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ABSTRACT This article is concerned with the problem of delay-dependent stabilization for a class of
stochastic Markov systems with event-triggered feedback control. An event-triggered mechanism (ETM)
is proposed with the purpose of effectively reducing the transmissions of redundant massages, in which
the generation of sensor sampling and control actuation is not periodic but only when some event-driven
conditions are satisfied. In the meanwhile, a novel Lyapunov-Krasovskii functional (LKF) is applied to the
closed-loop systems to establish the criterion of practically exponential mean-square stability. And a positive
lower bound on the inter-execution times is guaranteed, that is, the Zeno behavior will not happen under this
ETM. Furthermore, the event-triggered feedback controller can be constructed by solving the relevant linear
matrix inequalities (LMIs). In the end, a numerical example displays the feasibility of our results.

INDEX TERMS Delay-dependent stability, event-triggered control, Markovian jump parameters.

I. INTRODUCTION
Stochastic time delay systems (STDSs) have been extensively
investigated since they can exactly describe the dynamic
processes that are influenced by the stochastic perturbations
and time delays. In effect, the above affect factors often give
rise to oscillation, poor performance and even instability. As a
hot issue in the study of STDSs, stability analysis has aroused
wide concerns among many investigators (see, e.g., [1]–[5]),
and it is the primary task for researchers to discuss how
to construct a controller to stabilize an unstable controlled
system (see, e.g., [6]–[8]).

In traditional control theories, the researches on con-
troller design with continuous-time state feedback control
were well studied(see, e.g., [9], [10]), but it is hard, and
even unrealistic in practical applications since the systems
need to achieve stable and reliable real-time signal trans-
missions and controller computations at all times. Compared
with the continuous-time state feedback case, the strate-
gies of discrete-time state feedback control are easy to
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implement the desired stability and performance properties
(see, e.g., [11], [12]). Nonetheless, one can not deny that
the above-mentioned time-triggered strategies may cause
redundant transmissions and unnecessary waste of limited
resources, especially for systems with presented communica-
tion constraints. Thus event-triggered control (ETC) mecha-
nisms came into existence as strategies where the samplings
and the updates of the control inputs are aperiodic and only
with the occurrence of the certain events (see, e.g., [13]–[17]),
in this manner, the utilization of communication resources
was effectively improved while the required performance of
systems can be satisfied. For example, in [18], an event-
triggered real-time scheduling strategy was investigated for
embedded systems to decide when the control task would
be executed while the asymptotical stability was guaran-
teed. More importantly, to avoid unlimited data transfers in
finite time, namely Zeno behavior, a positive lower bound
on inter-execution times should be guaranteed, which ulti-
mately ensure the feasibility of presented event-triggered
mechanism (ETM). Thus, by using model transformation
method, [19] remodeled ETC embedded systems as hybrid
systems to establish the Lyapunov stability theorems for these
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systems, and the lower bound of inter-execution times be
further enlarged. Nevertheless, one can discover the above
researches in [13]–[19] all concentrated on the ETC issues
for deterministic systems.

In regard to stochastic systems, the random changes in
response to external effects bring great difficulty to the
researches of systems. In [20], the design mechanisms about
ETC for stochastic systems with state-dependent noise were
discussed, periodic ETC and continuous ETC were stud-
ied in both static and dynamic cases. And the analysis of
delay-independent stabilization for STDSs was presented
in [21] with a given ETM. In general, delay-independent cri-
terion is likely to be more conservative than delay-dependent
criterion, especially for small delays. Moreover, it should be
pointed out that despite there are many practical applica-
tions for stochastic Markov systems in financial investments
and ecology (see, e.g., [22]–[24]), but few researchers have
taken advantage of ETM on such systems. Consequently,
this article will analyze the problem of stabilization for
STDSs with Markovian jump parameters in the case of an
ETM, where the delay-dependent conditions of practically
exponential mean-square stabilization are given in terms of
linear matrix inequalities (LMIs). Specifically, by resorting
to an appropriate Lyapunov-Krasovskii functional (LKF),
we first derive LMI-based delay-dependent conditions to
assure the exponential stability of the closed-loop systems
with the ETM. Meanwhile, the existence of a positive lower
bound on inter-execution times is guaranteed, which means
Zeno behavior can be avoid under our ETM. Finally the
conclusions of stabilization for stochastic Markov systems
are obtained, and the desired event-triggered feedback gain
matrix is given by solving LMIs.

The content of this note is arranged as follows: Section II
contains the necessary symbolism and theoretical knowledge.
In Section III, stabilization conditions presented in terms of
LMIs for STDS are deeply discussed, and the event-triggered
feedback controller can be constructed by solving the afore-
mentioned LMIs. A numerical case and its simulation sup-
port the practicability and validity of our conclusions in
Section IV. In the end, we present a recapitulation of this note
in Section V.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
Notation: Throughout this article, we let (�,F , {Ft }t≥0,P)
be a complete probability space with a filtration {Ft }t≥0
satisfying the usual conditions (i.e. it is right continuous
and {F0} contains all P-null sets); Let R+ = [0,+∞)
and N = {0, 1, 2, . . .}; Rn is the n-dimensional Euclidean
space and Rn×m denotes the space of n × m real matrices,
| · | stands for the Euclidean norm operator of a vector and
‖P‖ = sup

x∈Rn, |x|=1
|Px|; Given integers b and d with b < d , let

b, d = {b, b + 1, · · · , d}; For p, q ∈ R, p ∨ q = max{p, q},
and p∧q = min{p, q}; The transpose of P ∈ Rn×n is denoted
by PT , and its inverse is P−1; For P ∈ Rn×n, λmin(P) is the
smallest eigenvalue of P, trace(P) is the trace of P = (pij)n×n;

