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ABSTRACT The analysis of EEG signal is a relevant problem in health informatics, and its development
can help in detection of epileptic’s seizures. The diagnosis is based on classification of EEG signal. Different
methods and algorithms for classification of EEG signals with an accepted level of reliability and accuracy
have been developed over years. All these methods have two steps that are signal preprocessing and
classification. The goal of the preprocessing step is removing noise and reduction of the initial signal
dimensionality. The signal dimensionality reduction is required by classification methods, but its result is a
loss of small information before the classification. In this paper, an approach for EEG signal classification
that takes this loss of information into account is considered. The novelty of the considered approach is
usage of fuzzy classifier in the classification step. This classifier allows taking uncertainty of initial data
into account, which is caused by loss of some information during dimensionality reduction of initial signal.
However, application of fuzzy classifier needs modification of the preprocessing step because it requires
data in fuzzy form. Therefore, fuzzification procedure is added to the preprocessing step. In this paper,
Fuzzy Decision Tree (FDT) is used as the fuzzy classifier for the epileptic’s seizure detection. Its application
allows achieving 99.5% accuracy of the classification of epileptic’s seizure. The comparison with other
studies shows that FDT is very effective for task of epileptic’s seizure detection.

INDEX TERMS Classification algorithms, decision tree, encephalography, electroencephalogram signal

fuzzy classifier, fuzzy decision tree, fuzzy logic, signal analysis, signal classification.

I. INTRODUCTION
Applications of Electroencephalogram (EEG) signal in dif-
ferent areas have been intensively developed in last time.
The most dynamically developed areas are human-computer
interaction studied in [1], [2] and medicine [3] - [8].
In medicine, the EEG signal analysis is used in epilepsy
diagnosis [3], [6], [7], depression [4], stress [5], and other
diagnoses [8]. The diagnostics of epilepsy is based mostly on
analysis of EEG signal.

Epilepsy is considered as one of the most common chronic
neurological disorders [9]. The observable epileptic symptom
is recurrent unprovoked seizures which usually occur without
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warning and that can affect any part of the body [10]. These
seizures are consequences of the brain activity that can be
characterized by the unexpected and sudden electrical distur-
bance of brain and excessive neuronal discharge. This activity
is recorded using the EEG [11], therefore, the analysis of
EEG signal is one of the most important tools in neurology
diagnostics [3], [7], [12].

The electrical activity of the brain is recorded using elec-
trodes placed on the top of the head in the form of EEG
signals [10], [11]. The analysis of EEG signal is implemented
based on curves that are graphical interpretation of captured
signals. The visual evaluation of these curves allows doctors
to diagnose neural disorder [12]. This visual evaluation can be
insufficient, especially in case of not-trained physicians. So,
the development of algorithms for automatic and supported
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FIGURE 1. Randomly selected signals from each subset of dataset [12].

analysis of EEG signals is a relevant problem. These algo-
rithms have to include extraction and analysis of information
from the recorded EEG signal that is used in prediction or
classification of brain state. In this paper, the EEG signal
analysis in detection of epileptic seizures is considered as one
of problems in EEG signal analysis.

The development of classification methods is based often
on data mining approaches. Data mining-based methods for
signal classification are developed based on real collected
data. Therefore, data captured by EEG recording devices
should be used in such a research. In this paper, we use one
of the well-known and often used datasets introduced in [12].
The dataset consists of 500 samples (records) of EEG signals.
Each sample represents record of EEG signal with duration
of 23.6 seconds. The samples are divided into five subsets (A,
B, C, D, and E) of the same size, which means that each of
these subsets contains 100 samples of records of EEG sig-
nals. Subsets A and B contain measurements recorded from
persons who do not suffer from epilepsy. In case of subset
A, patients had eyes open during recording while, in case of
subset B, patients had closed eyes. Whether the eyes are open
or closed affects the electrical activity of the brain according
to [12]. Samples in subsets C, D, and E were recorded from
persons suffered from epilepsy. EEG of patients in subsets C
and D were recorded during seizure-free intervals, while EEG
signals of patients in subset E were measured during seizure
activity only. Samples in subset D were recorded from within
the epileptogenic zone, and those in subset C were obtained
from the hippocampal formation of the opposite hemisphere
of the brain. Examples of samples from these subsets are
shown in Fig. 1.

It can be observed from Fig. 1 that signals in A and E
are different from signals in B, C, and D. Nevertheless, only
visual inspection can be insufficient to recognize healthy
(A, B) and epileptic EEG segments (C, D, E). The most
significant similarity between this group is oblivious in case
of samples from B, C, and D. The samples are very similar
to each other and the use of visual inspection only can lead
to a failure in diagnostic (patient suffering from epilepsy is
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diagnosed as healthy). This example shows that the devel-
opment of approach for automatic EEG signal analysis can
be useful in diagnostics because it allows deciding whether
a person has epilepsy without the occurrence of epileptic
seizure. Investigation of automatic EEG signal is thus useful
in the development of decision support systems for early
diagnosis of epilepsy [11], [13], [14].

Data mining methods for signal classification, and EEG
signal in particular, include two steps [14]. The first of them
is signal preprocessing and the second is classification itself.
Typical classifiers used in the second step need numerical
attributes for the classification, but EEG signal is represented
as a function of time which cannot be directly classified.
Therefore, this signal should be transformed into samples
of numerical attributes in the step of signal preprocess-
ing [15]-[17], which is also known as the step of the prelimi-
nary transformation. EEG signal is preprocessed to remove
noise and extract useful information needed for the next
step of classification. The signal preprocessing consists of
two procedures that are feature extraction and dimensionality
reduction. According to investigations in [7], [17], and [18],
the preliminary transformation or signal preprocessing step
has a significant influence on the result of the classification.

The feature extraction of signal is usually implemented
by wavelet [19], [20] or spectral transforms [21], [22]. The
result of the feature extraction is a matrix of the signal
features, which has typically large dimensionality. This a
reason for the second procedure of the preprocessing, which
is dimensionality reduction. The dimensionality reduction
usually transforms data matrix to a matrix of significantly
smaller dimension. Comparison of three basic techniques of
dimensionality reduction in EEG signal preprocessing can
be found in [23]. These techniques are Linear Discriminant
Analysis (LDA), Principal Component Analysis (PCA) and
Independent Component Analysis (ICA).

The output of the first step is a set of numerical attributes
that are used in the classification step. Existing studies of
EEG signal classification focus on various classifiers, such
as Support Vector Machine (SVM) [23], [24], k-nearest
neighbor (kNN) [25], decision tree [15], [21], or neural
networks [14], [26]. Special approaches based on evolu-
tion methods and clustering analysis have been consid-
ered for EEG signal classification in [25], [27]. However,
the researches in [21]-[27] have shown that the accuracy of
EEG signal classification depends not only on the used type
of classifier but also on the procedures used in the step of the
signal preprocessing.

