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ABSTRACT In the smart grid, the end-users have the opportunity to integrate renewable energy
sources (RESs) and participate in two-way energy trading. At the same time, an increasing number of
flexible loads (FLs) have been developed for use on the demand side. Thus, this article considers joint energy
trading and load scheduling at a end-user with integrated renewable generation. With unknown statistics
on renewable generation, loads and electricity prices, we aim at optimizing both energy trading and load
scheduling to maximize the long-term average profit of the end-user, subject to load delay constraints.
We employ the Lyapunov optimization theory to solve this stochastic problem with a series of problem
corrections and transformations that enable us to design a dynamic energy trading and load scheduling
algorithm. Within the performance analysis of the algorithm, we further demonstrate that the algorithm not
only provides a bounded performance guarantee to the optimal solution that has complete future information,
but is also asymptotically equivalent to it as the battery capacity or the delay time of FLs tend to infinity.
The simulation results show that the proposed algorithm is superior to other algorithms both in terms of
performance and service delay. Moreover, we can achieve a trade-off between comfort and total profit by
adjusting the values of the parameters, and analyze the effect of battery capacity on algorithm performance
to provide a theoretical basis for the end-user to determine battery capacity.

INDEX TERMS Smart grid, renewable energy sources, energy trading, flexible loads, load scheduling.

I. INTRODUCTION
As a key technology in the smart grid, the two-way flow
of electricity and information enables the grid to deliver
electricity efficiently and reliably, and provides more flexi-
bility in demand response. With the aid of renewable energy
technologies, the smart grid enhances the energy autonomy of
residential consumers and reduces carbon emissions [1], [2].
As a result, on the consumers side, they are able to achieve the
two-way energy trading with the grid to more efficiently uti-
lize their locally generated renewable energy sources (RESs)
for saving their energy bills. RESs have many advantages
over conventional energy sources, such as efficiency, clean-
liness, ease of installation, etc [3]. However, in practice,
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their integration into the existing grid infrastructure must be
carried out carefully in order to avoid instability and ensure
availability and security of supply. The reason is that the
high penetration levels of RESs can lead instability problems
in the grid due to their limited predictability, controllabil-
ity and variability [4]. To meet this challenge, numerous
solutions for renewable energy generation forecasting have
been proposed in the literature such as the hybrid of genetic
algorithm and artificial neural networks [5], integration of
wavelet transform, particle swarm optimization and support
vector machines [6]. However, although the performance
of forecasting tools is getting better, there is still room for
improvement in terms of accuracy, reliability and sharpness.
Fortunately, energy storage and flexible loads (FLs) are rec-
ognized as two promising management options to alleviate
the randomness of renewable generation and reduce power
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costs [7], [8]. Specifically, energy storage can be utilized
to shift energy over time, while FLs can be controlled to
shift demand over time. For the grid operator, they can be
deployed to mitigate fluctuations in renewable generation
and to enhance reliability [9]. For the demand side, energy
storage and FL scheduling can provide an effective approach
for energy management to reduce the cost of electricity con-
sumption [10].

Further encouragement of the demand side to actively
participate in energy management and trading mechanisms,
as well as the efficient blending of FLs (include energy
storage devices) and RESs into the energy system, are major
objectives in planning the future smart grid. Meanwhile,
a number of FLs have been developed for use on the con-
sumer side. They can be controlled to increase demand flex-
ibility and provide economic incentives to consumers by
shifting energy demand from high-peak to low-peak periods
[11], [12]. Therefore, developing an effective FLs scheduling
scheme will be the most promising future solution for con-
sumers participation in energy trading to maximize economic
benefits and is the goal of this article. However, there are
some challenges facing our work. First, the fluctuations in
real-time demand and price information pose a challenge
to the energy trading mechanism. Second, for energy stor-
age devices (batteries), the performance of the battery will
degrade gradually due to frequent charging and discharging
activities. Third, for load (demand) scheduling, there is a
need to ensure that the delay requirements of FLs are met
while maximizing the profits for the consumer. Moreover,
load scheduling decisions influence the energy usage and
the amount of charging and discharging of the battery. Thus,
battery control and load scheduling decisions are interacting
over time, whichmakes global optimization particularly chal-
lenging.

In this article, we consider the issue of energy trading
for an end-user in smart grid, such as a company, a home,
or a community with renewable generators, a battery and
FLs. Renewable generators can harvest RESs from the sur-
rounding environment tomeet the user’s energy consumption.
In addition, the battery is able to exploit the delay require-
ment form FLs to reduce the cost of energy usage during
high-peak periods of demand. The reason is that batteries
can draw energy from the external grid when the price of
electricity is low and discharge energy for use by the end-
user or sell to the external grid when the price of electricity
is high. Thus, the aim of this work is to design an real-
time solution for the end-user to maximize the long-term
average profit while satisfying the FLs delay constraint. It is
worth noting that we assume the dynamics of RESs, loads,
and electricity prices are arbitrary or non-stationary and their
statistics are unknown to fit the actual situation. To solve this
stochastic problem, we develop techniques through a series
of problem corrections and transformations that enable us
to design an real-time algorithm using Lyapunov optimiza-
tion. Furthermore, we further demonstrate that our proposed
dynamic energy trading and load scheduling algorithm not

only provides a bounded performance guarantee for the opti-
mal solution that has complete future information, but is also
asymptotically equivalent to it as the battery capacity or the
delay time of the FL tends to infinity. In summary, the main
contributions of this work can be summarized as follows.
• We propose an effective energy trading andmanagement
scheme for the end-user to maximize economic benefits,
subject to battery operation and load delay constraints.

• Technically, we construct a variable to replace the charge
level in the battery based on the quadratic Lyapunov
function, so as to drive the charge level in the battery
towards a certain non-zero value to avoid underflow.
Moreover, the virtual queue technique is adopted to
ensure that the maximum delay time for FLs does not
exceed a given value.

• The solution depends only on current electricity price,
renewable generation or load and does not require any
statistical knowledge of them, and is infinitely close to
the optimal solution which has full the future values or
statistical knowledge of them.

• In the simulation experiments, we can adjust the values
of the parameters to achieve a trade-off between the
comfort and the total profit for the end-user, and the
impact of the battery capacity on the performance of the
proposed algorithm is analyzed to provide a theoretical
basis for the end-user to determine the storage battery
capacity.

The remainder of this article is organized as follows.
In Section II, we briefly present a review of some literature
related to load scheduling and energy trading in the smart
grid. Section III introduces the system model. In Section IV,
we present formulation of the problem of maximization prof-
its for the end-user. Section V describes the solution to the
problem and analyzes the performance of proposed algorithm
in theory. Section VI presents the simulation results, and
Section VII summarizes the paper.