P < (≤, >, ≥) 0 means P is a negative definite (nega-
tive semi-definite, positive, positive semi-definite) symmetric
matrix; Sn×n+ is the set of matrices P ∈ Rn×n with P > 0;
Let C([−τ, 0];Rn) denotes the family of continuous functions
φ from [−τ, 0] to Rn with the norm ‖φ‖ = sup

−τ≤θ≤0
|φ(θ )|,

where τ > 0; Let L2
F0

([−τ, 0];Rn) be the family of all
F0-measurable C([−τ, 0];Rn)-valued stochastic variables
φ = {φ(θ ) : −τ ≤ θ ≤ 0} such that sup

−τ≤θ≤0
E|φ(θ )|2 < ∞,

where E(·) means the mathematical expectation operator.
Let {r(t), t ∈ R+} be a right-continuous Markovian

chain in (�,F , {Ft }t≥0,P) taking values in a finite set S =
{1, 2, . . . ,N } with generator 0 = (πij)N×N given by

P{r(s+ h) = j|r(s) = i} =
{
πijh+ o(h), i 6= j,
1+ πijh+ o(h), i = j,

where h > 0, lim
h→0

o(h)
h
= 0. Here πij ≥ 0 (i 6= j) is transition

rate from i to j while

πii = −
∑
j 6=i

πij.

In this article, we aim to consider the following STDS with
Markovian jump parameters:

dx(t) = [A(r(t))x(t)+ B(r(t))x(t − τ )+ D(r(t))u(t)]dt

+σ (t, x(t), x(t − τ ), r(t))dw(t) (1)

with initial condition φ ∈ L2
F0

([−τ, 0];Rn), x(t) ∈ Rn is
the state vector, and u(t) ∈ Rm is the control input. w(t)
is a scalar Brownian motion defined on the complete prob-
ability (�,F , {Ft }t≥0,P). In this article, we assume that the
Markov chain r(·) is independent of w(t). For convenience,
for each r(t) = i ∈ S, we letA(r(t)) = Ai ∈ Rn×n, B(r(t)) =
Bi ∈ Rn×n, D(r(t)) = Di ∈ Rn×m, where Ai, Bi, Di are
known constant matrices for the fixed mode.

Moreover, throughout this article, the following assump-
tion is required to guarantee the existence of a unique solution
of (1).
Assumption 1: The noise intensity function σ (·, ·, ·, ·) :

R+ × Rn
× Rn

× S → Rn is assumed to satisfy the local
Lipschitz condition and the linear growth condition, and for
each r(t) = i ∈ S, there exist γi1 ∈ R+ and γi2 ∈ R+ such
that

trace[σ T (t, x(t), x(t − τ ), r(t))σ (t, x(t), x(t − τ ), r(t))]

≤ γi1|x(t)|2 + γi2|x(t − τ )|2, σ T (t, 0, 0, r(t)) ≡ 0. (2)

Remark 1: According to Theorem 7.3 of [25], for any
initial condition φ ∈ L2

F0
([−τ, 0];Rn), the existence and

uniqueness of the system state of (1) can be guaranteed by
the local Lipschitz condition and the linear growth condition.

Considering the following ETM. For α1 > 0, α2 > 0, let
sampling time sequence {tj : j ∈ N} meets conditions t0 = 0
and

tj+1 = inf {t|t > tj, |ε(t)|2 − α1|x(tj)|2 − α2 > 0}, (3)
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where ε(t) is the error between current state and sam-
pled state, that is, ε(t) = x(tj) − x(t), t ∈

[tj, tj+1). Next, we take the control input u(t) in the
sample-and-hold sense into account, which is given as
follows:

u(t) = Kix(tj), t ∈ [tj, tj+1), j ∈ N, (4)

for every mode r(t) = i ∈ S, the feedback gain matrix Ki ∈
Rm×n will be decided later.

From the above description, only at event-triggered instant
tj the controller u(t) can receive the data of system state x(tj),
and the data will be held by the Zero-Order-Hold (ZOH)
until the next event is triggered at tk+1. Next, substituting (3)
and (4) into (1) leads to the following closed-loop systemwith
initial condition φ ∈ L2

F0
([−τ, 0];Rn):

dx(t) = [(Ai + DiKi)x(t)+ Bix(t − τ )+ DiKiε(t)]dt
+σ (t, x(t), x(t − τ ), r(t))dw(t),

ε(t) = x(tj)− x(t), for t ∈ [tj, tj+1),
tj+1 = inf {t|t > tj, |ε(t)|2 − α1|x(tj)|2 − α2 > 0}.