According to investigation performed in [28] and [29], pro-
cedures of the feature extraction and dimensionality reduction
result in a loss of some information in the step of the prelimi-
nary transformation. From point of view of data mining meth-
ods, this information loss can be interpreted as uncertainty of
the data used for classification. The efficient classification of
uncertain data requires application of fuzzy classifiers [15],
[30]. These classifiers consider membership of instance to all
possible classes. In [31], [32], and [33], it has been shown that
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the application of fuzzy data allows increasing the accuracy
of classification for uncertain data.

Several approaches of EEG signal classification in which
the feature extraction, feature selection or dimensionality
reduction procedures are developed based on fuzzy logic
background have been proposed. The fuzzy entropy-based
procedures have been used in the signal preprocessing step
in researches [7], [34], and [35]. In other investigations, such
as [36], [37], and [38], combined or join classification have
been proposed. In these studies, fuzzy-based classifier and
classifier of crisp data are used together. The modification
of the classification step in these studies is related to the
investigated data and decided problem. Therefore the change
of procedures of signal preprocessing influences the classi-
fication accuracy. The application of proposed methods in
[36], [37], and [38] can be for considered problem only.
This restricts their application in other similar problems. The
surveys of EEG signal classification in [39], [40], and [41]
have not highlighted formalized approach of EEG signal
classification based on fuzzy classifiers. Therefore, in this
paper, we want to develop and propose new approaches for
EEG signal classification with the use of fuzzy classifiers.
This work is influenced our previous work [15], in which
we have investigated fuzzy-based approach for classification
of specific signals. In this paper, we propose adaptation of
that approach for EEG signal classification and consider the
application of fuzzy classifier for EEG signal analysis in
epileptic’s seizures detection. Application of fuzzy classifier
calls for the transformation of the data after the signal prepro-
cessing into fuzzy data. Therefore, the signal preprocessing
step should be modified and one more procedure should be
added into it. This procedure is fuzzification. So, the main
novelty of this paper lies in the usage of fuzzy data to
reduce the influence of uncertainty of the data obtained after
the signal preprocessing and in the use of fuzzy classifier.
In particular, we consider Fuzzy Decision Tree (FDT), which
is inducted based on Cumulative Mutual Information (CMI)
[42], [43].

This paper is structured as follows. Section II discusses the
specifics of the proposed approach that includes two steps.
These steps are signal preprocessing and fuzzy classification
based on FDT. The principal steps of the signal preprocessing
in the proposed approach are described in section III, which
deals with the feature extraction for improving the quality of
the signal classification, with the dimensionality reduction of
the data resulting in a set of attributes used in the classifi-
cation, and with fuzzification of the attributes. The detailed
process of FDT induction for the classification, including
basic rules and mathematical background of this process,
is presented in section IV. The examination and comparison
of the proposed approach for prediction of epileptic’s seizures
is shown in section V.

Il. DESIGN OF APPROACH
The analysis of EEG signal in diagnosis of neural disorder is
implemented based on the procedure of classification of this
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type of signals [3], [7], [42]. Typically, signal classification
includes two steps [18], [44]: preprocessing of initial signal
and classification of data formed after the preprocessing. The
step of preprocessing consists of two procedures (the feature
extraction and dimensionality reduction) that transform initial
signal into a set of data, which is interpreted as attributes of
samples in the step of classification.

The feature extraction in signal classification is needed
to remove noise and extract significant features as useful
information for signal analysis in the next step. According
to surveys of procedures of feature extraction performed in
[21] and [39], the most used ones are spectral transforms,
such as the Fourier, Wavelet and Welch transforms. Results
of these transforms are specific properties (attributes) of the
analyzed signal. However, dimension of these attributes is
large for direct application of classification and has to be
reduced by special methods as PCA, ICA, and LDA [23],
[45]. So, the final output of EEG signal preprocessing step is
a set of numerical data. Elements of this set are interpreted as
classification attributes and can be used for the classification.

The classification itself is implemented in the second step
of EEG signal analysis [40]. For signal classification, in par-
ticular EEG signal classification, the most commonly used
classifiers are SVM [23], [24], [34], kNN [25], [46], Neural
Networks [7], [14], [26], [47], Decision Trees [15], [21] and
Naive Bayes Classifier [48].

According to reviews in [21] and [40], accuracy of signal
classification does not result only from classifier types but
depends also on the data used in the classification, which
are obtained as a result of the preprocessing step. Specific
of this data is a loss of some information stored in the signal,
which is caused by selection of some attributes in the spectral
transform and ignoring the less informative attributes within
the procedure of dimensionality reduction [28], [29]. This
information loss leads into the uncertainty of data formed
after the preprocessing step and used as the input for the
step of classification. This uncertainty should be considered
and incorporated into the methods and approaches for signal
classification. Authors of [40] have shown that the accu-
racy of signal classification can be improved using fuzzy
classifiers. However, the data obtained after the preliminary
transformation is crisp regardless of application of fuzzy-
based procedures in feature extraction [35] or dimensionality
reduction [49]. In [7], [34], and [35], the preprocessing of
EEG signal has been implemented based on fuzzy entropy.
Other fuzzy-based techniques for EEG signal analysis have
been described in [50] and [51]. Results of all considered
transforms of EEG signal are sets of crisp data, which requires
use of crisp classifiers in the classification. There are also
several methods for EEG signal classification in which the
classification has been implemented based on fuzzy classi-
fier in combination with crisp classifier. Their examples can
be found in [36], [37], or [38], but the formalized fuzzy-
based approach for EEG signal classification has not been
proposed. If the data (classification attributes) obtained after
the preprocessing step are fuzzy, then fuzzy classifier can be
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FIGURE 2. The principal steps of the proposed algorithm for EEG signal
classification.

used without any complications. One of the possible ways
to transform the numeric and crisp data after the preliminary
transformation of EEG signal to fuzzy data is introduction of
fuzzification as an additional procedure in the preprocessing
step. Such a modification used in signal classification method
allows increasing the accuracy of classification [42].

In this paper, we propose to modify the approach for EEG
signal classification (Fig. 2) by (a) the use of fuzzy classifier
in the step of signal classification and by (b) the introduction
of new procedure of the fuzzification in the step of signal
preprocessing. This modification allows developing fuzzy-
based approach for EEG signal classification. This approach
can be used not only in detection of epileptic’s seizures but
also in other EEG-based classification problems [1] — [8].