II. RELATED WORK
As an important tool for regulating electricity supply and
demand, research on optimal scheduling of FLs has been a hot
issue in the previous years, e.g., [13]–[19]. For instance, the
earlier work [13] has investigated the problem of scheduling
multiple devices that allow different levels of latency toler-
ance under real-time prices. Similarly, the power scheduling
strategies under day-ahead prices have been proposed in [14],
[15], and [16] has designed a load scheduling scheme that can
address the dynamic behavior for customer’s energy require-
ments to minimize the load on the grid during peak hours.
In these works, the storage battery or the storage capacity lim-
itationwas not considered. Energy storage is a key technology
to mitigate generation demand and smooth out energy supply
uncertainties. For real-time storage management design, [17]
has proposed joint load scheduling and energy storage control
schemes to save energy consumption costs. However, RESs
were not included in the proposed model, and the designed
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TABLE 1. Comparison of existing works.

model was not completely stochastic. Both RESs generation
and stochastic optimization have been modeled in [18], [19],
in which RESs generations and energy arrives are assumed to
be unknown, but they have not considered two-way trading
with the grid.

Energy trading through demand-side management has
been studied by many researchers. Typically, these works can
be divided into two major categories. The first category of
works focused on developing the optimal energy consump-
tion scheduling for consumers in response to the pricing of the
retail market, e.g., [20]–[24]. Specifically, without assuming
known future prices, a stochastic optimization scheme has
been formulated in [20] to maximize both individual profits
and social welfare. Similarly, [21] has proposed a energy
trading model with uncertain demands and prices, in order
to maximize the profit values for both consumers and the
grid. They proposed two algorithms to predict the electricity
prices in the grid and demands from consumers, respec-
tively. However, electricity prices, renewable generation, and
demand may all fluctuate randomly with their statistics likely
being non-stationary, making them difficult to predict accu-
rately. On the contrary, assuming that electricity prices are is
known ahead of time, linear programming (LP) [22], [23] and
dynamic programming (DP) [24] techniques are frequently
applied for energy trading. However, the solutions obtained in
there works have some randomness and there are no uniform
conditions for judging whether the proposed algorithm can
converge to the global optimum.

Considering the coexistence of a large number of end-
users, the second category of works further investigated how
to help energy retailers (e.g., utilities) to establish the pricing
strategy in order to optimize certain targets. For instance,
[25] and [26] have investigated the problem of load dis-
patching and energy trading for multi-user in the energy
market, and modeled double-auction mechanisms using the
non-collaborative game theory (GT) approach. In addition,
reinforcement learning (RL) theory is applied to address
information privacy behavior among competitors. In partic-
ular, [27] has considered the issue of the constrained energy
trading game among individual strategic players in the case of
incomplete information. Also, [28] has proposed a dynamic
learning algorithm for the energy trading game among smart
MGs to maximize the finite average utility of each MG.

However, the trading architectures proposed by these works
is centralized, which not only add additional service costs but
also consume significant computational resources. Moreover,
there is a high probability that some sellers or buyers will
face an exit situation, either because they are not getting a
matching entity or the expected price from the market. There-
fore, in such a scenario, it is necessary to investigate two-way
trading between an individual end-user and the smart grid.

A brief comparison of the different aspects for the existing
works is shown in Table 1. Most of the extant literatures have
proposed energy management schemes that are optimized
under the assumptions of renewable generation, electricity
prices, and demand that are known in advance or can be
accurately predicted. However, as discussed earlier, the fluc-
tuating nature of renewable generation, electricity prices, and
demand make them difficult to predict accurately. Therefore,
this article proposes a stochastic optimization scheme tomax-
imize the total profit of the end-user through energy trade and
load (demand) dispatch under the uncertainty of renewable
generation, demand and price.

III. SYSTEM MODEL
An end-user is equipped with renewable generators and an
energy storage battery, and connected to the external power
grid through the smart meter, as shown in Fig. 1. The har-
vested RESs can be directly used by the end-user and also
stored in the battery or sold to the smart grid for profit,
which be controlled by the energy management unit (EMU).
Moreover, the battery is allowed to charge/discharge energy
from/to the external grid.

We assume the EMU operates in discrete time slots with
t ∈ {0, 1, . . .}, and all operations are performed per time
slot t . Let e(t) denote the harvested renewable energy at
time slot t . The electricity price is time-varying in the smart
grid and the real-time unit price of the grid’s energy supply
denoted by p(t) at time slot t . Let s(t) represents the amount
of electricity purchased/sold from/to the smart grid at time
slot t . Owing to the two-way trading between the end-user
and the external grid, the value of s(t) may be negative, with
s(t) > 0 meaning that electricity is purchased from the grid
and the opposite implying that it is sold. Similarly, we assume
that b(t) represents the charge/discharge amount of the battery
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FIGURE 1. Energy trading and loading scheduling model of the end-user
in the smart gird.

at the time slot t , with b(t) > 0 representing the battery
discharging and b(t) < 0 representing the battery charging.

We establish an energy demand queue in our model to
simplify the load scheduling over the maximum delay time.
The total energy demand of FLs at time slot t is denoted as
a(t), with the maximum energy demand is denoted as amax.
a(t) is stored in the energy demand queue and supplied in a
first-in first-out (FIFO) manner. Note that the waiting time
for a(t) in the energy demand queue does not exceed the
maximum delay time Tmax. LetQ(t) represent the total energy
demand backlog in the time slot t , and let Qmax represent be
the maximum energy backlog in the queue, in the next time
slot, the equation can be updated by

Q(t + 1) = max{Q(t)− d(t), 0} + a(t) (1)

The energy backlog is not negative, so we must use the max
function to ensure that Q(t) ≥ 0, where d(t) denote the
service energy of the end-user at t time slot and satisfies
d(t) ≤ dmax. dmax is the maximum service volume.

Note that the end-user can draw energy from three sources,
namely, the renewable energy source, the battery and the
external power grid. In summary, the following equation can
be obtained from Fig. 1.

d(t) = e(t)+ s(t)+ b(t) (2)

Initially, we assume that there was a certain amount of
charge in the battery. Let B(t) represents the charge level in
the battery at the beginning of time slot t , andBmax is recorded
as the maximum battery capacity. From a practical viewpoint,
the charge/discharge rate of the battery is limited due to the
constraints of the hardware circuit. Therefore, we use bmax to
represent the maximum charge/discharge rate of the battery.
The relevant equations of the battery are as follows:

B(t + 1) = B(t)− b(t) (3)

0 ≤ B(t) ≤ Bmax (4)

|b(t)| ≤ bmax (5)

b(t) ≤ B(t) (6)

where Eq. (3) is the updated equation of the battery. In-
equation (6) indicates that the charge/discharge amount of the
battery should be less than or equal to the current battery level.

According to the current state (the electricity price p(t),
the energy arrival e(t), the charge level of battery B(t) and the
energy demand backlogQ(t)), the EMU need decide whether
buy or sell electricity from/to the external grid, charge or
discharge the battery, and determine the corresponding elec-
tricity amount s(t), b(t) and d(t). It is worthmentioning that in
the proposed model the harvested energy can be directly used
by the end-user through the EMU rather than be stored in the
battery before be used. Thus our model effectively reduces
the number of battery charge and discharge cycles to extend
the battery lifetime.