(5)

To express our results more precisely, we need to introduce
the following definitions and lemmas.
Definition 1: ( [26]) The trivial solution of (5) is called

practically exponentially mean-square stable (PEMS), if for
any initial condition φ ∈ L2

F0
([−τ, 0];Rn), there exist con-

stants C > 0, γ > 0 and e ≥ 0 such that

E|x(t;φ)|2 ≤ CE‖φ‖2e−γ t + e, t ≥ 0. (6)

Definition 2: The trivial solution of (1) is called practi-
cally exponentially mean-square stabilizable if there exist
feedback gain matrix Ki ∈ Rm×n, r(t) = i ∈ S such that (5)
is PEMS.
Definition 3: ([25]) Consider the stochastic differential

delay equations dx(t) = f (t, x(t), x(t − τ ), r(t))dt +
g(t, x(t), x(t − τ ), r(t))dw(t) with initial condition φ ∈

L2
F0

([−τ, 0];Rn). Let xt = x(t + θ ), θ ∈ [−τ, 0], C1,2([t0−
τ,+∞)×Rn

×S;R+) is the set of all nonnegative functions
V (t, xt , r(t)) that are continuously once differentiable in t and
twice in xt . Define an operator LV from [t0−τ,+∞)×Rn

×

Rn
× S to R by

LV (t, x, y, i)

= Vt (t, x, i)+ Vx(t, x, i)f (t, x, y, i)+
N∑
j=1

πijV (t, x, j)

+
1
2
trace[gT (t, x, y, i)Vxx(t, x, i)g(t, x, y, i)],

where

Vt (t, x, i) =
∂V (t, x, i)

∂t
,

Vx(t, x, i) = (
∂V (t, x, i)
∂x1

, · · · ,
∂V (t, x, i)
∂xn

),

Vxx(t, x, i) = (
∂2V (t, x, i)
∂xi∂xj

)n×n.

Lemma 1: For vectors x, y ∈ Rn, let H be any real
matrix with an appropriate dimension satisfyingH > 0, then
2xT y ≤ xTH−1x + yTHy.
Lemma 2: ( [27])(Jensen’s Inequality) For G ∈ Sn×n+ ,

if there exists function h(t) : [0, δ] → Rn (δ ∈ R+) such
that the following integrals exist, then

[
∫ δ

0
h(t)dt]TG[

∫ δ

0
h(t)dt] ≤ δ

∫ δ

0
hT (t)Gh(t)dt.

Lemma 3: ( [28]) The following LMI:(
Q W
WT
−F

)
< 0

is equivalent toF > 0,Q+WF−1WT < 0, whereQ = QT .

III. MAIN RESULTS
This section establishes the practically exponential mean-
square stability conditions for (5) by using the aforemen-
tioned ETM while the existence of a positive lower bound
on inter-execution times can be guaranteed, which means the
Zeno behavior will not occur under our conditions. Then we
can get the stabilization conditions for (1) by designing the
event-triggered feedback controller and Ki.
Theorem 1: Assume that there exist matrices Pi ∈

Sn×n+ , Q ∈ Sn×n+ , Rj ∈ Sn×n+ and Fij ∈ Rn×n, i ∈ S, positive
constants θ > 0, βj > 0, αj > 0, j ∈ 1, 2, the scalars satisfy
α1 < θ and θ < 1, if the following LMIs hold for all i ∈ S:

Pi < β−11 · I , (7)

R2 < β−12 · I , (8)

9 i
11 9

i
12 PiDiKi F

T
i1 FTi1 9 i

16
∗ 9 i

22 0 FTi2 FTi2 τBTi
∗ ∗ 9 i

33 0 0 τKT
i D

T
i

∗ ∗ ∗ −R1 0 0
∗ ∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ ∗ −R−11

 < 0, (9)

where ‘‘∗’’ denotes the transpose of the corresponding part
above diagonal, and

9 i
11 = Pi(Ai + DiKi)+ (Ai + DiKi)TPi +

N∑
s=1

πisPs

+Q+ (β−11 γi1 + τβ
−1
2 γi1 +

α1

1− θ
) · I + FTi1 + Fi1,

9 i
12 = PiBi − FTi1 + Fi2,

9 i
22 = −Q− F

T
i2 − Fi2 + (β−11 γi2 + τβ

−1
2 γi2) · I ,

9 i
33 = (

α1

θ
− 1) · I , 9 i

16 = τ (A
T
i + K

T
i D

T
i ),

then the trivial solution of (5) is PEMS. Furthermore, for
each j ∈ N, there exists a positive constant T ∗ such that the
inter-execution time Tj = tj+1 − tj ≥ T ∗ holds.

Proof: First, by Lemma 3, LMI (9) is equivalent to

5i =

9 i
11 9

i
12 PiDiKi

∗ 9 i
22 0

∗ ∗ 9 i
33

+ FTi R−11 Fi
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+FTi R
−1
2 Fi + τ 20Ti R10i < 0, (10)

where

Fi =(Fi1 Fi2 0 ),

0i =
(
Ai + DiKi Bi DiKi

)
.

Set g(t) = σ (t, x(t), x(t − τ ), r(t)) and

f (t) = (Ai + DiKi)x(t)+ Bix(t − τ )+ DiKiε(t), (11)

then (5) becomes

dx(t) = f (t)dt + g(t)dw(t). (12)

It follows from (12) that

x(t − τ ) = x(t)−
∫ t

t−τ
f (s)ds−

∫ t

t−τ
g(s)dw(s). (13)

Now, for each r(t) = i ∈ S, let’s consider the following
Lyapunov-Krasovshii functional:

V (t, xt , i) = xT (t)Pix(t)+
∫ t

t−τ
xT (s)Qx(s)ds

+ τ

∫ 0

−τ

∫ t

t+θ
f T (s)R1f (s)dsdθ

+

∫ 0

−τ

∫ t

t+θ
trace[gT (s)R2g(s)]dsdθ, (14)

where Pi ∈ Sn×n+ , Q ∈ Sn×n+ , R1 ∈ Sn×n+ , R2 ∈ Sn×n+ will be
determined.