The approach depicted in Fig. 2 assumes the application of
Fuzzy C-Means (FCM) algorithm [52], [53] as the additional
procedure in the step of EEG signal preprocessing and Fuzzy
Decision Tree (FDT) as the fuzzy classifier used in the step
of EEG Signal Classification. An FDT is a tool used for
decision support represented by a set of decision choices in
the graphical form of a tree. In the task of classification,
its purpose is to predict the value of a target variable (the
output) from the value of several input attributes. In case of
the FDT, the result of classification is usually determined by
multiple leaves. It is common that an FDT is transformed into
fuzzy classification rules to perform classification effectively.
In what follows, we focus on individual procedures of the two
steps that the approach depicted in Fig. 2 consists of.

1Il. SIGNAL PREPROCESSING

A. FEATURE EXTRACTION

The feature extraction is an important procedure in sig-
nal preprocessing. Generally, the raw measurement of EEG
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signals contains noise, artifacts and other defects. These can
be caused by eyes blinking, muscular activity or other phys-
iological processes in a human body [3] — [8]. Moreover,
measured EEG signals are functions of time. This kind of rep-
resentation of signals is not usable for classification. Hence,
special transformations have to be applied to signals. These
transformations can reduce impact of mentioned undesired
effect and should extract information from signal that can be
used for classification. The purpose of feature extraction is
to enlarge distinguishability between classes of EEG signals
by Power Spectral Density (PSD) estimation to selectively
represent the instances of EEG signals [54].

To select a good method for feature extraction, we have cre-
ated a comparison of spectral transforms used in field of EEG
signals classification (Table 1). Most often spectral trans-
forms used for this problem are Discrete Wavelet Transform
(DWT) [20], Discrete Fourier Transform (DFT) [55], and Fast
Fourier Transform (FFT) [55]. There are also investigations to
develop new methods for the feature extraction based on these
transformations for specifics of EEG signals. For example,
new wavelet-based transforms for EEG signal analysis have
been proposed in [19] and [56]. Authors of [57] have devel-
oped a new hybrid method for the feature extraction of EEG
signal based on Fourier and wavelet transforms using fuzzy
entropy. In addition to spectral transforms, other methods
can be used to eliminate signal noise and reveal its specific
features. In this case, some studies for feature extraction
based on fuzzy logic should also be noted. Authors of [7],
[34], [35], [57], and [58] have developed new fuzzy-based
procedures for EEG signal feature extraction. In [7], a new
method for epileptic seizure detection based on Permutation
Fuzzy Entropy (PFEN) has been proposed. Similar to study
in [7], fuzzy entropy has been used in [34] and [35]. The
special filter based on an artifact rejected multiclass exten-
sion of common spatial pattern by using joint approximate
diagonalization has been proposed for feature extraction in
[58]. These fuzzy-based transformations allow decreasing the
influence of the information loss in the step of preprocessing,
but their results are crisp data that is not acceptable for fuzzy
classifiers.

From common spectral transforms, authors of [21] have
shown an advantage of the DFT compared to DWT for clas-
sification method of decision tree that is inducted based on
method C4.5. Welch’s method has been used in [22] and
[59] for feature extraction of EEG signal. These studies have
shown that power spectrum density estimation by Welch’s
method provides strong attributes for good representation of
EEG signal.

Regarding the previous analysis, we have decided to imple-
ment the feature extraction of EEG signal by Fourier trans-
form, in particular DFT [21]. It is a simple spectral transform
that has good result in EEG signal classification according
to research in [21], [60], and [61]. The common property
of spectral transforms is that they sample a signal over time
and divide it into frequency components. The frequency com-
ponents are represented by a single sinusoidal oscillation at
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TABLE 1. The analysis of methods for feature extraction in EEG signal
classification.

Method of .
Field of
Papers trans- L Comment
formation application
Epileptic Better performance of DFT
K.Polat, pricp in combination with method
. DWT, DFT seizure L.
S.Glines[21] detection C4.5 for decision tree
induction.
Spectrum density estimation
K.Polat, Epileptic by FFT-based method
S.Giines [22] FFT seizure provides  strong  features
M.Naderi [57] detection ~ which represent EEG signals
well.
R.Sharma et o
al [20] DWT fglzlsf;w Analysis of impact of sub-
Y.Kumar at d . band frequencies in DWT
etection
al [34]
Methods
for
D.P. Subha frequency Survey of The frequency methods are
[3'9]' domainand EEG considered as not very
time- signal effective in the analysis of
frequency  analysis the physiological signals.
analysis
The results of this study
A Alkan. K. Methods for Comparis indicate better performance
M' Kiym;k‘ spectral on of of the covariance methods
[ 66] transformati signal over autoregressive and FFT
on processing methods.
Frequency domain methods
may not provide the best
Methods performance for  specific
A AL based on EEG signals. Time-frequency
Fa;houm linear EEG methods may not provide
A Al ’ analysisin  signal detailed information on EEG
Fr.aihat [61] frequency analysis signal analysis as much as
and time- frequency domain methods.
frequency The most suitable methods

domains can vary depending on
analyzed signals.

The study put forwards a new

Method entropy index PFEN, which

based on Epilentic ™Y delineate between ictal
W. Hussain Permutation . oP and interictal state of

seizure R - .

etal [7] Fuzzy detection epileptic ~ seizure  using

Entropy different machine learning

(PFEN) classifiers.
A. Empirical The  empirical  wavelet
Bhattacha- apelet Epileptic  transform is able to analyze
ryya, ::ar\;s forma- seizure multivariate  nonstationary
R.B.Pachori . detection  EEG signals

tion
[19]

The method

combines Stereo The proposed method can be
A. - . :

spatial electroenc  applied for suppressing both
Bhattacha- . . .

filtering with ephalog-  low and high frequency of
ryya et al. f

tunable-Q ram some types of specified
[56] . . , o

wavelet analysis signals’ artifacts.

transform

distinct frequencies, and each of these oscillations has its own
amplitude and phase [21].

After applying the Fourier transform to the EEG signals
from [12], we get a matrix of elements with 128 columns
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and 500 rows. Each row of the matrix represents one EEG
signal in the frequency domain. The obtained number of
features (128) is too large to create an accurate classifier
(we have too many features in proportion to the number of
data instances). To solve this problem, we use a dimension
reduction technique called PCA to decrease the number of
features of the matrix [62].

B. DIMENSIONALITY REDUCTION

The dimensionality reduction is a next procedure in EEG
signal preprocessing. In some researches, this procedure is
named as feature transformation [40] or feature selection
[1]. This procedure is required because the output of feature
extraction is a large matrix. If we reduce the dimension of
this matrix, the process of classification can be more effec-
tive. Typically, PCA, ICA, and LDA are used for feature
selection or dimensionality reduction in EEG signal classi-
fication. These methods accomplish a linear mapping of a
high-dimensional input vector into a low-dimensional vector
whose components are uncorrelated [49]. The comparison of
PCA, ICA and LDA shows that LDA acquired the best per-
formance. Nevertheless, it has been shown in [45] that PCA
could outperform LDA. This result is caused by the classifier
used in the second step of EEG signal analysis [15], [18].