IV. PROBLEM FORMULATION AND SOLUTION
As previously mentioned, we suppose the time-varying elec-
tricity price p(t), the harvested renewable energy e(t), and the
energy demand process a(t) that are independent and identi-
cally distributed over slots and unknown probability distribu-
tion. Our goal is to find an optimal policy {b(t), d(t), s(t)}
that maximizes the long-term averaged profit for the end-
user. We assume that the renewable energy harvested is free
(ignoring the fixed cost of renewable energy devices and the
battery). The end-user make two-way energy trading with the
external grid, when s(t) < 0, the end-user sells energy to the
grid and the profit is given by

βp(t)(s(t))− = βp(t)(d(t)− b(t)− e(t))− (7)

where (f )− 1
= max{−f , 0} is used here, β is a constant

between 0 and 1, i.e., 0 < β < 1. Because the profit of the
energy supplier and the power loss in the transmission process
are taken into account here, we stipulate that the price of the
electricity sold by the end-user at time slot t should be less
than the current the price of electricity purchased in the smart
grid, so that the price of electricity sold for the end-user is set
as βp(t).

In contrast, when s(t) > 0, the end-user purchases electric-
ity from the grid and the cost is given by

p(t)(s(t))+ = p(t)(d(t)− b(t)− e(t))+ (8)

where (f )+ 1
= max{f , 0}.

The goal is to maximize the time-averaged profit for the
end-user. Hence, the problem can be formulated as follows:

Problem One:

max
d(t),b(t)

: lim
T→∞

1
T

T∑
t=1

E
[
βp(t)(d(t)− b(t)− e(t))−

− p(t)(d(t)− b(t)− e(t))+
]

s.t. Q <∞, (2)− (6). (9)
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where Q= lim
T→∞

1
T

T∑
t=1

E{Q(t)} represents the time-averaged

expectation of the energy demand queue backlog, meaning
that the energy demand queue has a limited backlog to main-
tain the queue stable [29].

We assume C∗ as the optimal value to Problem One and
C̄ as the optimal value without the constraint (6) to Problem
One. Obviously, the optimal value is larger owing to fewer
constraints, therefore, C̄ ≥ C∗. We will show that C̄ can be
achieved by some stationary and randomized policy in the
form of a lemma. When the probability distribution process
of (p(t), e(t), a(t)) is unknown, our objective function (9) is
infinitely close to the optimal value C̄ through the Lyapunov
drift plus penalty algorithm (constant V algorithm). The
performance analysis in Section V will be proved in detail
later. As given by the following lemma, the optimal value C̄
can be obtained by a randomized, stationary control policy
that only chooses d(t), b(t) every slot purely as a (possibly
randomized) function of (p(t), e(t) and a(t). That means the
control decision is independent of the charge level in the
battery. This fact is stated as below:
Lemma 1: We assume (p(t), e(t), a(t)) are i.i.d. over the

time slot t , and their future knowledge have be given. Then, C̄
can be achieved by a stationary and randomized policy, that is,
the control action d̄(t), b̄(t) at each time slot are only function
of (p(t), e(t), a(t)). We thus get

C̄ = lim
T→∞

1
T

T∑
t=1

E
[
βp(t)

(
d̄(t)− e(t)− b̄(t)

)−
− p(t)

(
d̄(t)− e(t)− b̄(t)

)+] (10)

E{d̄(t)} = E{e(t)} + E{s(t)} + E{b̄(t)} (11)

E{d̄(t)} ≥ E{a(t)} (12)

where (12) indicates that the time average of the energy
service process should be greater than or equal to the time
average of the energy arrival process.

Proof: Similar to the proofs in the work [18], we will not
elaborate on this due to the space limitation.

V. DYNAMIC ENERGY TRADE ANALYSIS
A. DELAY-AWARE VIRTUAL QUEUE
It can be seen from the objective function (9) that the maxi-
mum delay-related information is not included in the formula.
Therefore, we introduce a method using the ‘‘virtual queue’’
technology to ensure the maximum delay time of FLs. More
specifically, we need to construct a virtual queue Z (t) and
record Zmax as the maximum energy capacity with Z (0) = 0.
In order to make Tmax controllable, we introduce a fixed
positive parameter λ that specified later, and the updated
equation for Z (t) can be define as follows:

Z (t + 1) 1= max[Z (t)− d(t)+ λ1{Q(t)>0}, 0], ∀t. (13)

Compared with (1), the virtual queue Z (t) has the same ser-
vice process d(t) as the real queue Q(t), and their difference
is the energy arrival process. Here, 1{Q(t)>0} is an indicator

function, when the real queue backlog is not zero, that is,
Q(t) > 0, its value is 1, otherwise it is 0. λ will be used as
a penalty for the virtual queue to prevent the real queue Q(t)
has not been serviced for a long time. Moreover, λ, Qmax and
Zmax together determine the value of themaximum delay time
Tmax, as shown in Lemma 2.
Lemma 2: SupposeQmax, Zmax are some positive constants

within the controllable range of the system, and any time slot
satisfiesQ(t) < Qmax, Z (t) < Zmax, then the maximum delay
time Tmax for all energy demand is

Tmax = [
(Qmax + Zmax)

λ
] (14)

Proof: See Appendix A
Before using the Lyapunov optimization method to solve

Problem One, we defined a queue X (t) instead of the battery
state change to satisfy the constraint condition (6), as follows:

X (t) = B(t)−8max − bmax (15)

where 8max is a given positive constant. The variable X (t) is
constructed based on the quadratic Lyapunov function, which
push the charge level in the battery towards a certain non-zero
value to avoid underflow and thus enable the battery to satisfy
constraint (6). According to (3), and we can get the updated
equation of X (t) as

X (t + 1) = X (t)− b(t) (16)

B. LYAPUNOV OPTIMIZATION
Our algorithm is developed based on the Lyapunov optimiza-
tion method. The advantage of this method is that we can
make our objective function (9) infinitely close to the opti-
mal solution without knowledge of the probability distribu-
tion process of (p(t), e(t), a(t)). First, we define the variable
EM (t) = (Q(t),Z (t),X (t)) as the real-time state of all queues,
and then define the Lyapunov function as follow:

L( EM (t)) 1=
1
2
[Q2(t)+ Z2(t)+ X2(t)] (17)

Second, according to the Lyapunov drift plus penalty algo-
rithm, 1

(
EM (t)

)
is defined as the Lyapunov drift part at

time slot t, but the optimization objective is to maximize
formula (9), and a negative sign should be taken at this time
as the Lyapunov penalty part. Therefore, the solution to the
previous ProblemOne can be transformed into a minimizing
Lyapunov ‘‘drift plus penalty’’ function (Problem Two).

