
Received September 20, 2020, accepted October 12, 2020, date of publication October 15, 2020, date of current version October 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031276

A Review of Sieve Algorithms in Solving
the Shortest Lattice Vector Problem
ZEDONG SUN , CHUNXIANG GU , AND YONGHUI ZHENG
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China

Corresponding author: Zedong Sun (iamsunzedong@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772584, and in part by the
Foundation of Science and Technology on Information Insurance Laboratory under Grant KJ-17-001.

ABSTRACT As a category of algorithms to solve the shortest lattice vector problem, sieve algorithms have
drawn more and more attention due to the prominent performance in recent years. Enumeration algorithms
used to perform better in practice even though sieve algorithms are asymptotically faster. Combined with
techniques like locality-sensitive hashing and rank reduction, sieve algorithms now are capable of competing
with enumeration algorithms. In this work, we study sieve algorithms in solving the shortest vector problem
on lattices by categorizing various sieve algorithms and elaborating on ideas and techniques used to improve
sieve algorithms. In addition, we present several prospective directions worth future research.

INDEX TERMS Lattice theory, post-quantum cryptography, lattice-based cryptography, shortest vector
problem, sieve algorithm.

I. INTRODUCTION
Originated in the 19th century, lattice theory has been
thoroughly studied by famous mathematicians like Gauss,
Minkowski and Hermite et al. At first, lattice theory was
introduced to solve geometric problems such as sphere pack-
ing and sphere covering. For the first time the application of
lattice theory in cryptography was as a cryptanalysis tool for
that the security of many non-lattice-based cryptosystems can
be reduced to the hardness of hard lattice problems. In 1980s,
knapsack problem was reduced to the shortest lattice vector
problem and LLL algorithm [53] was used to solve it [21],
[50], [51]. Afterwards, Bleichenbacher and May [15] and
Coppersmith [19], [20] utilized lattice algorithms to crack
vulnerable RSA [69] cryptosystems. Moreover, lattice reduc-
tion algorithms were used to solve hidden number problem,
which leads to attacks on DSA cryptosystems of special
settings [37], [64].

Besides cryptanalysis, lattice theory plays a more impor-
tant role in the design of cryptographic schemes. In 1996,
Ajtai [1] proposed a method of constructing a ran-
dom class of lattices, on which finding a short vector
is as hard as several worst-case hard lattice problems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

Furthermore, Ajtai and Dwork [3] presented the first
worst-case to average-case reduction for hard lattice prob-
lems, which furnishes lattice-based cryptosystems with prov-
able security. Based on these work, various cryptographic
schemes including collision-resistant hash function [55],
public-key encryption cryptosystem [3], [31], [32] and digital
signature scheme [16], [24], [54] were proposed.

In addition, the birth and development of quantum comput-
ing have brought challenges to the security of conventional
public key cryptosystems such as RSA [69], ElGamal [29]
and ECC [42], [63] since that solving the hard mathemat-
ical problems they rely on become feasible with quantum
algorithms [74], [75] and large-scale quantum computers.
Under this circumstance, the issue of information security
in the upcoming quantum era is attracting more and more
attention and cryptographers seek to design ‘‘post-quantum’’
cryptosystems resistant to quantum attacks. Lattice-based
cryptography, code-based cryptography, multivariate polyno-
mial cryptography and hash-based signatures are the four
main branches of post-quantum cryptography. Among these
branches, lattice-based cryptosystems have been emerged as
prime candidates for post-quantum cryptosystem for that they
are relatively simple and own high efficiency and paralleliz-
ability. In July 2020, National Institute of Standards and
Technology (NIST) announced the round 3 finalists of its

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 190475

https://orcid.org/0000-0003-1762-6301
https://orcid.org/0000-0003-3860-1939
https://orcid.org/0000-0002-6502-472X

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

post-quantum cryptography standardizationwhile 5 out of the
7 cryptographic schemes are based on hard lattice problems.

Either cryptanalysis using lattice algorithms or the design
of lattice-based cryptosystem, hard lattice problems are
of vital importance. Among all the hard lattice problems,
the shortest vector problem (SVP), which aims to find a
non-zero vector on the given lattice, is the most representative
one. In 1998, Ajtai [2] proved that the shortest vector problem
in L2 norm is NP-hard for randomized reductions.

Till now, the shortest vector problem has been well studied
and a quantity of algorithms to solve the shortest vector prob-
lem have been proposed. There are mainly two categories of
algorithms to solve the shortest vector problem: enumeration
algorithms and sieve algorithms.

Enumeration algorithms have been under constant study
from the 1980s. In 1981, Pohst [66] proposed the first enu-
meration algorithm, which cost 2O(n

2) time and poly(n) mem-
ory on a lattice of dimension n. Two years later, Kannan [40]
proved that with appropriate preprocessing, the time com-
plexity of enumeration algorithm can be reduced to 2O(nlogn).
In practice, for the sake of improving algorithm efficiency,
enumerations are combined with pruning technique [28],
[72], [73], [77].

Sieve algorithms started with Ajtai, Kumar and
Sivakumar’s work [4] in 2001, which is the first algorithm
solving the shortest vector problem in single-exponential
time. Years later, heuristic assumptions were used in the
design of sieve algorithms, which makes NVSieve algorithm
[65], GaussSieve algorithm [79] and their variants much
more practical. Nevertheless, the exponential memory con-
sumption still restircts the application of sieve algorithms.
On this occasion, TupleSieve algorithms [9], [34], [35] were
proposed to overcome this obstacle by means of a trade-off
between time and memory. In addition, locality-sensitive
hashing (LSH), a technique to solve the nearest neighbor
search problem, was introduced into sieve algorithms [11],
[13], [14], [44], [45], [47] to improve efficiency. In 2018,
Ducas [23] and Laarhoven and Mariano [48] proposed two
different rank reduction techniques respectively and applied
them to sieve algorithms, which improve the efficiency
greatly in practice. Inspired by SubSieve technique and pro-
gressive sieving, in 2019 Albrecht et al. [5] proposed the
General Sieve Kernel, which is a stateful machine based
on sieve algorithms and solved previously unsolved SVP
Challenge instances. Moreover, quantum techniques [41],
[49] and evolutionary techniques [46] have been used to
improve the efficiency of sieve algorithms in recent years.

A. MOTIVATION
On one hand, the security of some non-lattice-based cryp-
tosystems can be reduced to hard lattice problems. On the
other hand, owing to the merit in security, efficiency and fuc-
tion, lattice-based cryptosystems have emerged as the most
promising cryptographic construction in post-quantum era.
As the most basic hard lattice problem, the shortest vector

problem deserves in-depth study for that it offers insights
for cryptanalysis and security parameter selection of certain
cryptographic schemes. Enumeration algorithm used to be
the most effective method to solve SVP in practice even
though sieve algorithm has better asymptotic time complex-
ity. Nevertheless, improvements of sieve algorithm in recent
years enable it to compete with enumeration algorithm as
well. Therefore, making such a review of sieve algorithms in
solving SVP could provide a better comprehension.

B. CONTRIBUTION
In this work, we provide an overview of sieve algorithms
in solving the shortest vector problem. For this purpose,
we collect, categorize and elaborate on the advances of sieve
algorithms and analyze the strengths and weaknesses of each
algorithm as well. In the end, we discuss directions worth
further research.

C. OUTLINE
The remainder of this article is organized as follows.
In Section II, we introduce preliminaries on lattice and sieve
algorithms. Section III provides an overview of sieve algo-
rithms in solving SVP. Section IV concludes with a brief
discussion about further research directions.