Table 2 contains the most popular dimensionality reduction
methods used for EEG signal preprocessing. There are also
researches to develop other types of procedures for dimen-
sionality reduction for the purposes of EEG signal classi-
fication. For example, in [35], [63], and [64], fuzzy-based
procedures for transformation of feature matrix have been
proposed. These fuzzy transformations used for the purposes
of the dimensionality reduction allows increasing accuracy of
EEG signal classification, but they form a set of crisp data for
classification.

In our study, we use PCA to decrease dimension of the fea-
ture matrix obtained after the spectral transformation. Some
studies claim that LDA gives better results, but as we said
before, it was shown in [45] that PCA can outperform LDA,
especially, in cases when the number of training samples
per class is quite small. Moreover, LDA assumes Gaussian
distribution of data, and in situations when data has not this
distribution, LDA can fail. According to [28], PCA can reflect
dynamics of original signal. The first principal components
with larger variances represent the signal dynamics. The last
principal components with smaller variances are dominated
by noise. If the data is composed of an information-carrying
signal and a Gaussian noise, the PCA is optimal for dimen-
sionality reduction from the information-theoretic point of
view [28].

The PCA transforms a feature matrix with n features ¥ =
(Y1,...,Y,) into a new matrix where features (columns)
are called ““principal components” [62]. In order to reduce
the dimension of the matrix, we have to select some of
the most important principal components. The importance
of the principal components can be expressed by variance.
The variance of component indicates variability in the data.
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TABLE 2. The analysis of methods for dimensionality reduction in EEG
signal classification.

TABLE 3. Sums of squared discrepancies between histogram frequencies
and fitted-distribution frequencies.

Papers Method quld 9f Comment
application
. o Comparison of three methods.
A.Subasi, ICA, PCA, Epllep tic LDA  shows the  best
M.1.Gursoy LDA seizure erformance
[23] detection p '
. PCA can outperform LDA,
A Comparison of . .
M. Anez, . . . especially in cases when the
LDA, dimensionality ..
A.M. Kak . number of training samples
[45] PeA reduction er class is small
methods p '
Comparison by  multiple
metrics. The conclusion is that
K Delac no  algorithm can  be
: .> PCA, ICA, Face considered as the best and the
M.Grgic . . .
[65] LDA recognition choice of appropriate

algorithm is usually made for
a specific task.

Kernel PCA (KPCA) performs
non-linear transformation. The
results are good, but the
computation time is much
more expansive as in PCA and
ICA.

L.J. Cao, PCA, Forecasting
K.S. Chua KPCA, and
[66] ICA classification

Uncorrela- Drowsiness
RN.Khu- ted Fuzzy detection EEG,
shabaetal. Neighbor- Electroocu-
[63] hood logram Elec-

Preserving trocardiogram

It is about a method that is
utilized to  derive the
discriminant information
relevant to the loss of attention
that results from drowsiness.

Analysis  (ECG) signals
. Multistage clustering is used
igl[\[%?]mycmsterin ECG data for feature selection and
€ Classification dimensionality reduction.

After transformation, the components are sorted in descend-
ing order of their variance. Then, we have to select just a few
first components. One of the most commonly used criteria
to select an appropriate number of principal components is
the eigenvalue-one criterion, known also as the Kaiser crite-
rion [68]. This criterion selects a principal component if the
component has variance bigger than 1.00. It is useful to note
that the variance of the principal component corresponds to
eigenvalue of this component.

After applying PCA on data from [12], we obtain 8 princi-
pal components, which describe the reduced feature matrix
of origin EEG signals. Hence, each EEG signal is repre-
sented by 8 principal components. In the text bellow, these
principal components are noted as numerical input attributes
X; (i=1,..., 8) of EEG signals.

A loss of some information is possible in the step of the
signal preprocessing according to [28]. This can be shown by
evaluation of distributions of principal components. For this
purpose, let us test the obtained principal components based
on typical distributions by minimum squared error fit. This
test calculates sum of squared discrepancies between his-
togram frequencies and fitted-distribution frequencies. It is
assumed that the data has a distribution with minimal squared
error. We implemented this test by Arena Input Analyzer
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X X X5 o Xi X5 X X1 Xz )
Normal ~ 0.116 0.138 0.082 0.183 0.209 0.206 0.025 0.211 1.170

Beta 0.093  0.141 0.098 0.184 0.250 0.208 0.021 0.214 1.209
Lognormal  0.032 0.174 0.128 0.241  0.257 0.277 0.040 0.299 1.448
Erlang 0.065 0.176  0.119 0.249  0.254 0.299 0.037 0.313 1.512
Gamma 0.066 0.176  0.119 0.249 0.254 0.299 0.037 0.313 1.513
Triangular  0.171  0.222  0.200 0.319  0.355 0.359 0.048 0.390 2.064
Uniform  0.191  0.256 0.220 0.347 0.391 0.393 0.078 0.427 2.303
Exponential  0.065 0269 0.230 0.358 0.397 0.405 0.093 0.438 2.255

(https://www.arenasimulation.com/) for each principal com-
ponent. The results are shown in Table 3. At final, we cal-
culate sum of squared error fit for each distribution of all
principal components. These results are shown in the last
column of Table 3. The smallest value of this squared error
has normal distribution. Therefore, we assume that the data
is distributed normally.

C. FUZZIFICATION
Fuzzification transforms each numeric attribute (principal
component) X; obtained after dimensionality reduction into
fuzzy attribute A; (i = 1,..., n). Numerical attribute X; is
defined by a vector of real values (x1,x2,...,Xk,...,XK),
where K is the number of samples. Each fuzzy attribute A;
consists of m; (m; > 2) linguistic terms. The j-th linguistic
term of A; is represented by fuzzy set A;; G = 1, ..., m;).
Fuzzy set A;; with respect to X; is defined by a member-
ship function py,; (x) :X; — (0, 1). The membership func-
tion gives a membership degree 114, ; (x) for each x (x € X;),
which defines how strongly element x is the member of fuzzy
set A; ;. Formally, fuzzy set A; ; is defined as an ordered set of
pairs A;j = {(x, [a;; (), x € X;}, where:

(a) pa,;; (x) = 0 if and only if x is not the member of set
Aij,
(b) 0 < pa; ; (x) < 1if and only if x is not the full member
of setA; j,