Problem Two:

min
d(t),b(t)

: 1( EM (t))− V · E
{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+| EM (t)
}

s.t. Q <∞,Z <∞, (2)− (6). (18)

Note that V is an important trade-off parameter, and its
role is to balance the relationship between the end-user’s
profits and comfort. Finally, we can obtain the maximum
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upper bound of the Lyapunov drift-plus-penalty function by
calculation, as shown in Lemma 3.
Lemma 3: For every time slot t , the control policy is inde-

pendent EM (t), and the drift-plus-penalty function satisfies:

1
(
EM (t)

)
− V · E

{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+| EM (t)
}

≤ S + [X (t)+ Vp(t)]E{(d(t)− e(t)− b(t))+| EM (t)}

− [X (t)+ Vβp(t)]E{(d(t)− e(t)− b(t))−| EM (t)}

− [X (t)+ Q(t)+ Z (t)]E{d(t)| EM (t)}

+X (t)E{e(t)| EM (t)} (19)

where the constant S is as follow:

S =
1
2
bmax +

[d2max + a2max]
2

+
max[λ2, d2max]

2
+Qmaxamax + Zmaxλ (20)

Proof: See Appendix B

C. DYNAMIC ENERGY TRADING AND LOAD SCHEDULING
ALGORITHM
Using the fact that the decision is independent of queue state
EM (t), and excluding the irrelevant terms of the decision vari-
ables in (19).ProblemTwo can be transformed intoProblem
Three as follows:
Problem Three:

min
b(t),d(t)

: [X (t)+ Vp(t)](d(t)− e(t)− b(t))+

− [X (t)+ Vβp(t)](d(t)− e(t)− b(t))−

− [X (t) + Q(t)+ Z (t)]d(t) (21)

where Problem Three has the same constraints as Problem
Two.

It is known from (15) that the value ofX (t) may be negative
(the range of X (t) specified later in the next section), so the
values of X (t)+Vp(t), X (t)+Vβp(t), and X (t)+Q(t)+Z (t)
may also be negative. Moreover, observe that X (t)+Vp(t) >
X (t)+Vβp(t) always holds by the definitions. Thus, the solu-
tion for our proposed algorithm is comparing the relationship
among X (t)+ Vp(t), X (t)+ Vβp(t), and X (t)+Q(t)+ Z (t)
at each time slot, and making decisions based on the weight
to minimize (24) as a whole.

The energy trading and load scheduling scheme of the our
proposed algorithm is presented as follows:

When X (t) + Q(t) + Z (t) ≥ 0 is satisfied in the current
time slot, these conditions should be considered.
1). If X (t)+Vβp(t) ≥ 0, we can get B(t)−bmax ≥ 8max−

Vβp(t) according to formula (15). That means there is a lot of
power amount in the battery, or a high electricity price in the
smart grid, then we assign the maximum possible discharge
rate to b(t), that is, b(t) = bmax. At the same time, if Q(t) +
Z (t) > Vp(t), it means the queue backlog is high at this time,
then we assign themaximum possible service rate to d(t), that
is, d(t) = max(Q(t), dmax). If Vβp(t) ≤ Q(t)+Z (t) ≤ Vp(t),

it shows that a medium energy backlog in the queue, so we
choose d(t) = min(Q(t), e(t)). If Q(t)+ Z (t) < Vβp(t), that
means the queue backlog is low, then set d(t) = 0.
2). If X (t)+Vp(t) ≤ 0, then we can getQ(t)+Z (t) ≥ Vp(t)

and B(t) − bmax < 8max − Vβp(t). That means there is a
litter power amount in the battery, or a low electricity price
in the smart grid, and the queue backlog is high at this time.
Then we assign the maximum possible charging/service rate
to b(t)/d(t), that is, b(t) = −min(bmax,Bmax − B(t)), d(t) =
min(Q(t), dmax).
3). If X (t) + Vp(t) > 0 > X (t) + Vβp(t), we can

get 8max − Vp(t) < B(t) − bmax < 8max − Vβp(t).
That means there is a medium power amount in the battery,
or a medium electricity price in the smart grid.At the same
time, if Q(t) + Z (t) > Vp(t), it means the queue backlog
is high at this time, then we assign the maximum possible
service rate to d(t), that is, d(t) = min(Q(t), dmax), and set
b(t) = min(bmax,min(Bmax−B(t), d(t)− e(t))). Conversely,
if Vβp(t) ≤ Q(t)+Z (t) ≤ Vp(t), it means the queue backlog
is medium at this time, then we set d(t) = min(Q(t), e(t)),
b(t) = 0. Here we give priority to buying/selling electricity
form/to the grid rather than charging/discharging.

When X (t) + Q(t) + Z (t) < 0 is satisfied in the current
time slot, these conditions should be considered.
4). If X (t)+ Vp(t) ≤ 0, we can get B(t)− bmax ≤ 8max −

Vp(t) according to formula (15). That means there is a litter
power amount in the battery, or a low electricity price in the
smart grid, then we assign the maximum possible charging
rate to b(t), that is, b(t) = −min(bmax,Bmax − B(t)). At the
same time, ifQ(t)+Z (t) > Vp(t), it means the queue backlog
is high at this time, then we assign the maximum possible ser-
vice rate to d(t), that is, d(t) = min(Q(t), dmax). If Vβp(t) ≤
Q(t)+ Z (t) ≤ Vp(t), it shows that a medium energy backlog
in the queue, so we choose d(t) = min(Q(t), e(t)). If Q(t) +
Z (t) < Vβp(t), that means the queue backlog is low, then set
d(t) = 0.
5). If X (t) + Vβp(t) ≥ 0, then we can get B(t) − bmax ≥

8max−Vβp(t) and Q(t)+ Z (t) < Vβp(t). That means there
is a lot of power amount in the battery, or a high electricity
price in the smart grid, and the queue backlog is low at this
time. Then we set b(t) = bmax and d(t) = 0 at this time.
6). If X (t) + Vp(t) > 0 > X (t) + Vβp(t), we can

get 8max − Vp(t) < B(t) − bmax < 8max − Vβp(t).
That means there is a medium power amount in the battery,
or a medium electricity price in the smart grid. At the same
time, if Vβp(t) ≤ Q(t) + Z (t) < Vp(t), it shows that a
medium energy backlog in the queue, so we choose d(t) =
min(Q(t), e(t)), b(t) = 0. IfQ(t)+Z (t) < Vβp(t), that means
the queue backlog is low, then set d(t) = 0, b(t) = 0.
The pseudocode of the proposed dynamic energy trading