II. LATTICE AND SIEVE ALGORITHM
In this section, we introduce some theoretical backgroud
about lattice-based cryptography. Though there are a series
of hard lattice problems, in this work we mainly focus on the
shortest vector problem. All vectors in this article are denoted
by bold lower case letters and are to be read as column vectors
while all matrices are denoted by bold capital letters.

A. LATTICE
Definition 1 (Lattice): Let Rm be the m-dimensional
Euclidean space. A lattice in Rm is the set

L(b1, · · · ,bn) = {
n∑
i=1

xibi : xi ∈ Z}

of all integral combinations of n linearly independent vectors
b1, · · · ,bn ∈ Rm(m ≥ n).
The integers n and m are called the rank and dimension

of the lattice respectively and the lattice is full-rank when
n = m. Vectors b1, · · · ,bn are called a lattice basis and
it is represented as a matrix B = [b1, · · · ,bn] ∈ Rm×n.
Figure 1 illustrates an example lattice in R2 and the lattice
basis consists of vector b1 and b2. Actually, the basis of
a lattice is not unique, as the example lattice in Figure 1,
b1 and b1 − b2 also make up a lattice basis.

If B = (b1, · · · ,bn) is a full-rank matrix,the lattice L
generated by the basisB is denoted byL(B) = {Bx | x ∈ Zn

}.
Definition 2 (Gram-Schmidt Orthogonalization): Let B =

(b1, · · · ,bn) be n linearly independent vectors, B∗ =
(b∗1, · · · ,b

∗
n) is the Gram-Schmidt orthogonalization of B,

where b∗i = bi −
∑i−1

j=1 µi,jb
∗
j , µi,j =

<bi,b∗j >
<b∗j ,b

∗
j >

.

190476 VOLUME 8, 2020

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

FIGURE 1. An example lattice in R2.

The volume of a lattice Vol(L(B)) =
∏

i ‖b
∗
i ‖ where

‖b∗i ‖ is the Eculidean norm of vector b∗i .
Definition 3 (Successive Minima): Let L be a lattice of

rank n, the i-th successive minimum is defined as

λi(L) = inf{r|dim(span(L ∩ B̄(r)))}, i = 1, · · · , n,

where B̄(r) is a closed ball of radius r with the origin as its
center.
Definition 4 (Shortest Vector Problem): The exact shortest

vector problem can be defined as: given a basis B of the
lattice L, find a non-zero vector s ∈ L such that

‖s‖ = min{‖v‖ : v ∈ L(B), ‖v‖ 6= 0}.

The norm of such a shortest non-zero vector of a lattic L is
usually denoted by λ1(L).
Besides the exact SVP, there are several other versions.
Approximate Shortest Vector Problem: given a basis B

of the lattice L and a real number γ > 1, find a non-zero
vector s ∈ L such that

‖s‖ ≤ γ ‖v‖,∀v ∈ L(B), ‖v‖ 6= 0.

Unique Shortest Vector Problem: given a a lattice L(B)
satisfying λ2(L) > γλ1(L) for γ > 1 and γ ∈ R, find a
non-zero vector s ∈ L(B) such that

‖s‖ = min{‖v‖ : v ∈ L(B), ‖v‖ 6= 0}.

Shortest Independent Vector Problem: given a lattice
L(B) of rank n, find n linearly independent vectors si ∈ L(B)
such that

‖si‖ = λi(L(B)), i = 1, · · · , n.

Definition 5 (Gaussian Heuristic): For a lattice L, Gaus-
sian Heurisitic GH(L) gives the expected first minimum. For
a full rank lattice L ⊂ Rn, GH(L) is defined as:

GH(L) =
√
n/2πe · Vol(L)1/n.

When solving the shortest vector problem, GH(L) is usu-
ally regraded as the expected norm of the shortest vector.

For example, the target norm is 1.05GH(L) in the
SVP Challenge.1

B. SIEVE ALGORITHM
Since Ajtai et al. [4] introduced sieve algorithm in 2001, there
have been a quantity of variants and they share the same
framework as shown in Algorithm 1.

Algorithm 1 Sieve Algorithm (B)
Require:

Lattice basis B
Ensure:

A list of short lattice vectors
1: L ← a set of N short vectors sampled from lattice L(B)
2: while ∃(v,w) ∈ L2 such that ‖v− w‖ < ‖v‖ do
3: v← v− w
4: end while
5: return L

Typically, to imporve efficiency, before running sieve
algorithm on a lattice, lattice basis needs to be prepro-
cessed by lattice basis reduction algorithm (LLL [53] or
BKZ [18], [72]). And as Algorithm 1 shows, a sieving proce-
dure mainly consists of two parts: sampling short vectors and
vector reduction. Through calling sieve algorithm iteratively,
vectors in list L get shorter and shorter and as a result the
shortest vector problem is solved.
Definition 6 (Gauss-reduced): For vectors v1, v2 ∈ L(B),

if max(‖v1‖, ‖v2‖) ≤ ‖v1 ± v2‖, then v1, v2 are called
Gauss-reduced.
Definition 7 (Pairwise-reduced): Let list L be a set of

N vectors from lattice L(B), if for any two different vectors
v1, v2 (i, j = 1, · · · ,N and i 6= j) ∈ L, v1, v2 are Gauss-
reduced, then list L is called pairwise-reduced.

III. A REVIEW OF SIEVE ALGORITHMS
In this section, we present a review of sieve algorithms in
solving shortest lattice vector problem. In order to better
describe the research progress of sieve algorithms, we cat-
egorize them according to when they were proposed and
techniques they rely on. Except for special declarations, all
the lattices we mention in the rest of the article are full-rank
integer lattice of dimension n.

A. AKS SIEVE ALGORITHM
Based on Kumar and Sivakumar’s work [43], Ajtai et al.
proposed AKS Sieve algorithm [4] in 2001, which is the first
algorithm solving the shortest vector problem in 2O(n) time.
Before AKS Sieve algorithm, the best algorithm to solve SVP
is Kannan’s enumeration algorithm [40], which solves the
shortest vector problem in 2O(nlogn) time.
For a latticeL(B), AKS Sieve algorithm uniformly samples

a list of 2O(n) pairs of vectors L = {(vi, yi), i ∈ I } ∈ L(B) ×
Bn(R), where Bn(R) is a n-dimensional sphere with the origin

1http://www.latticechallenge.org/svp-challenge/

VOLUME 8, 2020 190477

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

FIGURE 2. One round in AKS Sieve.

as its center and a radius not longer than R. For each pair
(vi, yi), ‖vi − yi‖ ≤ ξ . AKS Sieve algorithm actually applies
a ‘‘sieving’’ procedure on all the perturbation points yi:

if ‖yi − yj‖ ≤ γR, then L ′ = L ′ ∪ {(vi − vj, yi − vj)},

where i, j ∈ I , γ < 1.
After a round of sieving, list L will be replaced by L ′. Since

the distance between vi and yi is bounded by ξ , as the length
of yi shrinks, vi becomes smaller as well. Actually, the new
perturbation point y′ = yi − vj satisfies

‖y′‖ = ‖yi − vj‖ ≤ ‖yi − yj‖ + ‖yj − vj‖ ≤ γR+ ξ

Figure 2 illustrates the change of list L after one round of
AKS sieving. By iteratively applying AKS Sieve algorithm,
a shortest vector will be found in list L.
AKS Sieve algorithm has two flaws: one is that it needs

several parameters and it is hard to find the optimal choice;
the other is that the complexity constant is too large.
Schnorr [71] firstly concluded that the constant in the time
complexity O(n) is not smaller than 30 while Regev [68]
claimed that it is not larger than 16. In 2008, Nguyen and
Vidick [65] proved that the upper bound of the constant in
the time complexity O(n) is 5.9.