(¢) pa,;; (x) = 1if and only if x is the full member of set
A,', je

Fuzzification can be done using various methods. One of
them is Fuzzy C-Means (FCM) clustering [53]. The FCM is
an extension of K-means algorithm, and it is based on use of
fuzzy membership function. The K-means algorithm assigns
each instance to one cluster. In case of FCM, an instance can
be assigned to more clusters with some partition degrees. The
FCM tries to minimize the objective function defined as:

K

minimize » Y " (urj)" d (. ¢, (€]

j=1 k=1

where r is the parameter of cluster fuzziness, d (x, ¢;) is a
distance between scalar value x; and center ¢; of the j-th
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cluster. Increasing of r causes smaller values of partition
degrees uy j. At the beginning, the instances are randomly
assigned to the clusters with some partition degree. Then,
the partition degree of the k-th instance into the j-th cluster
and the new centers are computed based on the following
formulae:

fﬁ (10c)°

1/d (Xk,Cj)z k=1
i K

S 1/d (. €0 > (k)

=1 k=1

U j = and ¢; = )

This process is repeated until centers do not change. As a
result, we found partition degree uy j, which defines the mem-
bership degree of scalar value x; to the j-th fuzzy set (fuzzy
term) A; ;.

After fuzzification of results of the procedure of the
dimensionality reduction applied on signals form dataset
[12], we obtain data described by 8 fuzzy input attributes
A; (i = 1,..., 8) and one output attribute B. Based on this
data, we are able to induct an FDT that can make decision
about presence of epileptic’s seizure. For the purposes of the
FDT induction, these attributes are stored in a form of three-
dimensional matrix A; j x where i is the index of the attribute,
Jj is the index of the attribute term and k is the index of the
row (which corresponds to one signal from the dataset).

IV. FUZZY CLASSIFICATION

A. FUZZY CLASSIFIERS

In most studies of EEG signal classification, the fuzzy clas-
sifiers have not been used. More often the fuzzy-based meth-
ods have been implemented only in the preprocessing step.
Such methods have been developed for the feature extrac-
tion in [55], [56], [7], [34], and for the feature selection or
dimensionality reduction in [63], [64], and [35]. Based on
surveys [18], [39], [40], [41], and [69], we can state that
fuzzy classifiers have not been used often in investigations
of EEG signal classification. According to last reviews [18]
and [69], the most often used classifiers have been SVM
[23], kNN [25], neural networks [7], [14], decision tree, and
random forest [34], [71], [66]. Hybrid classifiers based on
combination of typical classifiers have also been used [70],
[72], [73].

Fuzzy classifiers for EEG signal classification have been
used in some initiative studies (Table 4). In [36] and [74],
fuzzy kNN classifier has been used in combination with other
classifiers. Authors of [38] have proposed fuzzy-based neural
network for EEG signal classification. The fuzzy-rule based
approach has been developed in [75].

It is important to note that the research for the development
of fuzzy-based methods in EEG signal classification has
shown the efficiency of fuzzy classifiers, but these and other
investigations have not been formalized. Therefore, the step
of the signal preprocessing has not been formalized too, and
fuzzy data for classification is formed by the different way in
these investigations.

189726

TABLE 4. The analysis of fuzzy classifiers in EEG signal classification.

Field of

Papers Method o Comment
application
Singular
N. Singh Zalue . DWT-based singular value
ecomposi , . o
and S. tion fuzzy Seizure decomposition  fuzzy k-nearest
Dehuri, detection neighbor classifier technique is
[36] classifier proposed.
FBCS minimizes the classification
time by perfectly extracting the
Fuzzy- effecti\{e features of the produced
based Brain— EEG signals. FBCS uses feature
A.L Saleh lassificati computer reduction and electrode selection
et.al. [37] ¢ P techniques to  reduce  the

on strategy interface

(FBCS) dimensionality of data to be

classified, which also improves the
classification accuracy.

The method is based on PPCA
analysis which is a feature
extraction technique and the hybrid
technique, i.e., a combination of

R. Krishna- Fuzzy Prediction of
murthi and logic and  state of mind

M. Goyal neural of a disabled [ .

38] network erson two classifying techniques — fuzzy
p logic and neural network.
g;ﬁ“é%g New method for the feature

Y. You Fuzzy detection extraction is  proposed  and

[74] kNN algorithm evaluated with application of some

& classifiers, including fuzzy kKNN.
Hidden-
mapping The The combination of network and
%‘6;{“ etal. ridg l)dfe;tllzfl-ll?;(gs fuzzy learning is used in Takagi-
regression discase Sugeno-Kang fuzzy model.
Transfer
Scenario

The result of the preliminary
transformation is crisp data used
for the fuzzy classification.

Y. Zhang Construc- Seizure
etal. [77] tion fuzzy Classification
classifier

B. CLASSIFICATION BASED ON FUZZY DECISION TREE
Decision trees are composed of nodes and leaves. Each node
is associated with one input attribute (splitting attribute). The
set of all possible linguistic values of this input attribute
determines outgoing edges of the node. Each value from this
set is associated with one outgoing edge. The classification
of an unknown instance begins at the root of the tree. Sub-
sequently, the instance travels down the tree. The direction
of the instance is determined by the splitting attributes asso-
ciated with the tree nodes. When the instance enters into a
tree leaf, the output class can be determined. In a case of
the FDT, the instance traverses through multiple branches.
Therefore, the classification result is determined on the basis
of a set of leaves.

There are different methods for induction of FDTs [43],
[78], [79]. In this paper, the algorithm for FDT induction
based on CMI is used [43]. The CMI in output attribute B
based on knowledge of attribute A;, and the sequence of
values U, has been introduced in [43] as follows:

I (B; Uq—l’Aiq)
M (Bj x Uy-1 XAiq,jq)

m;

:Zq: f: 10g2 M(B, X Uq—l X Aiq,jq)
by x | +logyM(Uy—1) — logy M(B; x Uy—1)
Jqg— -

— logz M(Uq_l X Aiq,jq)
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where Uyt = {Aij; x ... x Aj_j,_,} is the fuzzy set
defined by the sequence of fuzzy terms A;, j,, ..., A,-(H, Jgo1
of selected attributes A;,, ..., A; 41 from the root to the g-th

node, M (Bj x Ug—1 % Aiq,jq) is a measure of cardinality of
fuzzy set B; x Uy—1 % Aiq,jq.