and load scheduling algorithm is illustrated in Algorithm
1. The idea of the our proposed algorithm is to minimize a
upper bound of the drift-plus-penalty function in (21). From
Algorithm 1, we can know that the control decisions only
rely on the current electricity prices, renewable generation,
and load requirements {p(t), e(t), a(t)}, and do not require
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any prior knowledge of them. They can be stochastic or non-
stochastic with arbitrary dynamics. Once the load scheduling
decision d(t) and the charging and discharging decision b(t)
are determined, according to Eq. (2), the amount of electricity
purchased/sold from/to the smart grid, i.e., s(t), can be deter-
mined. Thus, our proposed algorithm is simple to implement
and more applicable to general situations, especially when
these statistical data are difficult to predict. Moreover, the
complexity of the algorithm is linearly related to the total time
slot T , so the algorithm is particularly suitable for real-time
implementation with a computational complexity of O(T ).
Furthermore, it is necessary to distinguish the Lyapunov

optimization method proposed in this article from other
optimization methods. A comparison with DP techniques is
made here. DP can be used to solve stronger versions of
our problem (such as maximizing trade profits under delay
constraints) see e.g. [25]. Typically, DP requires more strin-
gent system modeling assumptions to program the objective
function and has a complex solution that requires knowledge
of the renewable generation, energy demand, and real-time
electricity price probabilities. However, in reality, the statis-
tics of renewable generation, energy demand, and electric-
ity price may be unknown or difficult to predict accurately.
Moreover, DP requires dealing with the computation of a
value function which is difficult to solve when the state space
of the system is large, and encounters a curse of dimensional-
ity when applied to large dimensional systems (e.g., systems
with many queues). In contrast, the Lyapunov optimization
technique does not require any prior knowledge and is rela-
tively simple to implement. It can also be easily applied to the
extended formula (the drift-plus-penalty function) with mul-
tiple queues without increasing the complexity of the scheme,
and thus does not suffer from the curse of dimensionality.
Finally, we will illustrate below a demonstrable performance
guarantee for the optimal solution of the algorithm.

D. ALGORITHM PERFORMANCE ANALYSIS
In this subsection, we set the value range of λ as being fixed
in 0 ≤ λ ≤ E{a(t)}. Below, we summarize the performance
of the dynamic energy trading and load scheduling algorithm
in the form of a theorem.
Theorem 1:Assume that at any time slot t , min(Q(t), dmax) ≥

max[amax, λ] is satisfied. Q(0) = 0,Z (0) = 0 and constant
V is fixed as 0 < V < Vmax, where

Vmax =
Bmax − amax − λ− 2∗bmax

pmax − pmin
(22)

where pmin, pmax are the minimum and maximum electricity
prices in the smart grid, respectively. The proposed algorithm
has the following properties:

(1). The maximum energy backlogs of queues Q(t) and
Z (t) are

Qmax = Vpmax + amax

Zmax = Vpmax + λ

Algorithm 1 Dynamic Energy Trading and Load
Scheduling Algorithm

1 For any time slot t do
2 Measure the system status (Q (t) ,Z (t) ,B (t) ,X (t)),
p (t) and a (t).

3 if X (t)+ Q(t)+ Z (t) ≥ 0 then
4 if X (t)+ Vβp(t) ≥ 0 then
5 b(t) = bmax.
6 if Q(t)+ Z (t) > Vp(t) then
7 d(t) = min(Q(t), dmax).
8 else if Vβp(t) ≤ Q(t)+ Z (t) ≤ Vp(t) then
9 d(t) = min(Q(t), e(t)).

10 else
11 d(t) = 0.

12 end if

13 else if X (t)+ Vp(t) ≤ 0 then
14 b(t) = −min(bmax,Bmax − B(t)).
15 d(t) = min(Q(t), dmax).

16 else
17 if Q(t)+ Z (t) ≥ Vp(t) then
18 d(t) = min(Q(t), dmax).
19 b(t) = min(bmax,min(Bmax − B(t),
20 d(t)− e(t))).

21 else
22 d(t) = min(Q(t), e(t)), b(t) = 0.

23 end if

24 end if

25 else
26 if X (t)+ Vp(t) < 0 then
27 b(t) = −min(bmax,Bmax − B(t)).
28 if Q(t)+ Z (t) ≥ Vp(t) then
29 d(t) = min(Q(t), dmax).
30 else if Vβp(t) ≤ Q(t)+ Z (t) ≤ Vp(t) then
31 d(t) = min(Q(t), e(t)).

32 else
33 d(t) = 0.

34 end if

35 else if X (t)+ Vβp(t) ≥ 0 then
36 b(t) = bmax, d(t) = 0.

37 else
38 if Q(t)+ Z (t) < βVp(t) then
39 d(t) = 0, b(t) = 0.

40 else
41 d(t) = min(Q(t), e(t)), b(t) = 0.

42 end if

43 end if
44 Compute s(t) using Eqs. (2) and update Q(t), Z (t), X (t)

according to Eqs. (1), (13), (16), respectively.
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and the upper bound of Q(t)+ Z (t) is given by

[Q(t)+ Z (t)]max = 8max = Vpmax + amax + λ

(2). The maximum delay time for the energy request at time
slot t is

Tmax = [
2Vpmax + amax + λ

λ
]

(3). The battery level B(t) is bounded at any time slot t and
satisfies

0 ≤ B(t) ≤ 8max + 2bmax, ∀t.

(4). The upper bound of X (t) at any time slot t is

−8max − bmax ≤ X (t) ≤ bmax, ∀t.

(5). The time-average expected profit under our algorithm is
within bound S

V of the optimal value, i.e.,

lim
T→∞

1
T

T∑
t=1

E
[
βp(t)(d(t)− b(t)− e(t))−

− p(t)(d(t)− b(t)− e(t))+
]
≥ C∗ −

S
V

(23)

Proof: See Appendix C
As mentioned above, we provide some constraints on the

design of the algorithm and provide the theoretical proves for
them. Note that, the property (5) provides the performance
gap between the long-term time-averaged profits of our pro-
posed algorithm and the optimal solution which has full the
future values or statistical knowledge. From Eq. (23), it can
be seen that our algorithm becomes asymptotically equivalent
to the optimal solution as V →∞ (i.e., Tmax→∞ and
Bmax→∞). The following section includes some simulation
results to verify the validity of our algorithm.

VI. SIMULATION RESULTS
From the previous analysis, it can be seen that the proposed
algorithm is not affected by the probability distributions of
RESs, loads, and electricity price. To demonstrate the simula-
tion results, we assume that they follow specific distributions.
The time-varying electricity price in the smart grid fluctuates
between 0.07 $/kWh and 0.29 $/kWh with two peaks in a
day. The interval of the time is 1 min, which is a reasonable
response time for the smart grid to balance the power genera-
tion and load. Simulation results are conducted with different
values of parameters V , Bmax, e(t) and λ. This work considers
the case of 30 days per month (43200 time slots). Without
loss of generality, the daily trend of electricity prices is a
repetition of the first day electricity price model. Considering
that the average monthly power consumption of an ordinary
household of users is 360 kWh, and referring to the capacity
range of rechargeable batteries available in the market.We fix
the parameters bmax = 3.8 kWh, dmax = 2.5 kWh, and
β = 0.8. Parameter settings are added in Table 2 below.