According to Itô’s formula, the weak infinitesimal genera-
tor LV (t, xt , i) is formulated as follows:

LV (t, xt , i)
= 2xT (t)Pi[(Ai + DiKi)x(t)+ Bix(t − τ )+ DiKiε(t)]

+ trace[gT (t)Pig(t)]+ xT (t)[
N∑
s=1

πisPs]x(t)

+ xT (t)Qx(t)− xT (t − τ )Qx(t − τ )+ τ 2f T (t)R1f (t)

− τ

∫ t

t−τ
f T (s)R1f (s)ds+ τ · trace[gT (t)R2g(t)]

−

∫ t

t−τ
trace[gT (s)R2g(s)]ds. (15)

Let η(t) = col(x(t), x(t − τ ), ε(t)), from (13), for t ∈ R+,
the following equation holds:

0 = E{2ηT (t)FTi [x(t)− x(t − τ )−
∫ t

t−τ
f (s)ds

−

∫ t

t−τ
g(s)dw(s)]}

= E{xT (t)[FTi1 + Fi1]x(t)+ 2xT (t)[−FTi1 + Fi2]x(t − τ )

+ xT (t − τ )[−FTi2 − Fi2]x(t − τ )

− 2ηT (t)FTi

∫ t

t−τ
f (s)ds− 2ηT (t)FTi

∫ t

t−τ
g(s)dw(s)}.

(16)

From Lemma 1 and Lemma 2, for i ∈ S, one can get

−2ηT (t)FTi

∫ t

t−τ
f (s)ds

≤ ηT (t)FTi R
−1
1 Fiη(t)+ [

∫ t

t−τ
f (s)ds]TR1[

∫ t

t−τ
f (s)ds]

≤ ηT (t)FTi R
−1
1 Fiη(t)+ τ

∫ t

t−τ
f T (s)R1f (s)ds (17)

and

−2ηT (t)FTi

∫ t

t−τ
g(s)dw(s)

≤ [
∫ t

t−τ
g(s)dw(s)]TR2[

∫ t

t−τ
g(s)dw(s)]

+ ηT (t)FTi R
−1
2 Fiη(t), (18)

by Itô isometry,

E{[
∫ t

t−τ
g(s)dw(s)]TR2[

∫ t

t−τ
g(s)dw(s)]}

= E{
∫ t

t−τ
trace[gT (s)R2g(s)]ds}. (19)

On the other hand, according to (3), for t ∈ [tj, tj+1), the fol-
lowing inequality holds:

0 ≤
α1

1− θ
|x(t)|2 + (

α1

θ
− 1)|ε(t)|2 + α2. (20)

Applying (16)-(20) to (15), we can obtain

ELV (t, xt , i)
≤ E{xT (t)[Pi(Ai + DiKi)+ (Ai + DiKi)TPi + Q

+FTi1 + Fi1 + (β−11 γi1 + τβ
−1
2 γi1 +

α1

1− θ
) · I

+

N∑
s=1

πisPs]x(t)+ (
α1

θ
− 1)εT (t)ε(t)

+ 2xT (t)(PiBi − FTi1 + Fi2)x(t − τ )

+ 2xT (t)PiDiKiε(t)+ xT (t − τ )[−Q− FTi2
−Fi2 + (β−11 γi2 + τβ

−1
2 γi2) · I ]x(t − τ )

+ ηT (t)FTi R
−1
1 Fiη(t)+ ηT (t)FTi R

−1
2 Fiη(t)

+ τ 2ηT (t)0Ti R10iη(t)+ α2}. (21)

It then follows from Lemma 3 and (10), (21) yields that

ELV (t, xt , i) ≤ E{ηT (t)5iη(t)} + α2
≤ −λE|x(t)|2 + α2, (22)

where λ = mini∈N {λmin(−5i)} > 0.
By the definition of V (t, xt , i), there exist ξj > 0, j ∈ 1, 3

such that

ξ1|x(t)|2 ≤ V (t, xt , i) ≤ ξ2|x(t)|2 + ξ3

∫ t

t−2τ
|x(s)|2ds. (23)

Next, we choose γ > 0 such that

2γ ξ3τe2τγ + γ ξ2 ≤ λ. (24)
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According to Dynkin formula, for t ≥ τ , from (22) and (23),
we obtain that

eγ tEV (t, xt , i)− eγ τEV (τ, xτ , r(τ ))

= E
∫ t

τ

[γ eγ sV (s, xs, r(s))+ eγ sLV (s, xs, r(s))]ds

≤ (γ ξ2 − λ)E
∫ t

τ

eγ s|x(s)|2ds+ α2E
∫ t

τ

eγ sds

+ γ ξ3E
∫ t

τ

eγ s
∫ s

s−2τ
|x(u)|2duds. (25)

From Fubini theorem, we arrive at

E
∫ t

τ

eγ s
∫ s

s−2τ
|x(u)|2duds

= E
∫ t

−τ

|x(u)|2
∫ t∧(u+2τ )

τ∨u
eγ sdsdu

≤ 2τe2τγE
∫ t

−τ

eγ s|x(s)|2ds. (26)

Hence, from (24)-(26), the following equation holds:

eγ tEV (t, xt , i)