The splitting criterion that selects splitting attribute for
node of the tree is defined as follows:

i([ = argmaX (I (Ba Uq,],Aiq) /H( iq|Uq7])) ’ (3)

where function argmax returns attribute index i; with the
maximal value of CMI, and H (Aiq|Uq_1) is the cumulative
conditional entropy. This entropy is defined between fuzzy
attribute A;, and the sequence of selected attribute terms Uy
as follows:

Mig

H(A;,|Ug-1) = ZM (Aiy.j» Ug—1)-
=1

(108, (M (Uy-1))~logsM (A x Uy-1)
)

Dividing CMI by this entropy can eliminate drawback
of CMI. CMI tends to prefer attribute with a large set of
linguistic values. Division of CMI solves this problem by
taking into account the number of branches that would be
created before the split. To avoid overfitting of initial data,
the FDT induction is stopped in two cases:

a) if the confidence degree b; of the analyzed node is bigger
than manually chosen parameter 8. This confidence degree b;
reflects the confidence of the decision that the output attribute
belongs to the j-th class. This degree can be calculated as:

M (Bj X Ail,j| X ... X Aiq—lvjq—] X Aiq,jq)

bj = NG))
M (Ai1»11 X ... X Aiq—ly]'q—l X Aiq,jq)

b) if frequency f (U,) of branch defined by sequence of
fuzzy terms {Ai|,j1 y e ,Aiq,jq} = U, is less or equal to man-
ually chosen parameter «. Frequency f (Uq) can be calculated
as follows:

f (Uq) =M (Ailqjl X ... X Aiqfl,jqfl X Aiquq) /K, (6)

where K denotes the number of data (signals) in the dataset.

The used algorithm for tree induction uses two pre-pruning
parameters « and B. According to these parameters, the
algorithm can stop tree induction in a branch. If the fre-
quency of branch is less than the value of «, tree induction
is stopped. The second parameter 8 expresses sufficient con-
fidence degree to the some of the classes in the node. If at least
one of the confidences b; to j-th class in the node is bigger than
parameter 3, then the tree induction in this node is terminated
and the node becomes a leaf.

Values of o and B affect the size of the tree, which is
defined by the number of nodes in the tree. It is usually
required that the tree should be as accurate as possible.
However, if the tree induction with different « and B can
create trees with the same accuracy, then it is desirable to
use a smaller tree. Use of a smaller tree reduces the time
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required to classify an unknown instance because fewer tests
are performed during classification. Trees inducted with big-
ger value of o have smaller size. On the other hand, trees
inducted with bigger value of 8 have bigger size. The special
case is when the value of « is 0 and 8 is 1. Trees with these
values of o and 8 are unpruned. The second special case is
when « is 1 and S is 0. This setting of parameter will produce
a tree with single node (the root node). This tree is known as
a decision stump. In our experiments, we tries to find values
of @ and B by the experimental investigation to minimize the
classification error of an FDT [15], [43].

The detailed steps and examples about construction of and
FDT using the above algorithm can be found in [15], [42], and
[43]. The FDT in Fig. 3 has two types of nodes that are leaves
(marked by grey) and decision nodes. Each node includes
three rows of text. In case of a decision node, the first line
informs about input attribute associated with the node. The
attribute naming convention is as follows. The attribute name
begins with letters ‘“PC” followed by a number that deter-
mines the fuzzified principal component: PC1, PC2,..., PCS.
In case of leaves, the first line informs about the dominant
output class: seizure or seizure free. The next two lines are the
same for both types of nodes. The second line informs about
the frequency of branch which comes to the node. The third
line informs about membership degrees to the output classes
(the first number agrees with ““Seizure”” while the second one
with “Seizure free’’). The numbers associated with branches
of the tree are determined by the values of centroids obtained
after fuzzification by using FCM.

The obtained FDT for task of EEG signals classification in
case of 8 fuzzy input attributes is shown in Fig. 3. It consists
of 25 leaves that allow representing the classification of the
signals by 25 fuzzy decision rules. The obtained FDT can also
be simply transformed into fuzzy decision rules [43].

The classification rule that corresponds to single leaf on
Level 3 (the green path in Fig. 3) is equal to:

IF PC1 is PC13 and PC2is PC2;
THEN B = [0.952; 0.048] with frequency 0.045.

The antecedent condition describes the situation with
selection of branches PC13 and PC2, for attributes PC1 and
PC2, respectively. The result describes the possible value
of the output attribute B. The decision *“Seizure” should
be accepted with confidence 0.952 and decision ‘‘Seizure
free” in this case has confidence 0.048. The frequency of this
decision in this leaf is 0.045.

V. ACCURACY OF THE PROPOSED ALGORITHM
Important modifications of the proposed fuzzy-based
approach for EEG signal classification are additional pro-
cedure of fuzzification in the first step of the preliminary
transformation and application of fuzzy classifier for EEG
signal classification in the second step (Fig. 2).

The efficiency of the proposed approach can be shown
by the comparison with similar studies implemented for the
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FIGURE 3. The FDT for EEG signal classification. The threshold parameters « and g are defined as « = 0.011 and 8 = 0.882.

same data. In our investigation, we use the Fourier transform
(in particular FFT) for feature extraction of EEG signal,
PCA for the dimensionality reduction, and FCM for the data
fuzzification in the step of the preprocessing, and FDT as the
fuzzy classifier in the step of the EEG signal classification.
The similar procedures in the preprocessing step have been
used in experimental investigations (for crisp-based classi-
fiers, the Fourier transform and PCA have been used only).

Because the application of fuzzy classifier is a principal
modification of the proposed approach, the FDT evaluation is
provided to show the efficiency of the fuzzy-based approach
for EEG signal classification. The evaluation of the FDT is
based on usage of binary classification metrics.

There are many metrics that can be used to measure the
performance of a binary classifier. The most common ones
are accuracy, sensitivity, and specificity. Accuracy is often
considered as the most valuable estimation that is defined
as a proportion of correctly classified instances. But this
estimation should be supplemented by specificity and sensi-
tivity, when the data are not uniformly distributed into classes
because the accuracy can be misleading. Sensitivity measures
the proportion of actual positives that are correctly identified

189728

as positive. For example, sensitivity measures percentage of
people with epileptic seizure who are correctly classified
as having the seizure. Specificity measures the proportion
of actual negatives that are correctly identified as such. For
example, the percentage of seizure-free people who are cor-
rectly identified as not have the seizure. Therefore, the classi-
fication of instance can be as true (True positive (TP) or True
negative (TN)) or false (False positive (FP) or False negative
(FN)). According to these four cases, the accuracy, sensitivity,
and specificity are defined in Table 5 [16], [17]. In experi-
mental analysis, we also consider other metrics summarized
in Table 5.