Though AKS Sieve algorithm is not practical enough, it is
the first sieve algorithm to solve the shortest vector problem
and enlightens a research area.

B. NV SIEVE ALGORITHM AND ITS VARIANTS
In 2008, Nguyen and Vidick [65] made a thorough analysis
of AKS Sieve algorithm and proposed NV Sieve algorithm.
NV Sieve algorithm is a heuristic variant of AKS and made a
giant progress in both time and space complexity.

Instead of sieving on perturbation points like AKS Sieve
algorithm, NV Sieve algorithm performs sieving procedure
on lattice vectors directly based on the heuristic assumption
that vectors in a sphere shell are uniformly distributed. N
sampled lattice vectors which are shorter than R are divided
into two sets: centers set C and short lattice vectors list L.

In each sieving iteration, if vector v ≤ γR, v will be put
into new list L ′ immediately; if vector v > γR but ∃c ∈ C ,
‖v − c‖ ≤ γR, v− c will be put into new list L ′; otherwise,
vector v will be put into centers set C . At the end of each
iteration, list L will be replaced by L ′. Figure 3 shows the
change of list L after one round of NV Sieve algorithm.

The time and space complexity of NV Sieve algorithm
are 20.415n+o(n) and 20.2075n+o(n) respectively. However, it is
not efficient enough to compete with enumeration algorithm.
In 2011, Wang et al. [80] introduced a new technique and
designed a two-level sieve algorithm based onNVSieve algo-
rithm. Instead of using γ to ensure vectors become shorter
and short, shrink factors γ1 and γ2 are used in two-level sieve
algorithm. Compared with NV Sieve algorithm, centers set C
are divided into different groups and vectors in list L only try
to conduct reduction with vectors in corresponding groups.
In this way, two-level sieve algorithm achieves some balance
between space and time, and its time and space complexity
are 20.3836n+o(n) and 20.2557n+o(n) respectively. Two years
later, Zhang et al. [82] proposed a three-level sieve algorithm
based on the same idea, of which the time complexity is
20.3778n+o(n) and the space complexity is 20.2833n+o(n).

C. LIST SIEVE ALGORITHM, GAUSS SIEVE ALGORITHM
AND THEIR IMPROVEMENTS
In 2009, Voulgaris and Micciancio [79] proposed List Sieve
algorithm, which inherits the idea of AKS Sieve algorithm:
sieving on perturbation points. List Sieve algorithm samples
N pairs of vectors (pi, ei) at the beginning, and in each sieving
iteration pi is reduced by all the vectors in list L. After that,
let vi = pi − ei and reduce vi with all the vectors in list L
(see Figure 4). Finally, vi will be added to list L. During the
whole process, vectors in list L are shrinking until the target
norm is reached.

List Sieve algorithm solves the shortest vector prob-
lem in a lattice of dimension n in 23.199n+o(n) time and
21.325n+o(n) space. Even though it surpasses AKS Sieve
algorithm, List Sieve algorithm is not efficient enough

190478 VOLUME 8, 2020

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

FIGURE 3. One round in NV Sieve.

FIGURE 4. One round in List Sieve.

in practice. To improve List Sieve algorithm, Pujol and
Stehlé [67] proposed List Sieve-Birthday algorithm. Com-
pared with List Sieve algorithm, List Sieve-Birthday algo-
rithm introduces a list U and adds vector pairs reduced by
list L to U until the subtraction of the distinct closest vector
pair (u1,u2) ∈ U meets the target norm. Time and space
complexity of List Sieve-Birthday algorithm are improved
to 22.465n+o(n) and 21.233n+o(n).

Besides List Sieve-Birthday algorithm, Voulgaris andMic-
ciancio [79] presented Gauss Sieve algorithm, a heuristic
variant of List Sieve algorithm. Same as NV Sieve algorithm,
Gauss Sieve algorithm performs sieving procedure directly on
lattice vectors. It follows the approach of List Sieve algorithm
to build a list of lattice vectors which become shorter and
shorter after iterations. The difference is that when a new
vector vi is added to list L, not only vi is reduced by all
the vectors in list L, but also all the vectors in list L are
reduced by vi (see Figure 5). As a consequence, list L will
be pairwise-reduced, which means for any vectors u, v ∈ L,
max(‖u‖, ‖v‖) ≤ min(‖u ± v‖). The space complexity of
Gauss Sieve algorithm is provably bounded by 20.41n+o(n)

(seems to be at most 20.21n+o(n) in practice) while no upper
bound on the running time is given. Experimental results
show that the time complexity and space complexity seem
to be 20.48n+o(n) and 20.18n+o(n).

Although Gauss Sieve algorithm does not own an attractive
theoretical bound, it is one the most efficient sieve algorithm

in practice and there are a series of improvements on Gauss
Sieve algorithm afterwards. Fitzpatrick et al. [26] put forward
several heuristic improvements including optimizedGaussian
sampler, multiple randomized bases and angle approximation
to Gauss Sieve algorithm, which achieves a good accelera-
tion. Ducas [23] also modifies sampling method and utilizes
hash tables to prevent invalid vector reductions to improve
the efficiency of Gauss Sieve algorithm. In addition, there are
various parallel implementations [39], [59], [62], [81], and
[83] of Gauss Sieve algorithm.

D. SIEVE ALGORITHMS WITH NEAREST NEIGHBOR
SEARCH TECHNIQUES
For a list of N vectors L = {v1, · · · , vN } ∈ Rn, the nearest
neighbor search (NNS) [38] aims to find a vector v ∈ L such
that ‖v − t‖ = min{‖vi − t‖|vi ∈ L}, where target vector
t /∈ L. Relying on a family of locality-sensitive hash func-
tions, locality-sensitive hashing (LSH) [7], [8], [17], [38],
[78] is a technique to solve the nearest neighbor search
problem.

In 2015, Laarhoven [44] introduced LSH technique into
sieve algorithm for the first time. By means of replacing
the brute-force list search during reduction with method
combining with angular LSH, sieve algorithm obtain a
speedup in solving SVP. When combining NV Sieve algo-
rithm with angular LSH, the time complexity decreases to
20.3366n+o(n) while the space complexity remains unchanged.

VOLUME 8, 2020 190479

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

FIGURE 5. One round in Gauss Sieve.

Combining Gauss Sieve algorithm with angular LSH, he pro-
posed Hash Sieve algorithm, whose time complexity and
space complexity can be bounded by 20.3366n+o(n).

Inspired by angular LSH, other LSH methods attracted
researchers to study whether they are able to accelerate sieve
algorithm. Laarhoven and deWeger [47] combined NV Sieve
algorithm with spherical LSH and proposed Sphere Sieve
algorithm. The time complexity of Sphere Sieve algorithm
is 20.298n+o(n) as the space complexity remains 20.2075n+o(n).

Besides LSH, other NNS techniques are used to speed up
sieve algorithm as well. Becker et al. [13] adapted May and
Ozerov’s technique [60] which is used to solve NNS of binary
code words, and applied it to searching vector pairs suitable
for reduction during sieving. By combining this sub-quadratic
NNS technique with NV Sieve algorithm, the time com-
plexity drops to 20.3112n+o(n) and the space complexity is
still 20.2075n+o(n).
Sphere Sieve algorithm surpassed all the sieve algorithms

in terms of time complexity at that time. However, the spher-
ical LSH that Sphere Sieve algorithm relies on seems incom-
patible with Gauss Sieve algorithm, which greatly limits the
practicability of Sphere Sieve algorithm. In 2016, for the sake
of obtaining a more practical speedup in sieve algorithm,
Becker and Laarhoven [14] introduced cross-polytope LSH
[8], [78] into sieve algorithm. Although cross-polytope LSH
has the same acceleration effect as spherical LSHwhenwork-
ing with NV Sieve algorithm, it can be combined with mod-
ified Gauss Sieve algorithm to generate CP Sieve algorithm,
whose efficiency exceeds Gauss Sieve algorithm and Hash
Sieve algorithm in practice.