≤ eγ τEV (τ, xτ , r(τ ))+ (γ ξ2 − λ)E
∫ t

τ

eγ s|x(s)|2ds

+ 2γ ξ3τe2γ τE
∫ t

−τ

eγ s|x(s)|2ds+ α2E
∫ t

τ

eγ sds

≤ eγ τ [ξ2E|x(τ )|2 + ξ3E
∫ τ

−τ

|x(s)|2ds]

+ 2γ ξ3τe2γ τE
∫ τ

−τ

eγ s|x(s)|2ds+
α2

γ
(eγ t − eγ τ ). (27)

From Theorem 7.3 of [25], there exists C0 > 0 such
that E(sup−τ≤s≤τ |x(s)|2) ≤ C0E‖φ‖2. Therefore, by (23)
and (27), we have

E|x(t)|2 ≤ CE‖φ‖2e−γ t +
α2

ξ1γ
, (28)

where C = ξ−11 (ξ2 + 2τξ3 + 4τ 2γ ξ3e2γ τ )eγ τC0, this means
that (5) is PEMS.

Next, we take attention to the existence of the lower bound
on inter-execution times. From the definition of ε(t) and (5),
one sees that

dε(t) = −f (t)dt − g(t)dw(t), t ∈ [tj, tj+1).

For t ∈ [tj, tj+1), by Itô’s formula conjunction with Lemma 1,
formula for L|ε(t)|2 is deduced as follows:

L|ε(t)|2

= −2εT (t)(Ai + DiKi)x(tj)+ 2εT (t)Aiε(t)

− 2εT (t)Bix(t − τ )+ trace[σ T (t)σ (t)]

≤ (2||Ai|| + 2+ 2γi1)|ε(t)|2 + (||Bi||2 + γi2)|x(t − τ )|2

+ (||Ai + DiKi||2 + 2γi1)|x(tj)|2.

Let

h1 =max
i∈S
{2||Ai|| + 2+ 2γi1},

h2 =max
i∈S
{||Ai + DiKi||2 + 2γi1},

M =max
i∈S
{||Bi||2 + γi2} · (CE‖φ‖2eγ τ +

α2

ξ1γ
),

note from (28) that

EL|ε(t)|2 ≤ h1E|ε(t)|2 + h2E|x(tj)|2 +M . (29)

Now set Z (t) = |ε(t)|2, for any 1t > 0 and t ∈ [tj, tj+1)
such that t + 1t ∈ (tj, tj+1), since EZ (t) is continuous on
t ∈ [tj, tj+1), then

EZ (t +1t) = EZ (t)+
∫ t+1t

t
EL|ε(s)|2ds.

Therefore, for t ∈ [tj, tj+1),

D+EZ (t) = lim sup
1t→0+

EZ (t +1t)− EZ (t)
1t

= EL|ε(t)|2,

the above equation combine with (29) implies that

D+(E|ε(t)|2) ≤ h1E|ε(t)|2 + h2E|x(tj)|2 +M .

One can see

D+[
E|ε(t)|2

α1E|x(tj)|2 + α2
]

≤
h1E|ε(t)|2 + h2

α1
[α1E|x(tj)|2 + α2]− h2

α1
α2 +M

α1E|x(tj)|2 + α2

≤ h1
E|ε(t)|2

α1E|x(tj)|2 + α2
+ L, t ∈ [tj, tj+1),

where L = h2
α1
+

M
α2
. Then we can deduce that

E|ε(t)|2

α1E|x(tj)|2 + α2
≤ q(t − tj), t ∈ [tj, tj+1),

where q(t − tj) is the solution of q̇(t − tj) = h1q(t − tj) +
L, that is, q(t − tj) = L

h1
[eh1(t−tj) − 1], t ∈ [tj, tj+1). Thus

the inter-execution times are bounded by the time it takes for
q(t−tj) to evolve from 0 to 1, that is, the inter-execution times
are lower bounded by the solution T ∗ ∈ R+ of q(T ∗) = 1.
From L

h1
[eh1T

∗

− 1] = 1, one can see T ∗ = 1
h1
ln( h1L + 1),

to more specific, we exclude the sampling Zeno phenomenon
under our ETM.
Remark 2: One can find that Theorem 1 takes the

size of delay into consideration, that is, we establish
the delay-dependent conditions of practically exponential
mean-square stability for the closed-loop system, which is
less conservative than delay-independent stability criterion.
Remark 3: To avoid Zeno behavior, for deterministic

event-triggered systems, the positive lower bounds on
inter-execution times were generally guaranteed by comput-
ing d

dt
|ε(t)|
|x(t)| to give the bounds of fraction

|ε(t)|
|x(t)| (see, e.g., [18]).

However, it is well known that the solution of a stochastic
differential equation does not have a derivative, which is
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different from the deterministic case. Therefore, it does not
work for stochastic systems to use above computing tech-
nique which depends on the state derivative. In this note, on
the base of the our ETM, Theorem 1 gave a lower bound of
inter-execution times, and that means the Zeno behavior will
not happen under ETM (3).