TABLE 2. Simulation parameter setting.

In order to better evaluate the performance of the proposed
algorithm (ETLSA for short), we compare the perfor-
mance with existing solutions that consider energy trad-
ing or demand scheduling, such as Zhou et al. [19] and
Qiao et al. [20]. The algorithms in [19], [20] both achieve
near-optimal performance in experiments if the future sta-
tistical characteristics (energy arrivals, electricity prices, and
supply of renewable energy) are known. In such a scenario,
the model in [19] only allows the user to satisfy the energy
demand during the service deadline without storing surplus
RESs for future use or discharging power to the grid to make
a profit. Thus, the algorithm in [19] does not consider the
control decisions of the energy storage device. In contrast,
the authors in [20] consider charging surplus RESs into the
energy storage device and discharging it for use during the
high electricity prices. But the electricity purchased from
the grid can only be used to serve the load demand of
the end-user and cannot be charged into the energy storage
device, which reduces the profitability of the end-user and the
efficiency in the usage of the energy storage device. How-
ever, in our proposed algorithm, ETLSA, we fully exploit
the flexibility on the demand side and make real-time deci-
sions (the demand scheduling decision d(t), the charging and
discharging decision b(t), and the trading decision s(t)) in
response to different system states — the real-time electricity
price p(t), the charge level of the battery B(t) and the energy
demand queue backlog Q(t), as discussed in Section V-C.
Next, we provide simulation results to validate our theoretical
analysis.

Before the comparison, we fix Bmax = 35 kWh, and set
V = Vmax ≈ 1100 subject to the calculation form (22). The
30-day cumulative profit comparison of the end-user based on
the three algorithms under the three different cases of average
amount of energy harvested, where the three cases correspond
to eav being 0.85 kWh, 0.55 kWh, and 0.25 kWh respec-
tively, as shown in Fig. 2. Due to more renewable energy
is available in case 1, which results in higher profits than
the other two cases. Moreover, detailed simulation results are
statistically presented in Table 3, we can see that no matter
under which case, our proposed algorithm can achieve the
best performance among the three strategies.The reason is
that the battery not only can store excess RESs but can also
purchase low prices of electricity from the grid to be used
when electricity prices are high.

In order to evaluate the impact of battery capacity on
the proposed algorithm, Fig. 3 shows the user’s profits with
battery capacities Bmax = {0, 15, 35, 55, 75, 95} kWh
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TABLE 3. Comparison of the total profit in different scenarios.

FIGURE 2. Histograms of the profits of the three algorithms in different
cases.

FIGURE 3. Impact of different battery capacities on the profit.

respectively. Form the Fig. 3, the larger the battery capacity,
the higher is the end-user’s profit. The profiting comes from
two aspects: one is by storing more renewable energy gener-
ated for use at later time when the electricity price is high;
the other is by charging the battery from the external grid
when the electricity price is lowwhile discharging it when the
electricity price is high. However, the end-user’s profit does
not increase linearly with the increase in battery capacity.
This is because the maximum battery charging rate bmax is
limited. In addition, the larger the capacity of the battery, the
higher is the cost of the battery. Thus, the end-user should
thus choose a compromise based on the cost of the battery
and the profits it entails.

Next, The total profit (at the end of 30 days) of the end-user
and the state of charge level B(t) in the battery are analyzed

FIGURE 4. Monthly profit versus the value of V .

by comparing different values of V (fix Bmax = 35 kWh).
This can be observed in Fig. 4, the total profit increases non-
linearly with the value of V within a certain range. The reason
is that the total profit will approach the optimal solution
infinitely as the value of V increases from inequality (23).
Besides, the profit will decrease when the value of V exceeds
a certain value (V ≈ 1400). However, according to equation
(22), we can calculate Vmax ≈ 1100 instead of 1400. The
reason can be found in Fig. 5. The real-time energy of the
battery for different values of V (10th day) as shown in Fig.
5. From the Fig. 5, the overall level of energy in the battery
is low when V = 400, which leaves most of the capacity
space of the battery vacant, so that the most of the battery’s
capacity is not fully utilized which leads to a lower total
profit. In contrast, the total profit is highest (see Fig. 4) and the
battery reaches full state in some time slots when V = 1400.
Further, when the value of V is too large (V = 2000),
it leads to a reduction in the number of battery discharge,
and the amount of charging the battery is constrained by the
maximum capacity of the battery, thus decreasing the total
profit. Therefore, here we consider preventing the battery full
load, so equation (22) is relatively conservative. Our proposed
algorithm chooses V = 1100 when Bmax = 35 kWh, which
is a reasonable value for the battery to balance the power
storage.

In order to easily observe the delay caused by the proposed
algorithm in the case of energy demands, Fig. 6 shows a
distribution map of the waiting time delay of the energy
demand based on the proposed algorithm and a naive scheme
(Purchase-at-deadline algorithm) for a duration of 30 days
as well as a comparison chart of end-user’s profits. The
Purchase-at-deadline algorithm means that the end-user only
draw energy from the renewable sources within given dead-
line, and does not draw energy from the power grid even if the
energy harvested cannot meet the demand until any demand
delay exceed the deadline. The maximum delay time is set
at 25 time slots (i.e., 25 minutes) to ensure end-user comfort.
The end-user revenue using the proposed algorithm is clearly
superior to that of the ‘‘Purchase-at-deadline’’ algorithm as
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FIGURE 5. The charge level in the battery changes for different values
of V .

FIGURE 6. Comparison of fraction of end-user waiting time in the energy
demand queue and total profit in different scenarios (maximum delay
time is 25 min).

shown in Fig. 6. We can obtain the mean delay time of the
energy demand for the user using the proposed algorithm as
14.23 time slots, while that of the ‘‘Purchase-at-deadline’’
algorithm as 22.85 time slots. Therefore, our proposed algo-
rithm can reduce the mean delay time for energy demands by
37% on average.

As mentioned before, the mean delay time is used as an
important indicator to ensure the comfort of the end-user.
In our proposed algorithm, V as a controllable parameter is
used to maximize the tradeoff between the total profit and
comfort. We have plotted figures showing the relationship
between the total profit and the value of V and the rela-
tionship between the mean delay time and the value of V
(Fig. 7). From Fig. 7, it can be seen that the mean delay
time increases as V increases, while the total profit increases
and then decreases with the value of V . Moreover, the total
profit and mean delay time finally reach saturation when the
value of V is larger than a certain value. From the result we
can see that the trade-off between total profit and comfort is
maximized when V ≈ 1100. The reason is that V ≈ 1100
is a reasonable range that achieves a low mean delay time

FIGURE 7. Total profit and mean delay time vs. the value of V .

FIGURE 8. Total profit and mean delay time vs. the value of λ.

to satisfy the end-user’s comfort while ensuring that the total
profit is close to the optimal value obtained by our proposed
algorithm.