Based on LSH, Becker et al. [11] proposed locality-
sensitive filter (LSF), which adopts a new approach to pick up
nearby vectors. By applying spherical LSF to sieve algorithm,
LDSieve algorithm [11] is capable to solve the shortest vector
problem in 20.292n+o(n) time, which outperforms the previous
best time complexity achieved by Sphere Sieve algorithm and
CP Sieve algorithm. Until today, LD Sieve algorithm still
owns the best asymptotic time complexity for solving the

shortest vector problem and is wildly used to evaluate the
security parameters of certain lattice-based cryptosystems.

During the sieving procedure, the reduction step cost the
most time. Through quickly judging whether two vectors are
nearby, sieve algorithms with NNS techniques avoid a large
amount of invalid reductions and as a result the shortest vector
can be found in less time. Figure 6 illustrates the time and
space complexity of sieve algorithms with NNS techniques.
However, these methods cannot change the space complexity
of sieve algorithms and to some extent it is difficult to con-
struct an effective LSH or LSF.

FIGURE 6. Space and time complexity of sieve algorithms with NNS
techniques, reprinted from [11].

E. TUPLE SIEVE ALGORITHM AND ITS IMPROVEMENTS
Even though the time complexity of sieve algorithms is
single-exponential, the exponential memory consumption has
always limited the practicality of sieve algorithms while enu-
meration algorithms just cost negiliable polynomial space.

190480 VOLUME 8, 2020

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

FIGURE 7. Average maximum list size (log2 |L|∞) and average running time (log2 time) of Gauss Sieve and different Tuple Sieve algorithms, reprinted
from [9].

Aiming to overcome this obstacle, Bai et al. [9] proposed
Tuple Sieve algorithm in 2016. Instead of reducing vector
pairs (v1±v2) to decrease their norms, Tuple Sieve algorithm
takes advantage of tuples of vectors (v1±v2±· · ·±vk). In this
way, Tuple Sieve algorithm actually achieves a comprise
between time and space: less lattice vectors are needed while
more time is spent during reduction to generate more short
vectors. When combining this technique with NV Sieve algo-
rithm, for tuple size k = 3, the space complexity decreases
from 20.2075n+o(n) to 20.1887n+o(n) while the time complex-
ity increases from 20.415n+o(n) to 20.5662n+o(n). To further
improve efficiency, a filter was designed to avoid invalid
vector reductions and with this filter the time complexity
of 3-Tuple Sieve algorithm drops to 20.4812n+o(n). Moreover,
by applying tuple sieve technique to Gauss Sieve algorithm,
they proposed Tuple Minkowski Sieve algorithm, a more
practical sieve algorithm. Figure 7 illustrates the experimental
space and time costs of different Tuple Sieve algorithms.

In 2017, Herold and Kirshanova [34] proposed an
improved algorithm for the approximate k-list problem in
Euclidean norm which can be applied to accelerating Tuple
Sieve algorithm. When tuple size k = 3, the time complexity
is brought down from 20.4812n+o(n) to 20.3962n+o(n) with the
space complexity remains 20.1887n+o(n). Furthermore, com-
bining with LSH techniques, the time complexity drops to
20.3717n+o(n) as the space complexity remains unchanged.

At the same year, Laarhoven [45] generalized the spherical
LSF from LD Sieve algorithm and applied it to Tuple Sieve
algorithm. Using this method, Herold and Kirshanova’s algo-
rithm can be improved to solve SVP in 20.3588n+o(n) time and
20.1887n+o(n) memory.

In 2018, Herold et al. [35] extended their previous work
together. With configuration framework and spherical LSF,
they offered tunable time-memory trade-offs for sieve algo-
rithms with arbitrary tuple sizes. For triple sieving, the time
and space complexity are 20.3588n+o(n) and 20.1887n+o(n)

respectively, which can be adjusted to 20.3300n+o(n) and
20.2075n+o(n) if more memory is taken up.

The core of various tuple sieve algorithms is a trade-off
between time and space: the larger the tuple size, the less
the memory, and the longer the time. And owing to that the
time complexity of sieve algorithm is exponential, tuple sieve
algorithms with tuple size larger than 4 is not practical.

F. SIEVE ALGORITHMS WITH RANK REDUCTION
TECHNIQUES
Rank reduction is a principle extensively used in solving
hard lattice problems: when solving a problem on a lattice
of dimension n, one first solves problems on its sublattice
of dimension n − k and later uses the outcome to solve the
original problem.

In 2018, Laarhoven and Mariano [48] proposed pro-
gressive sieving technique, which introduces a progressive
approach to sieve algorithm. It starts from sieving on a
low-rank sublattice of the original lattice and then gradually
adds new basis vectors and launches sieve algorithm on sub-
lattice of higher rank until all the basis vectors are added
and seeks to find the shortest vector. Progressive sieving
actually is a new mode of sieve algorithms and almost all the
sieve algorithms can be modified to combine with it. It has
faster convergence speed than conventional sieve algorithms
that sometimes it even finds target vector on a sublattice.
Moreover, algorithms with progressive sieving consume less
memory since it mainly works on sublattices.

At the same time as Laarhoven and Mariano’s work,
Ducas [23] proposed SubSieve technique, which is another
form of rank reduction. SubSieve technique relies on the fact
that the output list of sieve algorithm contains the vast major-
ity of short vectors of the lattice. For a lattice L, SubSieve
technique runs sieve algorithm on its projected sublattice Ld
of rank n − d and outputs a list L. For each vector vd ∈ L,
the preimage v ∈ L is calculated and the shortest one is
outputted to judge whether it is a shortest vector. SubSieve
technique is capable of bringing a sub-exponential speedup
to sieve algorithm and it can be applied to most of sieve
algorithms by design.

VOLUME 8, 2020 190481

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

In 2019, based on the ideas of progressive sieving and Sub-
Sieve, Albrecht et al. [5] proposed G6K, which is an abstract
stateful machine solving various hard lattice problems based
on sieve algorithms. UsingG6K, they solvedmany previously
unsolved lattice challenge instances and for previously solved
instances, G6K solved much faster.

Rank reduction actually is a heuristic strategy which has
been used in lattice reduction algorithms and enumeration
algorithms for a long period. By converting SVP on a
n-dimensional lattice into its sublattices, sieve algorithms
with rank reduction techniques will cost less time and
memory.

G. PARALLELIZATION
Though the time complexity of sieve algorithm is asymp-
totically faster than enumeration algorithm, sieve algorithms
cannot compete with enumeration algorithms at the begin-
ning. Under this circumstance, the parallelization of sieve
algorithm is a good alternative.

In 2011, based on a ring structure, Milde and
Schneider [62] proposed the first parallel implementation of
Gauss Sieve algorithm. Independent Gauss Sieve instances
are connected like a ring, and to keep all the instances active,
a queue of vector are added to each instances. Vectors pass
one instance will be handed to the next one. Only vectors
pass all the all the instances will be added to the current
list L, which has a negative influence on the convergence
and scalability of the parallel algorithm. Experimental results
show that efficiency does not improve linearly for more than
four threads.