The comparative analysis is implemented based on dataset
introduced in [12] for identification of patients during epilep-
tic’s seizure. Hence, classes (A, B, C, D, and E) of the original
dataset were merged into two classes. We aim to separate
persons during seizure activity and persons in seizure-free
interval, therefore, we have two classes (ABCD, E), where
class E determine seizure activity and class ABCD stands for
seizure free interval. The initial data consists of 500 records
of signals (each of duration 23.6 seconds) that are cut into
smaller signals (each with 2.95 second duration). In this way,
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TABLE 5. The evaluation criteria of classification.

Description

The accuracy expresses proportion between correctly classified instances and the number

The sensitivity agrees with number of positives that are correctly classified as positives.

The specificity of the test is the ratio of true negative results to the sum of true negative

The precision is the proportions of positive and negative results in statistics and
diagnostic tests that are true positive and true negative results.

Diagnostic odds ratio (DOR) is a measure of the effectiveness of a diagnostic test. It is
defined as the ratio of the odds of the test being positive if the subject has a disease
relative to the odds of the test being positive if the subject does not have the disease. The
diagnostic odds ratio ranges from zero to infinity, although for useful tests it is greater
than one, and higher diagnostic odds ratios are indicative of better test performance.

The F1 Score is the harmonic mean of the precision and sensitivity.

The Matthews correlation coefficient (MCC) is in essence a correlation coefficient
between the observed and predicted binary classifications; it returns a value between —1

Eva.luat.ion Evaluation criteria definition
criteria
Accuracy % of all instances.
Sensitivity %
Specificity % and false positives.
Precision %
DOR FPN
F1 Score m
TP -IN -FP -FN
MCC

Youden’s index

Jaccard index

J(TP +FP)(TP + FN)(IN +FP)(IN +FN)

Specificity + Sensitivity - 1

TP
TP+FP+FN

and +1. A coefficient of +1 represents a perfect prediction, 0 no better than random
prediction and —1 indicates total disagreement between prediction and observation.

Value of Youden’s index ranges from 0 to 1. Value 0 is obtained when a diagnostic test
gives the same proportion of positive results for groups with and without the disease, i.e.,
the test is useless. A value of 1 indicates that there are no false positives or false
negatives, i.e., the test is perfect.

Jaccard index estimates a likelihood of an element being positive if it is not correctly
classified negative element.

we obtain 4,000 signals. These signals are transformed by
FFT, PCA and FCM into the set of 8 fuzzy attributes in
the step of the preliminary transformation (section III). The
dataset of fuzzy-based samples is then split into two subsets:
one subset is used for the FDT induction and another one
for evaluation of FDT by using criteria defined in Table 5.
Splitting data into training and testing sets is done randomly
in a 70 to 30 ratio [42], [59]. The FDT is inducted using
the method considered in section IV based on the training
data subset. The inducted FDT is evaluated by testing set.
We repeat this splitting and classification of testing subset
103 times to eliminate influence of the random data split.
We experimentally establish values « and 8. This estima-
tion is based on multiple FDT inductions. For each FDT,
classification accuracy is computed and then the FDT with
the best accuracy is selected. We analyze o« from 0.0 to 0.2
(by step 0.001) and B from 0.75 to 1.0 (by step 0.001). The
influence of values o and § on the classification accuracy is
shown in Fig. 4. We created surfaces (Fig. 5) that show the
impact of o and B parameters on the classification accuracy.
These surfaces were obtained by transformation of three-
dimensional scatter chart to the surface using MATLAB.
These surfaces have three axes: the x axis represents value
of «, the y axis shows value of 8, and the z axis agrees with
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value of the classification accuracy of the FDT inducted with
the corresponding « and g values. This estimation shows that
the best accuracy is obtained for @ = 0.230 (the accuracy
has maximal value for values of this parameter from range
0.182 t0 0.273) and B = 0.864. The FDT inducted with the
indicated pruning parameters has optimized size and maximal
value of the accuracy. So, it can be used as the classifier for
EEG signal classification (Table 6).

Other classifiers are also applied and evaluated in the
problem of the identification of patients during epileptic’s
seizure for the fuzzy-based dataset formed in the step of pre-
processing. We make comparison of classification results of
the proposed approach and other approaches with fuzzy clas-
sifiers for the same initial data. Four classifiers are involved
in this comparison: Fuzzy Naive Bayes classifier [80], fuzzy
classification rules according to the algorithm in [81] and
[82], and neural network (more specifically, Fuzzy Multi-
Layer Perceptron) [83]. We implement all these classifiers
in MATLAB. In the step of the preprocessing the Fourier
transform, PCA and FCM procedures are used. According to
the presented evaluations in Table 6 the FDT achieves the best
result of the classification for the considered data.

We also provide comparison with non-fuzzy approaches.
In this experiment, the fuzzification is not used in the EEG
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FIGURE 4. The dependency of classification accuracy on values of
pruning parameters « and g.
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FIGURE 5. The dependency of classification accuracy on values of
pruning parameters o and B. This figure shows a cropped part with the
best accuracy from Fig. 4.

signal preprocessing. We use Fourier transform (FFT) for the
feature extraction and PCA for the dimensionality reduction
in the step of EEG signal preliminary transformation. Five
classifiers are examined: k-Nearest Neighbor (kNN), Multi-
Layer Perceptron, Decision tree inducted based on method
C4.5, SVM, and Naive Bayes. The experiments are imple-
mented in MATLAB again. We try to find the best values of
parameters of mentioned classifiers. Therefore, these classi-
fiers are obtained by multiple runs with different parameters
by similar approach as o and 8 for FDT. The most accurate
classifiers for every type are chosen and shown with their
evaluation in Table 7.

To compare results of our investigation with similar stud-
ies, we have created the comparison shown in Table 8. This
table includes only studies which have used the same data
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TABLE 6. The evaluation and comparison of the proposed algorithms
based on FDT with existing ones.

Fuzzy Fuzzy 1];;1 Zliy
Naive Classification w- FDT
Layer
Bayes Rules
Perceptron
Accuracy 0.944 0.909 0.949 0.995
Specificity 0.916 0.888 0.889 0.993
Sensitivity 0.998 0.912 0.997 0.996
Precision 0.862 0.976 0.919 0.981
DOR 3,116.942 421455 3,770.547  12,856.263
F1 Score 0.924 0.942 0.956 0.989
MCC 0.887 0.722 0.900 0.985
Youden's 0913 0.801 0.885 0.990
index
Jaccard
. 0.860 0.892 0.917 0.978
index
TABLE 7. The evaluation and comparison of non-fuzzy
classification-based algorithms.
Multi-
(NN baver  Naive SVM  C45
Perceptr ~ Bayes
on
Accuracy 0.924 0.942 0.962 0.971 0.981
Specificity 0.892 0.881 0.928 0.952 0.968
Sensitivity 0.946 0.991 0.987 0.976 0.992
Precision 0.923 0.913 0.949 0.987 0.978
DOR 144.690 815.192 978.564 842.105 3,751.000
F1 Score 0.934 0.950 0.968 0.982 0.984
MCC 0.843 0.886 0.923 0.914 0.963
Youden's index 0.839 0.872 0.916 0.929 0.960
Jaccard index 0.876 0.906 0.937 0.965 0.970

as we use. The classification of the selected studies has
been targeted on prediction of occurrences of the epileptic’s
seizures. The selected studies are different in methods of data
preprocessing (for the signal feature extraction and dimen-
sionality reduction) or classification. The comparison is pre-
sented in Table 8. The second column in this table describes
used methods in preliminary data transformation, the third
column defines the used classifier, and the last column shows
acquired classification accuracy according to the considered
publications.