Similarly, we can observe that the mean delay time
decreases non-linearly with the value of λ, while the total
profit increases to a certain value and then decreases with
the value of λ (Fig. 8). When the value of λ is greater than
a certain value, the total profit and the mean delay time
are eventually saturated. It is not difficult to see that the
appropriate value of λ should be distributed within the range
[29, 30].

VII. CONCLUSION
This work focuses on the problem of energy trading and
load scheduling for an end-user equipped with renewable
generators and a battery in the smart grid. We assume that the
dynamics of RESs, loads, and electricity prices are arbitrary
or non-stationary and their statistics are unknown to fit the
actual situation. The aim is to design an real-time solution
for the end-user to maximize profits over a finite time period
while satisfying the FLs delay constraint. As a result, a
low-complexity dynamic energy trading and load scheduling
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algorithm (ETLSA) is proposed based on the Lyapunov opti-
mization. The algorithm has a bounded performance guar-
antee from an optimal solution which has complete future
information and is asymptotically equivalent to the optimal
solution as the battery capacity or the delay time of the FL
tends to infinity. Simulation results have demonstrated the
proposed algorithm is superior to other algorithms. Further-
more, we also analyze the impact of battery capacity on the
performance of the algorithm to provide a theoretical basis
for the end-user to determine battery capacity, and maximize
the tradeoff between total profit and comfort for the end-user.

APPENDIX A
PROOF OF LEMMA 2
Proof: We use proof by contradiction to prove Lemma 2.

Consider that the energy demand a(t) > 0 is satisfied at any
time slot t and requires that the service be completed at or
before time slot t + Tmax. Suppose not, then it must satisfy
Q(τ ) > 0 during the slot τ ∈ {t+1, . . . , t+Tmax}, otherwise
the energy demand a(t) will complete the service before
the time slot t + Tmax. Therefore, according to the updated
equation (13), at all time slots τ ∈ {t + 1, . . . , t + Tmax}, and
we get

Z (t + 1) ≥ Z (t)− d(t)+ λ

Taking the sum at interval τ ∈ {t + 1, . . . , t + Tmax} for
the above formula, we obtain

Z (t + Tmax + 1)− Z (t + 1) ≥ −
t+Tmax∑
τ=t+1

d(τ )+ Tmaxλ

Since, Z (t+Tmax+1) < Zmax, Z (t+1) > 0, so rearranging
the terms yields

t+Tmax∑
τ=t+1

d(τ ) ≥ Tmaxλ− Zmax

If the energy demand a(t) completes the service at or before
time slot t + Tmax, then at least Qmax are served to the user

during time slot τ ∈ {t + 1, . . . , t + Tmax}, i.e.,
t+Tmax∑
τ=t+1

d(τ ) ≥

Qmax. However, we assume that at time slot t + Tmax, the
energy demand has not been serviced, then there must be
t+Tmax∑
τ=t+1

d(τ ) < Qmax, which must be accounted in the above

formula, and the shifted term is given as

Tmax < (Qmax + Zmax)/λ

which contradicts (14), therefore, Lemma 2 holds.

APPENDIX B
PROOF OF LEMMA 3
Proof: Since 1

(
EM (t)

)
= E

{
L( EM (t + 1))−L( EM (t))| EM (t)

}
,

and according to (17), calculate from the real queueQ(t) first.
According to (1)

Q2(t + 1)

= [max[Q(t)− d(t), 0]+ a(t)]2

≤ Q2(t)+ amax + dmax + 2Qmaxamax − 2Q(t)d(t)

then we can get

1
2

[
Q2(t + 1)− Q2(t)

]
≤

[d2max + a2max]
2

+ Qmaxamax − Q(t)d(t)

Second, from the update

1
2

[
X2(t + 1)− X2(t)

]
=

1
2
[X (t)− b(t)]2 −

1
2
X2(t)

=
b2(t)
2
− X (t)b(t) ≤

1
2
bmax − X (t)b(t)

Finally, for the virtual queue Z (t), we have

Z2(t + 1) ≤ [Z (t)− d(t)+ λ]2

≤ Z2(t)+max(λ2, dmax)+ 2Zmaxλ− 2Z (t)d(t)

and therefore

1
2

[
Z2(t + 1)− Z2(t)

]
≤

max[λ2max, d2max]
2
+Zmaxλ− Z (t)d(t)

Summing the drift maximum boundary values of the three
queues, we can get that the sum of all the constant terms
is S, and the Lyapunov drift-plus-penalty function can be
transformed into

1
(
EM (t)

)
− V · E

{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+| EM (t)
}

≤ S − V · E
{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+| EM (t)
}

+X (t)E{b(t)| EM (t)} − [Q(t)+ Z (t)]E
{
d(t)| EM (t)

}
(24)

Due to the fact that d(t) and b(t) are independent of queue
state EM (t), so the last two terms in the right-hand side of (24)
can be further simplified according to (2) as

−X (t)b(t)− [Q(t)+ Z (t)]d(t)

= −X (t)b(t)− [Q(t)+ Z (t)][e(t)+ b(t)+ s(t)]

= −[X (t)+ Q(t)+ Z (t)]b(t)− [Q(t)+ Z (t)]e(t)

− [Q(t)+ Z (t)]s(t) (25)

Because

s(t) = d(t)− b(t)− e(t)

= (d(t)− e(t)− b(t))+ − (d(t)− e(t)− b(t))−

− b(t) = [d(t)− b(t)− e(t)− (d(t)− e(t))]

= (d(t)− e(t)− b(t))+ − (d(t)− e(t)− b(t))−

− (d(t)− e(t))
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where f = f + − f − is used. Taking the above two equalities
into (22), we can get

−X (t)b(t)− [Q(t)+ Z (t)]d(t)

= X (t)
[
(d(t)− e(t)− b(t))+ − (d(t)− e(t)− b(t))−

]
− [X (t)+ Q(t)+ Z (t)]d(t)+ X (t)e(t) (26)

Inserting (26) into (24), the Lyapunov drift-plus-penalty
function can be obtained as

1
(
EM (t)

)
− V · E

{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+| EM (t)
}

≤ S + [X (t)+ Vp(t)]E{(d(t)− e(t)− b(t))+| EM (t)}

− [X (t)+ Vβp(t)]E{(d(t)− e(t)− b(t))−| EM (t)}

− [X (t)+ Q(t)+ Z (t)]E{d(t)| EM (t)}

+X (t)E{e(t)| EM (t)}

Similar to (19), hence, Lemma 3 has been proven.