The bottleneck of Milde and Schneider’s parallel algo-
rithm is that vectors in lists of different instances are not
Gauss-reduced and some short vectors are omitted during
the reduction process, which greatly limits the efficiency of
the algorithm. To tackle this problem, Ishiguro et al. [39]
designed another parallel Gauss Sieve algorithm in 2014.
By adding an additional list to each Gauss Sieve instance,
vectors in each list are guaranteed to be Gauss-reduced. As a
result, this algorithm has a excellent scalability and is able to
solve SVP on lattice of dimension more than 100.

In 2014, Mariano et al. [57] proposed a parallel variant of
List Sieve algorithm and made a comprehensive empirical
comparison between it and Gauss Sieve algorithm. Then
based on lock-free technique, Mariano et al. [59] presented
a parallel variant of Gauss Sieve algorithm using shared-
memory. This implementation is claimed to support a linear
speedup for up to 64 threads. At the same year, Bos et al. [83]
proposed a different version of parallel Gauss Sieve algorithm
suitable for distributed-memory architectures.

In 2017, Yang et al. [81] implemented Ishiguro et al.’s
parallel Gauss Sieve algorithm on a single GPU and
Bos et al.’s on multiple GPUs. Both implementation behaved
efficiently in solving the shortest vector problem.

In 2015 and 2017, Mariano et al. [56], [58] proposed the
parallel implementation of Hash Sieve algorithm and LD
Sieve algorithm respectively. Both of the implementations

scale well on CPU cores and are able to achieve a linear
speedup for up to 64 threads.

In addition, Ducas, Stevens and Woerden solved the
170-dimensional SVP Challenge this year based on efficient
parallelization of G6K with GPU-implementation,2 which is
the highest dimension for SVP Challenge till now.

H. SIEVE ALGORITHMS WITH QUANTUM SPEEDUP
The development of quantum algorithms and quantum com-
puter has brought a huge impact on the security of public
key cryptosystems. Since lattice-based cryptosystems have
become one of the most promising candidate in post-quantum
era, research on how quantum algorithms and quantum
computer can be applied to accelerating algorihtms solving
related problems is of great significance.

In 2015, Laarhoven et al. [49] studied how to use Grover’s
quantum search algorithm [33] to improve sieve algorithms.
By combining with Grover’s quantum search algorithm, sieve
algorithms obtain an asymptotic improvement both in time
and space complexity.

In 2019, Kirshanova et al. [41] studied how to use quantum
techniques to speed up variants of Tuple Sieve algorithm.
They firstly applied Grover’s quantum search [33] algorithm
to speed up Tuple Sieve algorithm and its variants. Secondly,
quantum k-clique finding techniques [27] were used to accel-
erate Tuple Sieve algorithms. Finally, they adapted parallel
quantum search technique [10] and combined it with NV
Sieve algorithm, which leads to a significant improvement in
complexity.

In 2019, Albrecht et al. [6] designed quantum circuits for
NNS algorithms that are deeply used in sieve algorithms and
analyzed their costs.

Quantum sieve algorithms might be kind of unrealistic on
account of that quantum computer is not practical at now.
However, research on it would provide a reference for evalu-
ating the security of lattice-based cryptosystems.

I. SIEVE ALGORITHMS ON IDEAL LATTICE
Ideal lattice is a special sort of lattice which is usually used to
construct efficient lattice-based cryptographic schemes [30],
[36], [52], [61], [76]. It was supposed that solving the shortest
vector problem in ideal lattices is as hard as in general lattices
until Voulgaris and Micciancio [79] presented the idea that
the special structure of ideal lattice can be used to improve
efficiency, especially for sieve algorithms.

In 2011, Schneider [70] proposed Ideal List Sieve algo-
rithm and Ideal Gauss Sieve algorithm, which are variants of
List Sieve algorithm andGauss Sieve algorithm using the spe-
cial structure of ideal lattices. Based on the rotation structure
of cyclic lattices and anti-cyclic lattices, both algorithms are
shown to be dozens of times faster than original algorithms
in solving SVP on ideal lattices.

In 2014, Ishiguro et al. [39] and Bos et al. [83] proposed
variants of parallel GaussSieve algorithm respectively. And

2http://www.latticechallenge.org/svp-challenge/halloffame.php

190482 VOLUME 8, 2020

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

TABLE 1. A summary of sieve algorithms.

their algorithms effectively solved the SVP challenge on two
different 128-dimensional ideal lattices.

In 2015, Becker and Laarhoven [14] presented Ideal CP
Sieve algorithm based on CP Sieve algorithm, which has a
linear speedup in time and a linear improvement in memory.

J. OTHER SIEVE ALGORITHMS
Besides these sieve algorithms mentioned above, there are
several other sieve algorithms.

In 2014, Becker et al. [12] proposed a heuristic sieve algo-
rithm based on overlattices. For both SVP and CVP, it finds
a solution in 20.3774n+o(n) time and 20.2925n+o(n) memory.
Moreover, by adjusting parameters, this algorithm achieves
a trade-off between time and space.

In 2019, Laarhoven [46] compared sieve algorithms and
evolutionary algorithms and explored the possibility to accel-
erate sieve algorithms with evolutionary techniques.

In 2020, Doulgerakis et al. [22] designed a hybrid algo-
rithm which uses sieve algorithm as a subroutine. Com-
bined with SubSieve [23] and CVPP [25] techniques, this
algorithm obtains more free dimensions and solves SVP on
high-dimensional lattices much faster.

IV. CONCLUSION
Sieve algorithm is regarded as one of the most promising
algorithm to solve SVP for its single-exponential asymptotic
time complexity. However, sieve algorithms did not perform
well in time at first as its exponential space complexity is also
an obstacle. To improve the performance of sieve algorithms
both in time and memory, a spectrum of ideas and techniques
were proposed to combine with sieve algorithms to gain a
better result. Table 1 summarizes sieve algorithms reviewed
in this article.

Based on our review of sieve algorithms, we consider that
there are still several directions worth in-depth research:
• Precise complexity bound, especially for Gauss Sieve
algorithm. As one of the most practical sieve algorithm,
there is no tight upper bounds on the running time and
memory consumption for Gauss Sieve algorithm while
Gauss Sieve algorithm behaves much better than its
present time and space complexity in practice. A precise
complexity bound will provide us with a better compre-
hension about Gauss Sieve algorithm and its variants.

• Sieve algorithm with less space requirement. Though
sieve algorithms have made great progress in recent
years, its exponential memory consumption still restricts
its application, especially compared with the negli-
gible polynomial space requirement of enumeration
algorithm. Tuple Sieve algorithm and its variants aim
to tackle this bottleneck but do not obtain a desir-
able outcome. A sieve algorithm with sub-exponential
or polynomial space requirement will be much more
competitive in solving SVP of high dimension.

• Combination with enumeration algorithms. To some
extent, using projected sublattices in SubSieve [23] tech-
nique is inspired by enumeration algorithms. Both sieve
algorithms and enumeration algorithms have their own
advantages. A hybrid algorithm in which sieve algo-
rithms and enumeration algorithms act as subroutines
maybe solves SVP more efficiently.

• Working as a subroutine of lattice reduction algorithms.
For conventional lattice basis reduction algorithms like
BKZ and its variants, enumeration algorithm is used
as its subroutine, which makes it inefficient on lattice
of high dimension. It is worthwhile to explore whether
sieve algorithm can be used as the subroutine of BKZ
algorithm and its variants since it is becoming more and

VOLUME 8, 2020 190483

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

more efficient. As for this aspect, G6K has achieved
some good results. Besides, the output list of sieve algo-
rithm contains a vast majority of short vectors in the
lattice, which caters to the need of random sampling
reduction algorithm: sampling short vectors. By design-
ing appropriate strategies, sieve algorithm is capable of
benefiting lattice reduction algorithms greatly.

