and the object, and
the amount of noise is determined by the level of ambient and
the electrical noise. In order to investigate the noise-immunity
of the proposed Bat-G2 net, the reconstructed 3D representa-
tions were compared under various SNR conditions, as shown
in Fig. 6. In case the SNR is high (see Fig. 6(a)), both
baseline and the Bat-G2 net demonstrate high quality 3D
image reconstruction of the measured objects. As the SNR
decreases, the baseline network generates distorted 3D image
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FIGURE 5. 3D reconstruction results with object shape dependency.

FIGURE 6. 3D reconstruction results to sensitivity with respect to SNR ((a) SNR=8.13dB, (b) SNR=4.11dB, and
(c) SNR=0.03dB).

and eventually fails to reconstruct edges clearly as shown
in Fig. 6(b)-(c). In contrast, the proposed Bat-G2 network
stably retrieves the 3D representation of the target object
under severe SNR conditions thanks to the RUC-guidance.
(3) 3D reconstruction under diverse interferences – In an
environment where multiple unmanned systems (UMS) exist,
the broadcasted chirp signals from neighboring UMS become
interferences. In order to verify the visualization capability of
the Bat-G2 net under such environment, diverse interfering

chirp signals with modified slope, duration (frequency range
20kHz-138kHz, duration 5.1ms) are co-generated together
with the main chirp signal having the same magnitude [44],
[45]. The 2D correlation coefficient between the interfer-
ing chirp and the main chirp has a high correlation of 0.5.
In the absence of the interferences, both baseline and Bat-
G2 net achieve high quality 3D reconstruction performance,
as shown in Fig. 7(a). The baseline shows less clearer edge
retrieval performance as compared to the Bat-G2 net when the
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FIGURE 7. 3D reconstruction results under diverse interferences ((a) No interference, (b) Interference source is located at a
distance of 2.5m in radius when the reflected echo arrives at the sensor, and (c) Interference source is located at a distance
of 2.0m in radius when the reflected echo arrives at the sensor.

FIGURE 8. Comparison of Grad-CAM visualization results between the baseline (Bat-G net) and the proposed method
(Bat-G2 net) under various SNRs when (a) SNR=10.1dB, (b) SNR=4.1dB, (c) SNR=0dB and under diverse interferences
(d)-(f).

interference starts to overlap with the main echoes, as shown
in Fig. 7(b). As the overlay between the interference and
the main echo increases, the baseline fails to reconstruct
slanted reflective surface while the Bat-G2 net maintains
reasonable reconstruct performance, as shown in Fig. 7(c).
These results clearly demonstrate the interference immunity
of the RUC-guided approach.

2) GRAD-CAM VISUALIZATION
Grad-CAM is recently proposed as a visualization method
that uses gradients to locate activated spatial regions in con-
volution layers [46]. These spatial regions activated in a

convolution layer indicate the areas that a network considers
important. This visualization allows the network designers
to analyze and verify whether the networks are utilizing
the features properly. (1) Grad-CAM under various SNR
- For an input image with high SNR shown in Fig. 8(a),
both the baseline and the Bat-G2 net completely focus on
the hyperbolic frequency-modulated (HFM) chirp. However,
as the SNR decreases, the baseline cannot distinguish the
HFM chirp from noise, as such it concentrates on noise
as well as HFM chirp. In contrast, the Grad-CAM on the
Bat-G2 net demonstrates that it strives to focus mainly
on the spectral fingerprint of the HFM chirp in the echo
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FIGURE 9. (a) PSNR and SSIM results of the case with the RUC-guided
and the case without the RUC-guided employing non-local attention, local
attention, or no attention. (b) PSNR results of the baseline and the
proposed Bat-G2 net under diverse SNRs.

spectrogram, as shown in Fig. 8(b)-(c). (2) Grad-CAM under
various interferences – In the absence of interference, both
the baseline and the Bat-G2 net completely focus on the
hyperbolic frequency-modulated (HFM) chirp, as shown
in Fig. 8(d). As interference approaches the echo signal,
the baseline focuses on both the interference and the main
echoes while Bat-G2 net focuses mainly on the main echoes,
as shown in Fig. 8(e)-(f). In conclusion, Grad-CAM visual-
ization justifies the robustness of the Bat-G2 net under harsh
environments.

3) QUANTITATIVE ANALYSIS
We quantitatively assessed the imaging performance of
the Bat-G2 net using PSNR for the fidelity evaluation
of the image and SSIM index used for the measurement of
the similarity between two images (in this case, a ground-
truth label and a represented image). The Bat-G2 net
(RUC-guided, Non-local attention) achieved 24.84dB PSNR
and 0.892 SSIM as shown in Fig. 9(a), which are 4.3%
and 1.2% increase against the baseline, respectively. The
parameters of the network with and without the GAM mod-
ule are 21,477,889 and 21,328,001, respectively. The over-
head of the GAM module is only 0.7%. When the pro-
posed Bat-G2 network is compared with parameter-increased
baseline network that has identical number of parameters
to the Bat-G2 net, the Bat-G2 net shows 4.1% increase in
PSNR. In addition, ablation studies are conducted to verify
the efficacy of the RUC-guided method and the non-local

attention approach. The contribution of the former is first
assessed. By removing the RUC guide path, the reconstruc-
tion performance of the Bat-G2 net deteriorates (3.0%, 1.2%,
and 0.2% drop in PSNR and 0.6%, 0.4%, and 0.4% drop
in SSIM when the non-local attention, local attention, and
no attention is used, respectively). This suggests that the
RUC-guided approach has made a significant contribution
to the extraction of meaningful features from the ultra-
sonic chirp. Secondly, we compared the performance of the
non-local attention method with that of the local attention
(implemented with a convolutional block attention module
(CBAM) [46]) and the case without attention. In the cases
of applying RUC-guided method, the reconstruction perfor-
mance of the Bat-G2 net degrades (2.5%, 4.1% drop in PSNR
and 0.5%, 0.9% drop in SSIM under local attention and no
attention, respectively). Such decline demonstrates the effec-
tiveness of the non-local attention mechanism. In addition,
we validate the noise-resilient property of the Bat-G2 net
as compared to the baseline under various SNR conditions,
as shown in Fig. 9(b). As the SNR decreases, PSNR of both
the baseline and the Bat-G2 net decreases steadily, but the
Bat-G2 net outperforms the baseline. It clearly indicates the
noise resilience of the RUC-guide scheme incorporated in the
Bat-G2 net.

VII. CONCLUSION
In this paper, a noise-immune Bat-inspired Graphical
visualization network Guided by the radiated ultrasonic call
(Bat-G2 net) that can reconstruct 3D shapes of a target from
ultrasonic echoes is presented. In order to decode the informa-
tion contained in the radiated ultrasonic call (RUC) robustly
and effectively, two implementation ideas have been applied
to the Bat-G2 net: (1) RUC-guided attention – Attention
module generating learnable attention kernels by utilizing
both sensory input and high SNR RUC, and (2) non-local
attention – A method wisely capturing a non-local spectral
fingerprint of the shape/location of an object. Through a range
of experiments and assessments, we have shown promising
results that the Bat-G2 net maintains outstanding imaging
capabilities in noisy situations. The grad-CAM visualization
justifies the stable 3D reconstruction capability of the pro-
posed network under low SNR and demonstrates the robust-
ness to interference. Quantitative analysis based on PSNR
and SSIM shows that RUC-guided approach and non-local
attention technique have made significant contributions to
the performance improvement of Bat-G2 net. This study
clearly demonstrates the implementation feasibility of the
new modality of ’seeing by hearing’.
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