Next, we will establish the criterion of practically expo-
nential mean-square stabilization for (1) and design the
event-triggered feedback gain matrix Ki.
Theorem 2: Assume that there exist matrices Xi ∈

Sn×n+ , Yi ∈ Rn×n, Q̄ ∈ Sn×n+ , R̄j ∈ Sn×n+ , F̄ij ∈ Rn×n,
i ∈ S , and positive constants θ > 0, βj > 0, αj > 0,
j ∈ 1, 2, the scalars satisfy β2 < 2β1, α1 < θ and θ < 1,
if the following LMIs hold for all i ∈ S, then (1) is practically
exponentially mean-square stabilizable:

R̄2 < (2β1 − β2) · I , (30)

β1 · I < Xi, (31)

9̄ i
11 9̄ i

12 DiYi F̄Ti1 F̄Ti1
∗ 9̄ i

22 0 F̄Ti2 F̄Ti2
∗ ∗ 9̄ i

33 0 0
∗ ∗ ∗ R̄1 − 2Xi 0
∗ ∗ ∗ ∗ −R̄2
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

9̄ i
16 9̄ i

17 0 Li
τXiBTi 0 9̄ i

28 0
τY Ti D

T
i 0 0 0

0 0 0 0
0 0 0 0
−R̄1 0 0 0
∗ −9̄77 0 0
∗ ∗ −9̄88 0
∗ ∗ ∗ −Xi


< 0,

(32)

where

9̄ i
11 = (AiXi + DiYi)+ (AiXi + DiYi)T + Q̄+ F̄Ti1

+ F̄i1 + πiiXi,

9̄ i
12 = BiXi − F̄Ti1 + F̄i2, 9̄ i

22 = −Q̄− F̄
T
i2 − F̄i2,

9̄ i
33 = (

α1

θ
− 1)β21 · I , 9̄ i

16 = τ (XiA
T
i + Y

T
i D

T
i ),

9̄ i
17 = (

√
γi1Xi,

√
τγi1Xi,Xi),

9̄77 = diag(β1 · I , β2 · I ,
1− θ
α1
· I ),

9̄ i
28 = (

√
γi2Xi,

√
τγi2Xi), 9̄88 = diag(β1 · I , β2 · I ),

Xi = diag(X1, . . . ,Xi−1,Xi+1, . . . ,XN ),

Li = (
√
πi,1Xi, . . . ,

√
πi,i−1Xi,

√
πi,i+1Xi, . . . ,

√
πi,NXi).

And the feedback gain matrix Ki of the desired controller (4)
is provided by

Ki = YiX
−1
i .

Proof: First, according to Lemma 3, LMI (32) is equiv-
alent to

8i
11 9̄ i

12 DiYi F̄Ti1 F̄Ti1 9̄ i
16

∗ 8i
22 0 F̄Ti2 F̄Ti2 τXiBTi

∗ ∗ 9̄ i
33 0 0 τY Ti D

T
i

∗ ∗ ∗ R̄1 − 2Xi 0 0
∗ ∗ ∗ ∗ −R̄2 0
∗ ∗ ∗ ∗ ∗ −R̄1

<0,

(33)

where

8i
11 =(AiXi + DiYi)+ (AiXi + DiYi)T + Q̄+ F̄Ti1 + F̄i1

+ [β−11 γi1 + τβ
−1
2 γi1 +

α1

1− θ
]XiXi

+ Xi
N∑
s=1

πisX−1s Xi,

8i
22 =9̄

i
22 + (β−11 γi2 + τβ

−1
2 γi2)XiXi.

Let Pi = X−1i , Q = PiQ̄Pi, R1 = R̄1
−1
, R2 = PiR̄2Pi, Yi =

KiXi, Fij = PiF̄ijPi, j ∈ 1, 2. According to the relationship

R−12 + XiR2Xi − 2Xi = (Xi − R
−1
2 )TR2(Xi − R

−1
2 ) ≥ 0,

together with (30) and (31), we have R−12 ≥ 2Xi − R̄2 >
β2 · I , that is, (8) holds. Next, pre- and post-multiplying (33)
by diag(Pi,Pi,Pi,Pi,Pi, I ), we can arrive at the following
LMI:

9 i
11 9 i

12 PiDiKi FTi1 FTi1 9 i
16

∗ 9 i
22 0 FTi2 FTi2 τBTi

∗ ∗ 9̄ i
33P

2
i 0 0 τKT

i D
T
i

∗ ∗ ∗ 9̄ i
44 0 0

∗ ∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ ∗ −R−11

 < 0,

(34)

where 9̄ i
44 = PiR

−1
1 Pi − 2Pi.

Clearly, considering (31) together with α1 < θ , we get (7),
and (α1

θ
−1)β21P

2
i > (α1

θ
−1) ·I . On the other hand, according

to the relationship

PiR
−1
1 Pi − 2Pi + R1 = (Pi − R1)TR

−1
1 (Pi − R1) ≥ 0,

PiR
−1
1 Pi − 2Pi ≥ −R1 is set up. Therefore, it follows from

LMI (34) that LMI (9) holds for (5).
Hence, for (5), LMIs (7)-(9) hold. Consequently, Theo-

rem 1 is available to support the fact that (1) is practically
exponential mean-square stabilizable.
Remark 4: Theorem 2 presents sufficient conditions of

practically exponential mean-square stabilization for (1), fur-
thermore, the gain matrix of feedback controller (4) is pro-
vided by Ki = YiX

−1
i .