• Parallel implementationwith GPU. Comparedwithmul-
tiple CPU cores, the parallelization of sieve algorithms
with GPU supports a larger prallel scale, which will
guarantee we find the shortest vector faster. However,
the parallelization with GPU may be unable to partici-
pate in the entire procedure of sieving for that the short
vector list L is dynamically changing. Under this cir-
cumstance, sampling short vectors and some reductions
seem to be compatible with implementation with GPU.
Actually, Ducas et al. has utilized GPU in solving SVP
Challenge in practice.3

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their comments and helping us improve this article.

REFERENCES
[1] M. Ajtai, ‘‘Generating hard instances of lattice problems (extended

abstract),’’ in Proc. 28th Annu. ACM Symp. Theory Comput. (STOC),
Philadelphia, PA, USA, 1996, pp. 99–108.

[2] M. Ajtai, ‘‘The shortest vector problem in L2 is NP-hard for randomized
reductions (extended abstract),’’ in Proc. 30th Annu. ACM Symp. Theory
Comput. (STOC), Dallas, TX, USA, 1998, pp. 10–19.

[3] M. Ajtai and C. Dwork, ‘‘A public-key cryptosystem with worst-
case/average-case equivalence,’’ in Proc. 29th Annu. ACM Symp. Theory
Comput. (STOC), El Paso, TX, USA, 1997, pp. 284–293.

[4] M. Ajtai, R. Kumar, and D. Sivakumar, ‘‘A sieve algorithm for the shortest
lattice vector problem,’’ in Proc. 33rd Annu. ACM Symp. Theory Comput.
(STOC), Heraklion, Greece, 2001, pp. 601–610.

[5] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite,
andM. Stevens, ‘‘The general sieve kernel and new records in lattice reduc-
tion,’’ in Advances in Cryptology—EUROCRYPT 2019 (Lecture Notes
in Computer Science), vol. 11477. Darmstadt, Germany: Springer, 2019,
pp. 717–746.

[6] M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck,
‘‘Quantum speedups for lattice sieves are tenuous at best,’’ IACR Cryptol.
ePrint Arch., vol. 2019, p. 1161, Oct. 2019.

[7] A. Andoni and P. Indyk, ‘‘Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,’’ in Proc. 47th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS). Berkeley, CA, USA: IEEE Computer
Society, Oct. 2006, pp. 459–468.

[8] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt,
‘‘Practical and optimal LSH for angular distance,’’ in Proc. Adv. Neural
Inf. Process. Syst., Montreal, QC, Canada, 2015, pp. 1225–1233.

[9] S. Bai, T. Laarhoven, and D. Stehlé, ‘‘Tuple lattice sieving,’’ LMS
J. Comput. Math., vol. 19, no. A, pp. 146–162, 2016.

[10] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden,
D. Shepherd, and M. Stather, ‘‘Efficient distributed quantum computing,’’
Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 469, no. 2153, 2013,
Art. no. 20120686.

[11] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, ‘‘New directions in
nearest neighbor searching with applications to lattice sieving,’’ in Proc.
27th Annu. ACM-SIAM Symp. Discrete Algorithms. Arlington, VA, USA:
SIAM, Jan. 2016, pp. 10–24.

[12] A. Becker, N. Gama, and A. Joux, ‘‘A sieve algorithm based on overlat-
tices,’’ LMS J. Comput. Math., vol. 17, no. A, pp. 49–70, 2014.

3http://www.latticechallenge.org/svp-challenge/halloffame.php

[13] A. Becker, N. Gama, and A. Joux, ‘‘Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search,’’
IACR Cryptol. ePrint Arch., vol. 2015, p. 522, 2015.

[14] A. Becker and T. Laarhoven, ‘‘Efficient (ideal) lattice sieving using cross-
polytope LSH,’’ in Progress in Cryptology—AFRICACRYPT 2016 (Lec-
ture Notes in Computer Science), vol. 9646. Fes, Morocco: Springer, 2016,
pp. 3–23.

[15] D. Bleichenbacher and A. May, ‘‘New attacks on RSA with small secret
crt-exponents,’’ in Public Key Cryptography (Lecture Notes in Computer
Science), vol. 3958. Berlin, Germany: Springer, 2006, pp. 1–13.

[16] J. A. Buchmann, E. Dahmen, and A. Hülsing, ‘‘XMSS—A practical for-
ward secure signature scheme based on minimal security assumptions,’’
in Post-Quantum Cryptography (Lecture Notes in Computer Science),
vol. 7071. Taipei, Taiwan: Springer, 2011, pp. 117–129.

[17] M. S. Charikar, ‘‘Similarity estimation techniques from rounding algo-
rithms,’’ in Proc. 34th Annu. ACM Symp. Theory Comput. (STOC),
Montréal, QC, Canada, 2002, pp. 380–388.

[18] Y. Chen and P. Q. Nguyen, ‘‘BKZ 2.0: Better lattice security esti-
mates,’’ in Advances in Cryptology—ASIACRYPT 2011 (Lecture Notes
in Computer Science), vol. 7073. Seoul, South Korea: Springer, 2011,
pp. 1–20.

[19] D. Coppersmith, ‘‘Finding a small root of a bivariate integer equation; fac-
toring with high bits known,’’ in Advances in Cryptology—EUROCRYPT
’96 (Lecture Notes in Computer Science), vol. 1070. Berlin, Germany:
Springer, 1996, pp. 178–189.

[20] D. Coppersmith, ‘‘Finding a small root of a univariate modular equation,’’
inAdvances in Cryptology—EUROCRYPT’96 (Lecture Notes in Computer
Science), vol. 1070. Berlin, Germany: Springer, 1996, pp. 155–165.

[21] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr,
and J. Stern, ‘‘Improved low-density subset sum algorithms,’’ Comput.
Complex., vol. 2, no. 2, pp. 111–128, Jun. 1992.

[22] E. Doulgerakis, T. Laarhoven, and B. de Weger, ‘‘Sieve, enumerate, slice,
and lift: Hybrid lattice algorithms for SVP via CVPP,’’ IACR Cryptol.
ePrint Arch., vol. 2020, p. 487, 2020.

[23] L. Ducas, ‘‘Shortest vector from lattice sieving: A few dimensions for
free,’’ in Advances in Cryptology—EUROCRYPT 2018 (Lecture Notes
in Computer Science), vol. 10820. Tel Aviv, Israel: Springer, 2018,
pp. 125–145.

[24] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, ‘‘Lattice sig-
natures and bimodal Gaussians,’’ in Advances in Cryptology (Lecture
Notes in Computer Science), vol. 8042. Berlin, Germany: Springer, 2013,
pp. 40–56.

[25] L. Ducas, T. Laarhoven, andW. P. J. vanWoerden, ‘‘The randomized slicer
for CVPP: Sharper, faster, smaller, batchier,’’ in Public Key Cryptography
(2) (Lecture Notes in Computer Science), vol. 12111. Berlin, Germany:
Springer, 2020, pp. 3–36.

[26] R. Fitzpatrick, C. H. Bischof, J. A. Buchmann, O. Dagdelen, F. Göpfert,
A. Mariano, and B. Yang, ‘‘Tuning Gausssieve for speed,’’ in Progress in
Cryptology—LATINCRYPT 2014 (Lecture Notes in Computer Science),
vol. 8895. Florianópolis, Brazil: Springer, 2014, pp. 288–305.

[27] F. Le Gall and S. Nakajima, ‘‘Quantum algorithm for triangle finding in
sparse graphs,’’ Algorithmica, vol. 79, no. 3, pp. 941–959, Nov. 2017.