APPENDIX C
PROOF OF THEOREM 1
Proof: (1). First, we need to prove Q(t) ≤ Qmax for every

time slot t by using the induction method.
Obviously,Q(0) < Qmax, now, supposeQ(t) ≤ Qmax holds

at time slot t , we only need to prove that Q(t + 1) ≤ Qmax
also holds at time slot t + 1. From the updated equation
(1), when Q(t) ≤ Vpmax, at ime slot t + 1, the maximum
energy demand is amax, then Q(t + 1) ≤ Vpmax + amax.
In contrast, when Vpmax < Q(t) ≤ Vpmax + amax, our
proposed will choose d(t) = min(Q(t), dmax). Because of
the previous assumption min(Q(t), dmax) ≥ max[amax, λ],
the energy service rate of the real queue Q(t) is greater than
the maximum energy demand arrival rate during time slot t .
Then, Q(t+1) < Q(t) ≤ Vpmax+amax holds at the time slot
t + 1. Therefore, we have proved Q(t) ≤ Vpmax + amax.

Second, we prove Z (t) ≤ Zmax for every time slot t .
Obviously, Z (0) < Zmax. now suppose that Z (t) ≤ Zmax

holds at time slot t , we only need to prove that Z (t+1) ≤ Zmax
also holds at time slot t + 1. From the updated equation (14),
when Z (t) ≤ Vpmax, then the maximum amount of penalty
arrival is λ at time slot t + 1. Hence, Z (t + 1) ≤ Vpmax + λ

is satisfied during time slot t + 1. In contrast, when Vpmax <

Z (t) ≤ Vpmax + λ, our proposed algorithm will choose
d(t) = min(Q(t), dmax). Because of the previous assumption
min(Q(t), dmax) > max[amax, λ], the energy service rate of
the virtual queue Z (t) is greater than the maximum amount
of penalty arrival rate at time slot t . Then, Z (t + 1) < Z (t) ≤
Vpmax+ λ holds at the time slot t + 1. Thus, we have proved
Z (t) ≤ Vpmax + λ.

Finally, we prove Q(t) + Z (t) ≤ 8max for every time slot
t .
Obviously, Q(t)+Z (t) ≤ 8max. Now, suppose that Q(t)+

Z (t) ≤ 8max holds at time slot t , we only need to prove that
Q(t+1)+Z (t+1) ≤ 8max also holds at time slot t+1. From
the updated equation (1) and (14), whenQ(t)+Z (t) ≤ Vpmax,

the maximum increase is amax+λ during the time slot t , so we
haveQ(t+1)+Z (t+1) ≤ Vpmax+amax+λ. When Vpmax <

Q(t)+Z (t) ≤ Vpmax+amax+λ, our proposed algorithm will
choose d(t) = min(Q(t), dmax). According to the previous
analysis, Q(t + 1) and Z (t + 1) will not increase in the t + 1
slot, andQ(t+1)+Z (t+1) < Vpmax+amax+λ holds at the
time slot t + 1. Therefore, Q(t)+ Z (t) ≤ Vpmax + amax + λ

holds. In summary, we have proved property (1).
(2). By substitutingQmax and Zmax in property (1) into (14),

we can verify that property (2) holds.
(3). The following are used for prove by induction. Accord-

ing to formula (20), X (0) = B(0) − 2max − bmax. Since
X (0) = 0, so B(0) = 8max + bmax. Obviously, we can
get B(0) < 8max + 2bmax, suppose B(t) ≤ 8max + 2bmax
holds at time slot t , then we only need to prove the fact that
B(t+1) ≤ 8max+2bmax holds at time slot t+1.When B(t) ≤
8max + bmax, the maximum increase charge in the battery is
bmax during t+1 time slot, that is, B(t+1) ≤ 8max+2bmax.
When 8max + bmax < B(t) ≤ 8max + 2bmax, our proposed
algorithm will choose b(t) = bmax. This means that the
battery is discharging at the maximum rate, so B(t + 1) <
B(t) ≤ 8max + 2bmax during time slot t + 1. Therefore,
B(t) ≤ 8max + bmax holds for every time slot t , we have
proved property (3).

(4). According to (15) and property (3), it can be verified
that property (4) holds.

(5). From the previous analysis, the goal of the our pro-
posed algorithm is to greedily minimize a upper bound of
the drift-plus-penalty function in (19). Comparing the policy
in Lemma 1, we know that the dynamic energy trading
and management algorithm is too greedy to maximize the
objective function (9). Therefore, we obtain the following
formula.

S + [X (t)+ Vp(t)]E{(d(t)− e(t)− b(t))+| EM (t)}

− [X (t)+ Vβp(t)]E{(d(t)− e(t)− b(t))−| EM (t)}

− [X (t)+ Q(t)+ Z (t)]E{d(t)| EM (t)}

+X (t)E{e(t)| EM (t)}

≤ S + [X (t)+ Vp(t)]E{(d̄(t)− e(t)− b̄(t))+| EM (t)}

− [X (t)+ Vβp(t)]E{
(
d̄(t)− e(t)− b̄(t)

)−
| EM (t)}

− [X (t)+ Q(t)+ Z (t)]E{d̄(t)| EM (t)}

+X (t)E{e(t)| EM (t)}

Thus, according to the proof process of Lemma 3,we have

1
(
EM (t)

)
− V · E

{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+| EM (t)
}

≤ S − V · E
{
βp(t)

(
d̄(t)− e(t)− b̄(t)

)−
− p(t)

(
d̄(t)− e(t)− b̄(t)

)+
| EM (t)

}
+X (t)E{b̄(t)| EM (t)} − [Q(t)+ Z (t)]E{d̄(t)| EM (t)} (27)

Since d(t), b(t), a(t) and e(t) are independent of EM (t), and
based on the fact that E[E[X |Y ]] = E[X ],∀X ,Y , by tak-
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ing expectations on both side of (27) and summation from
t = 0→ T , we obtain

E[ EM (T + 1)− EM (0)]

−

T∑
t=0

VE
{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+
}

≤ ST −
T∑
t=0

VE
{
βp(t)

(
d̄(t)− e(t)− b̄(t)

)−
− p(t)

(
d̄(t)− e(t)− b̄(t)

)+}
−

T∑
t=0

X (t)E{b̄(t)}

−

T∑
t=0

[Q(t)+ Z (t)]E
{
d̄(t)

}
(28)

Because EM (0) = 0, dividing by VT and taking the T →∞
on the both sides of (28), we get

− lim
T→∞

1
T

T∑
t=0

E
{
βp(t)(d(t)− e(t)− b(t))−

− p(t)(d(t)− e(t)− b(t))+
}
≥

S
V
− C̄ (29)

where the conditions have been used

lim
T→∞

1
T

T∑
t=0

X (t)E{b̄(t)} = 0

lim
T→∞

1
T

T∑
t=0

[Q(t)+ Z (t)]E
{
d̄(t)

}
= 0

Finally, rearranging the (29) and using C̄ ≥ C∗1 , we obtain

lim
T→∞

1
T

T∑
t=1

E
[
βp(t)(d(t)− b(t)− e(t))−

− p(t)(d(t)− b(t)− e(t))+
]
≥ C̄ −

S
V
≥ C∗1 −

S
V

(30)

Therefore, we have proved property (5) in Theorem 1. In
summary, the performance analysis has been fully proven.
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