The implemented analysis and evaluations show the effi-
ciency of the fuzzy-based approach for classification of EEG
signals in detection of the epileptic’s seizures. This result is
illustrated by the comparison of fuzzy classifier (Table 6) and
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TABLE 8. Table of results from other studies for epileptic’s seizure
detection.

Preprocessing .
Study methods Classifier Accuracy
K. Polat ..
N Gu’on; ‘E;f] DWT Decision Tree (C4.5) 0.987
L. Guo, D. Multilayer Perceptron
DWT 0.
Rivero et al. [84] Neural Network o771
M. A. Naderi, .
H. Mahdavi- FFT, PCA M‘;Ih:arya‘;r;::ci‘r’: on 1.000
u W
Nasab [59]
U. Orhan, .
M. Hekim and DWT PK'meta“S ?\?d M]“Tl\t;li‘yerk 0.967
reeptron I )y
M. Ozer [25] erceptron Neural Netwo
N. Nicolaou and Permutation .
J.G. Kios [24] Entropy Support Vector Machine 0.944
Artificial Immune
K.Polat and ..
S ngz ?2112] FFT, PCA Recognition System 0.998
' $ (ARIS)-based Classifier
Complete
J. B. Jian, Ensemble
B. Goparajuet  Empirical Mode Random Forest 0.980
al. [71] Decomposition
(CEEMD)
FFT, PCA.
This study y > FDT 0.995

Fuzzification

non-fuzzy classifier (Table 7), which are based on similar
methods and are used for identical data for classification.
The fuzzy classifiers have comparable accuracy and, for
example, the classification accuracy based on FDT is the
best in comparison with the decision tree inducted based
on C4.5 method. At the same time, the comparison of the
proposed approach based on FDT with other researches is
acceptable. The classification accuracy of FDT-based method
is slightly less with comparison to two researches only. The
classification accuracy in [59] has been achieved by specific
implementation of the classifier induction, where the data set
has not been divided into training and testing subsets and all
samples used in training have been involved in testing too.
The classifier used in [22] is a hybrid automated identifica-
tion system based on Artificial Immune Recognition System
(AIRS) with fuzzy resource allocation mechanism. This spe-
cial fuzzy-based mechanism allows taking data uncertainty in
preliminary transformation into account.

So, the implemented investigation proves the efficiency of
the fuzzy classification in EEG signal analysis which results
from considering the uncertainty formed in the step of initial
EEG signal preprocessing.

VI. CONCLUSION

The new fuzzy-based approach for classification of EEG
signals for purposes of detection of the epileptic’s seizures
was developed in this paper. This approach is based on typical
approach for signal classification which consists of two steps
that are the preliminary data transformation (or preprocess-
ing) and classification itself [17]. In the step of preprocessing,
noise is removed and useful information needed for the next
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step of classification is extracted. At the same time, the signal
is transformed into a set of samples that can be classified.
The data after the preprocessing is a set of numerical crisp
attributes. According to investigations in [28] and [29], the
data preprocessing causes the loss of some information and
arising of the data uncertainty. It results into the decrease of
the classification accuracy. Therefore, this data uncertainty
should be considered in the step of classification, which is
possible by the application of a fuzzy classifier. The change
of the classifier type requires other type of data, which should
be fuzzy. The fuzzification of data after the preliminary trans-
formation should be implemented. Therefore, the new type
of classifier is used and the new procedure of the fuzzifica-
tion is added in the data preprocessing in the new proposed
fuzzy-based approach for classification of EEG signal for the
purposes of detection of the epileptic’s seizures (Fig. 2).

In this paper, we considered and evaluated the proposed
approach for FDT based classifier, which is inducted through
application of CMI [42], [43]. We developed the algorithm for
EEG signal classification, which uses procedures of Fourier
transform for feature extraction, PCA for dimensionality
reduction, and FCM for fuzzification of data in the step
of the preprocessing and FDT in the step of classification.
We used a well-known public dataset from [12]. This dataset
originally consists of 500 samples, but we divided each EEG
records into smaller pieces in our experiments. In this way,
we obtained 4,000 instances divided into two classes (seizure
and seizure free). The procedures of the signal preprocessing
(feature extraction, dimensionality reduction, and fuzzifica-
tion) allowed representing each sample by 8 fuzzy attributes,
which were used for FDT induction.

We evaluated the classification efficiency of the developed
approach for epileptic’s seizures detection and compared
it with some other. In particular, the proposed FDT-based
approach was compared with other fuzzy-based approaches
(Table 6) and non-fuzzy-based classifiers that use crisp data
(Table 7). In all approaches, procedures of the feature extrac-
tion and dimensionality reduction were implemented same.
The additional transformation based on FCM was imple-
mented in algorithms with fuzzy-based classifiers. The com-
parison of these approaches showed that the fuzzy-based
classifiers give the best results for this data. Furthermore,
the classification based on FDT allows achieving the accuracy
of 0.995 that is the best result for evaluated fuzzy-based clas-
sifiers (Table 6) and non-fuzzy-based classifiers (Table 7).
The best result for non-fuzzy-based classifier is obtained for
decision tree inducted based on C4.5 algorithm. The devel-
oped FDT-based algorithm for classification of EEG signals
was also compared with existing studies (Table 8). Results of
the comparisons show efficiency of the developed approach.

In this paper the epileptic seizure detection based on
EEG signal classification was considered as one of the basic
problems in EEG signal analysis. This problem was chosen
to evaluate the efficiency of the fuzzy-based classification
approach in EEG signal analysis. The presented results allow
us to develop and use this approach for similar problem
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in EEG signal analysis. The obtained results were achieved
for data from [12]. In case of other real data, the indicated
accuracy can be less than 0.995, but the expansion of such
data samples for the proposed approach allows achieving the
indicated accuracy. In future work, we will investigate impact
of alternative procedures in the signal preprocessing. The
first of the investigated procedures will be fuzzification, i.e.,
different algorithms of fuzzification will be studied for the
purposes of signal classification.
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