[28] N. Gama, P. Q. Nguyen, andO. Regev, ‘‘Lattice enumeration using extreme
pruning,’’ in Advances in Cryptology—EUROCRYPT 2010 (Lecture Notes
in Computer Science), vol. 6110. Monaco, French Riviera: Springer, 2010,
pp. 257–278.

[29] T. E. Gamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ in Advances in Cryptology (Lecture Notes in
Computer Science), vol. 196. Santa Barbara, CA, USA: Springer, 1984,
pp. 10–18.

[30] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
STOC, 2009, pp. 169–178.

[31] C. Gentry, C. Peikert, and V. Vaikuntanathan, ‘‘Trapdoors for hard
lattices and new cryptographic constructions,’’ in Proc. 40th Annu.
ACM Symp. Theory Comput. (STOC), Victoria, BC, Canada, 2008,
pp. 197–206.

[32] O. Goldreich, S. Goldwasser, and S. Halevi, ‘‘Public-key cryptosys-
tems from lattice reduction problems,’’ in Advances in Cryptology—
CRYPTO’97 (Lecture Notes in Computer Science), vol. 1294. Berlin,
Germany: Springer, 1997, pp. 112–131.

[33] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database search,’’
in Proc. 28th Annu. ACM Symp. Theory Comput. (STOC), Philadelphia,
PA, USA, 1996, pp. 212–219.

190484 VOLUME 8, 2020

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

[34] G. Herold and E. Kirshanova, ‘‘Improved algorithms for the approximate
k-list problem in Euclidean norm,’’ in Public-Key Cryptography (Lecture
Notes in Computer Science), vol. 10174. Amsterdam, The Netherlands:
Springer, 2017, pp. 16–40.

[35] G. Herold, E. Kirshanova, and T. Laarhoven, ‘‘Speed-ups and time-
memory trade-offs for tuple lattice sieving,’’ in Public-Key Cryptography
(Lecture Notes in Computer Science), vol. 10769. Rio de Janeiro, Brazil:
Springer, 2018, pp. 407–436.

[36] J. Hoffstein, J. Pipher, and J. H. Silverman, ‘‘NTRU: A ring-based pub-
lic key cryptosystem,’’ in Algorithmic Number Theory—ANTS (Lecture
Notes in Computer Science), vol. 1423. Berlin, Germany: Springer, 1998,
pp. 267–288, doi: 10.1007/BFb0054868.

[37] N. A. Howgrave-Graham and P. Nigel Smart, ‘‘Lattice attacks on digital
signature schemes,’’ Des., Codes Cryptogr., vol. 23, no. 3, pp. 283–290,
2001.

[38] P. Indyk and R. Motwani, ‘‘Approximate nearest neighbors: Towards
removing the curse of dimensionality,’’ in Proc. 30th Annu.
ACM Symp. Theory Comput. (STOC), Dallas, TX, USA, 1998,
pp. 604–613.

[39] T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi, ‘‘Parallel Gauss
Sieve algorithm: Solving the SVP challenge over a 128-dimensional
ideal lattice,’’ in Public-Key Cryptography—PKC (Lecture Notes in Com-
puter Science), vol. 8383. Buenos Aires, Argentina: Springer, 2014,
pp. 411–428.

[40] R. Kannan, ‘‘Improved algorithms for integer programming and related lat-
tice problems,’’ in Proc. 15th Annu. ACM Symp. Theory Comput. (STOC),
Boston, MA, USA, 1983, pp. 193–206.

[41] E. Kirshanova, E. Mårtensson, E. W. Postlethwaite, and S. R. Moulik,
‘‘Quantum algorithms for the approximate K-list problem and their appli-
cation to lattice sieving,’’ in Advances in Cryptology—ASIACRYPT 2019
(Lecture Notes in Computer Science), vol. 11921. Kobe, Japan: Springer,
2019, pp. 521–551.

[42] N. Koblitz, ‘‘Elliptic curve cryptosystems,’’ Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[43] R. Kumar and D. Sivakumar, ‘‘On polynomial approximation to the short-
est lattice vector length,’’ in Proc. 12th Annu. Symp. Discrete Algorithms.
Washington, DC, USA: ACM/SIAM, 2001, pp. 126–127.

[44] T. Laarhoven, ‘‘Sieving for shortest vectors in lattices using angular
locality-sensitive hashing,’’ in Advances in Cryptology—CRYPTO 2015
(Lecture Notes in Computer Science), vol. 9215. Santa Barbara, CA, USA:
Springer, 2015, pp. 3–22.

[45] T. Laarhoven, ‘‘Faster tuple lattice sieving using spherical locality-
sensitive filters,’’ CoRR, vol. abs/1705.02828, 2017.

[46] T. Laarhoven, ‘‘Evolutionary techniques in lattice sieving algorithms,’’ in
Proc. 11th Int. Joint Conf. Comput. Intell., Vienna, Austria: ScitePress,
2019, pp. 31–39.

[47] T. Laarhoven and B. de Weger, ‘‘Faster sieving for shortest
lattice vectors using spherical locality-sensitive hashing,’’ in
Progress in Cryptology—LATINCRYPT 2015 (Lecture Notes in
Computer Science), vol. 9230. Guadalajara, Mexico: Springer, 2015,
pp. 101–118.

[48] T. Laarhoven and A. Mariano, ‘‘Progressive lattice sieving,’’ in Post-
Quantum Cryptography (Lecture Notes in Computer Science), vol. 10786.
Fort Lauderdale, FL, USA: Springer, 2018, pp. 292–311.

[49] T. Laarhoven, M. Mosca, and J. van de Pol, ‘‘Finding shortest lattice
vectors faster using quantum search,’’ Designs, Codes Cryptogr., vol. 77,
nos. 2–3, pp. 375–400, Dec. 2015.

[50] J. C. Lagarias, ‘‘Knapsack public key cryptosystems and diophantine
approximation,’’ inAdvances in Cryptology. NewYork, NY,USA: Plenum,
1983, pp. 3–23.

[51] J. C. Lagarias and A. M. Odlyzko, ‘‘Solving low-density subset sum
problems,’’ J. ACM, vol. 32, no. 1, pp. 229–246, Jan. 1985.

[52] A. Langlois, D. Stehlé, and R. Steinfeld, ‘‘GGHLite: More efficient
multilinear maps from ideal lattices,’’ in Advances in Cryptology—
EUROCRYPT 2014 (Lecture Notes in Computer Science), vol. 8441.
Berlin, Germany: Springer, 2014, pp. 239–256.

[53] A. K. Lenstra, H. W. Lenstra, and L. Lovász, ‘‘Factoring polynomi-
als with rational coefficients,’’ Mathematische Annalen, vol. 261, no. 4,
pp. 515–534, Dec. 1982.

[54] V. Lyubashevsky and D. Micciancio, ‘‘Asymptotically efficient lattice-
based digital signatures,’’ in Theory of Cryptography (Lecture Notes
in Computer Science), vol. 4948. Berlin, Germany: Springer, 2008,
pp. 37–54.

[55] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, ‘‘SWIFFT:
Amodest proposal for FFT hashing,’’ in Fast Software Encryption (Lecture
Notes in Computer Science), vol. 5086. Berlin, Germany: Springer, 2008,
pp. 54–72.

[56] A. Mariano, C. Bischof, and T. Laarhoven, ‘‘Parallel (Probable) lock-
free hash sieve: A practical sieving algorithm for the SVP,’’ in Proc.
44th Int. Conf. Parallel Process., Beijing, China: IEEE Computer Society,
Sep. 2015, pp. 590–599.