IV. AN EXAMPLE
In this section, the efficiency of our results which have been
derived in the preceding section will be verified by the fol-
lowing numerical example. Specifically, a feasible solution
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FIGURE 1. 100 sample path trajectories of x1(t) with u(t) = 0.

of Theorem 2 for (1) can be solved, and the corresponding
simulations confirm the validity of our conclusions, both of
their realization are presented by MATLAB.
Example 1: Consider (1) with τ = 0.1 and with initial

condition x1(θ ) = 5, x2(θ ) = −1, θ ∈ [−0.1, 0]. The
parameters of (1) are given as follows:

A1 =
[

0 1
−0.3 −1

]
, B1 =

[
0.2 −0.2
0.5 −0.1

]
,

D1 =

[
−0.1 0.1
0.2 −0.1

]
, A2 =

[
0.6 −1
0.2 −1.2

]
,

B2 =
[
−0.6 0.2
1 0.8

]
, D2 =

[
−0.2 0.1
−0.1 −0.1

]
,

σ1 =

[
0.1x2(t − τ )sin(x1(t))
0.1x2(t − τ )cos(x1(t))

]
,

σ2 =

[
0.2x1(t)cos(x2(t − τ ))
0.2x1(t)sin(x2(t − τ ))

]
, 0 =

[
−5 5
4 −4

]
.

First, we consider (1) with u(t) = 0, that is,

dx(t) = [A(r(t))x(t)+ B(r(t))x(t − τ )]dt

+ σ (t, x(t), x(t − τ ), r(t))dw(t). (35)

We apply Euler-Maruyamamethod on (35) over [0, 100) with
a stepsize δt = 0.01, the simulations of 100 sample path
trajectories are drawn in Fig. 1 and Fig. 2. From Fig. 1 and
Fig. 2, we can find that the system states of (35) are not quite
in line with what we expect for practical stability.

Next, we take β1 = 1, θ = 0.5, α1 = 0.1 and
α2 = 0.01. From trace[σ T (t, x(t), x(t−τ ), 1)σ (t, x(t), x(t−
τ ), 1)] ≤ 0.01|x(t − τ )|2, and trace[σ T (t, x(t), x(t −
τ ), 2)σ (t, x(t), x(t − τ ), 2)] ≤ 0.04|x(t)|2, we get that γ11 =
0, γ12 = 0.01, γ21 = 0.04, γ22 = 0. According to
Theorem 2, by using the Matlab toolbox, we can get the
feasible solution:

X1=
[
1.0480 −0.1826
−0.1826 1.7089

]
, Y1=

[
−7.4106 − 8.1549
−15.3995 − 8.1207

]
,

X2=
[
1.0190 0.0849
0.0849 1.3892

]
, Y2=

[
2.8400 2.5949
−2.2274 5.2257

]
,

FIGURE 2. 100 sample path trajectories of x2(t) with u(t) = 0.

FIGURE 3. 100 sample path trajectories of x1(t) under ETC.

FIGURE 4. 100 sample path trajectories of x2(t) under ETC.

Q=
[
0.1752 − 0.3064
−0.3064 1.3825

]
, R1=

[
0.2810 0.1323
0.1323 1.0133

]
,

R2=
[
1.7747 − 0.0071
−0.0071 1.75420

]
, F11=

[
−0.8829 0.1079
0.1077 −1.0031

]
,

F12=
[
0.8829 − 0.1084
−0.1076 1.0046

]
, F21=

[
−0.8827− 0.0076
−0.0076− 0.8796

]
,

F22=
[
0.8827 0.0076
0.0076 0.8796

]
, β2=0.2195.
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FIGURE 5. Inter-execution times corresponding to the trajectories
in Fig. 3 and Fig. 4.

And the feedback gain matrices are as follows:

K1 = Y1X
−1
1 =

[
−8.0530 −5.6325
−15.8174 −6.4422

]
,

K2 = Y2X
−1
2 =

[
2.6450 1.7063
−2.5120 3.9151

]
.

Then we take the controller u(t) into consideration and use
Euler-Maruyamamethod, the 100 sample path trajectories are
plotted in Fig. 3 and Fig. 4. Fig. 5 plots the inter-execution
times corresponding to the trajectories in Fig. 3 and Fig. 4.
We can find that the system states are well controlled, that
is, the system is practically exponential stabilizable in mean
square.

V. CONCLUSION
This article considered the stabilization for a class of STDSs
with Markovian jump parameters. Based on introducing the
related definitions of practically exponential stability, we uti-
lize the stochastic version free-weighting matrix technique
and a static event-triggered strategy to the closed-loop sys-
tems, then delay-dependent stability criterion has been set up
in mean square sense by using a novel LKF, and the condi-
tions about stabilization for STDSs have been well derived
in terms of LMIs. In the sequel, considering the advantage of
dynamic ETMmay efficiently generate larger inter-execution
times than static ETM (see, e.g., [20]), we expect to investi-
gate the problems on the dynamic ETM of stochastic systems
in the following studies.

REFERENCES
[1] W.-H. Chen, Z.-H. Guan, and X. Lu, ‘‘Delay-dependent exponen-

tial stability of uncertain stochastic systems with multiple delays:
An LMI approach,’’ Syst. Control Lett., vol. 54, no. 6, pp. 547–555,
Jun. 2005.

[2] L. Liu, H. Mo, and F. Deng, ‘‘Split-step theta method for stochastic delay
integro-differential equations with mean square exponential stability,’’
Appl. Math. Comput., vol. 353, pp. 320–328, Jul. 2019.

[3] X. Song, J. H. Park, andX. Yan, ‘‘Linear estimation for measurement-delay
systems with periodic coefficients and multiplicative noise,’’ IEEE Trans.
Autom. Control, vol. 62, no. 8, pp. 4124–4130, Aug. 2017.