[57] A. Mariano, O. Dagdelen, and C. H. Bischof, ‘‘A comprehensive empirical
comparison of parallel listsieve and Gausssieve,’’ in Euro-Par 2014: Paral-
lel Processing Workshops (Lecture Notes in Computer Science), vol. 8805.
Porto, Portugal: Springer, 2014, pp. 48–59.

[58] A. Mariano, T. Laarhoven, and C. Bischof, ‘‘A parallel variant of LDSieve
for the SVP on lattices,’’ in Proc. 25th Euromicro Int. Conf. Parallel,
Distrib. Network-Based Process. (PDP). St. Petersburg, Russia: IEEE
Computer Society, 2017, pp. 23–30.

[59] A. Mariano, S. Timnat, and C. Bischof, ‘‘Lock-free GaussSieve for linear
speedups in parallel high performance SVP calculation,’’ in Proc. IEEE
26th Int. Symp. Comput. Archit. High Perform. Comput. Paris, France:
IEEE Computer Society, Oct. 2014, pp. 278–285.

[60] A. May and I. Ozerov, ‘‘On computing nearest neighbors with applica-
tions to decoding of binary linear codes,’’ in Advances in Cryptology—
EUROCRYPT 2015 (Lecture Notes in Computer Science), vol. 9056. Sofia,
Bulgaria: Springer, 2015, pp. 203–228.

[61] D. Micciancio, ‘‘Generalized compact knapsacks, cyclic lattices, and effi-
cient one-way functions,’’ Comput. Complex., vol. 16, no. 4, pp. 365–411,
Dec. 2007.

[62] B. Milde and M. Schneider, ‘‘A parallel implementation of Gausssieve
for the shortest vector problem in lattices,’’ in Parallel Computing Tech-
nologies (Lecture Notes in Computer Science), vol. 6873. Kazan, Russia:
Springer, 2011, pp. 452–458.

[63] V. S. Miller, ‘‘Use of elliptic curves in cryptography,’’ in Advances in
Cryptology—CRYPTO’85 (Lecture Notes in Computer Science), vol. 218.
Santa Barbara, CA, USA: Springer, 1985, pp. 417–426.

[64] P. Q. Nguyen, ‘‘The dark side of the hidden number problem: Lattice
attacks on DSA,’’ in Cryptography and Computational Number Theory.
Berlin, Germany: Springer, 2001, pp. 321–330.

[65] P. Q. Nguyen and T. Vidick, ‘‘Sieve algorithms for the shortest vector
problem are practical,’’ J. Math. Cryptol., vol. 2, no. 2, pp. 181–207,
Jan. 2008.

[66] M. Pohst, ‘‘On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications,’’ ACM SIGSAM
Bull., vol. 15, no. 1, pp. 37–44, Feb. 1981.

[67] X. Pujol and D. Stehlé, ‘‘Solving the shortest lattice vector problem in time
22.465n,’’ IACR Cryptol. ePrint Arch., vol. 2009, p. 605, 2009.

[68] O. Regev, ‘‘Lecture notes of lattices in computer science,’’ Lecture Notes,
2004.

[69] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[70] M. Schneider, ‘‘Sieving for shortest vectors in ideal lattices,’’ IACR Cryp-
tol. ePrint Arch., vol. 2011, p. 458, 2011.

[71] C. Schnorr, ‘‘Lattice reduction by random sampling and birthday meth-
ods,’’ in STACS 2003 (Lecture Notes in Computer Science), vol. 2607.
Berlin, Germany: Springer, 2003, pp. 145–156.

[72] C. P. Schnorr andM. Euchner, ‘‘Lattice basis reduction: Improved practical
algorithms and solving subset sum problems,’’ Math. Program., vol. 66,
nos. 1–3, pp. 181–199, Aug. 1994.

[73] C. Schnorr and H. H. Hörner, ‘‘Attacking the Chor-Rivest cryptosys-
tem by improved lattice reduction,’’ in Advances in Cryptology—
EUROCRYPT’95 (Lecture Notes in Computer Science), vol. 921.
Saint-Malo, France: Springer, 1995, pp. 1–12.

[74] P.W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms and
factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci. Santa Fe, NM,
USA: IEEE Computer Society, 1994, pp. 124–134.

[75] P. W. Shor, ‘‘Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,’’ SIAM Rev., vol. 41, no. 2,
pp. 303–332, Jan. 1999.

[76] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, ‘‘Efficient public
key encryption based on ideal lattices,’’ in Advances in Cryptology—
ASIACRYPT 2009 (Lecture Notes in Computer Science), vol. 5912. Berlin,
Germany: Springer, 2009, pp. 617–635.

VOLUME 8, 2020 190485

http://dx.doi.org/10.1007/BFb0054868

Z. Sun et al.: Review of Sieve Algorithms in Solving the Shortest Lattice Vector Problem

[77] D. Stehlé and M. Watkins, ‘‘On the extremality of an 80-dimensional
lattice,’’ in Algorithmic Number Theory (Lecture Notes in Computer Sci-
ence), vol. 6197. Nancy, France: Springer, 2010, pp. 340–356.

[78] K. Terasawa and Y. Tanaka, ‘‘Spherical LSH for approximate nearest
neighbor search on unit hypersphere,’’ in Algorithms and Data Structures
(LectureNotes in Computer Science), vol. 4619, F. K. H. A. Dehne, J. Sack,
and N. Zeh, Eds. Halifax, Canada: Springer, 2007, pp. 27–38, doi: 10.
1007/978-3-540-73951-7_4.

[79] P. Voulgaris and D. Micciancio, ‘‘Faster exponential time algorithms for
the shortest vector problem,’’ Electron. Colloq. Comput. Complex., vol. 16,
no. 65, p. 58, 2009.

[80] X. Wang, M. Liu, C. Tian, and J. Bi, ‘‘Improved Nguyen-Vidick heuristic
sieve algorithm for shortest vector problem,’’ in Proc. 6th ACM Symp. Inf.,
Comput. Commun. Secur. (ASIACCS), Hong Kong, 2011, pp. 1–9.

[81] S. Yang, P. Kuo, B. Yang, and C. Cheng, ‘‘Gauss sieve algorithm on
GPUS,’’ in Topics in Cryptology—CT-RSA 2017 (Lecture Notes in Com-
puter Science), vol. 10159. Berlin, Germany: Springer, 2017, pp. 39–57.

[82] F. Zhang, Y. Pan, and G. Hu, ‘‘A three-level sieve algorithm for the shortest
vector problem,’’ in Selected Areas in Cryptography—SAC 2013 (Lecture
Notes in Computer Science), vol. 8282. Burnaby, BC, Canada: Springer,
2013, pp. 29–47.

[83] J. W. Bos, M. Naehrig, and J. van de Pol, ‘‘Sieving for shortest vectors
in ideal lattices: A practical perspective,’’ IACR Cryptol. ePrint Arch.,
vol. 2014, p. 880, 2014.

ZEDONG SUN is currently pursuing the Ph.D.
degree in cyberspace security with the State
Key Laboratory of Mathematical Engineering and
Advanced Computing, Zhengzhou, China. His
research interest includes algorithms for solving
hard lattice problems.

CHUNXIANG GU is currently a Professor with the
State Key Laboratory of Mathematical Engineer-
ing and Advanced Computing, Zhengzhou, China.
His research interests include cryptography and
network security.

YONGHUI ZHENG is currently an Associate Pro-
fessor with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing,
Zhengzhou, China. His research interests include
cryptography and information security.

190486 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-540-73951-7_4
http://dx.doi.org/10.1007/978-3-540-73951-7_4