[4] S. Luo and F. Deng, ‘‘A note on delay-dependent stability of it
ô-type stochastic time-delay systems,’’ Automatica, vol. 105, pp. 443–447,
Jul. 2019.

[5] E. Fridman and L. Shaikhet, ‘‘Simple LMIs for stability of stochastic
systems with delay term given by stieltjes integral or with stabilizing
delay,’’ Syst. Control Lett., vol. 124, pp. 83–91, Feb. 2019.

[6] Y.-H. Ni, K.-F. Cedric Yiu, H. Zhang, and J.-F. Zhang, ‘‘Delayed optimal
control of stochastic LQ problem,’’ SIAM J. Control Optim., vol. 55, no. 5,
pp. 3370–3407, Jan. 2017.

[7] Y. Chen, Q. Liu, R. Lu, and A. Xue, ‘‘Finite-time control of switched
stochastic delayed systems,’’ Neurocomputing, vol. 191, pp. 374–399,
May 2016.

[8] Y. Du, Y. Zhou, K. Shi, and Y. Yang, ‘‘H∞ controller design for singular
stochasticMarkovian jump systemwith time-varying delay,’’ IEEEAccess,
vol. 7, pp. 147883–147891, Sep. 2019.

[9] X. Mao, J. Lam, and L. Huang, ‘‘Stabilization of hybrid stochastic differ-
ential equations by delay feedback control,’’ Syst. Control Lett., vol. 57,
no. 11, pp. 927–935, Nov. 2008.

[10] R. Yang, H. Gao, and P. Shi, ‘‘Delay-dependent robust H∞ control for
uncertain stochastic time-delay systems,’’ Int. J. Robust Nonlinear Control,
vol. 20, no. 16, pp. 1852–1865, Dec. 2010.

[11] X. Mao, W. Liu, L. Hu, Q. Luo, and J. Lu, ‘‘Stabilization of hybrid
stochastic differential equations by feedback control based on discrete-time
state observations,’’ Syst. Control Lett., vol. 73, pp. 88–95, Nov. 2014.

[12] G. Song, B.-C. Zheng, Q. Luo, and X. Mao, ‘‘Stabilisation of hybrid
stochastic differential equations by feedback control based on discrete-time
observations of state and mode,’’ IET Control Theory Appl., vol. 11, no. 3,
pp. 301–307, Feb. 2017.

[13] W. P.M.H. Heemels, J. H. Sandee, and P. P. J. VanDenBosch, ‘‘Analysis of
event-driven controllers for linear systems,’’ Int. J. Control, vol. 81, no. 4,
pp. 571–590, Apr. 2008.

[14] C. Peng and T. C. Yang, ‘‘Event-triggered communication and control
co-design for networked control systems,’’ Automatica, vol. 49, no. 5,
pp. 1326–1332, May 2013.

[15] D. P. Borgers and W. P. M. H. Heemels, ‘‘Event-separation properties of
event-triggered control systems,’’ IEEE Trans. Autom. Control, vol. 59,
no. 10, pp. 2644–2656, Oct. 2014.

[16] A. Girard, ‘‘Dynamic triggering mechanisms for event-triggered control,’’
IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997, Jul. 2015.

[17] V. Dolk and M. Heemels, ‘‘Event-triggered control systems under packet
losses,’’ Automatica, vol. 80, pp. 143–155, Jun. 2017.

[18] P. Tabuada, ‘‘Event-triggered real-time scheduling of stabilizing con-
trol tasks,’’ IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685,
Sep. 2007.

[19] R. Postoyan, P. Tabuada, D. Nesic, and A. Anta, ‘‘A framework for the
event-triggered stabilization of nonlinear systems,’’ IEEE Trans. Autom.
Control, vol. 60, no. 4, pp. 982–996, Apr. 2015.

[20] S. Luo and F. Deng, ‘‘On event-triggered control of nonlinear stochastic
systems,’’ IEEE Trans. Automa. Control, vol. 65, no. 1, pp. 369–375,
Jan. 2020.

[21] Q. Zhu, ‘‘Stabilization of stochastic nonlinear delay systems with exoge-
nous disturbances and the event-triggered feedback control,’’ IEEE Trans.
Autom. Control, vol. 64, no. 9, pp. 3764–3771, Sep. 2019.

[22] Z.-G. Wu, J. H. Park, H. Su, and J. Chu, ‘‘Stochastic stability analysis
for discrete-time singular Markov jump systems with time-varying delay
and piecewise-constant transition probabilities,’’ J. Franklin Inst., vol. 349,
no. 9, pp. 2889–2902, Nov. 2012.

[23] Z. Wang, H. Qiao, and K. J. Burnham, ‘‘On stabilization of bilin-
ear uncertain time-delay stochastic systems with Markovian jumping
parameters,’’ IEEE Trans. Autom. Control, vol. 47, no. 4, pp. 640–646,
Apr. 2002.

[24] H. Li and Q. Zhu, ‘‘Stability analysis of stochastic nonlinear systems
with delayed impulses and Markovian switching,’’ IEEE Access, vol. 7,
pp. 21385–21391, Feb. 2019.

[25] X. Mao and C. Yuan, ‘‘Stochastic differential delay equations with
Markovian switching,’’ in Stochastic Differential Equations with Multi-
Markovian Switching. London, U.K.: Imperial College Press, 2006,
pp. 271–300.

[26] T. Caraballo, M. A. Hammami, and L. Mchiri, ‘‘Practical exponential
stability of impulsive stochastic functional differential equations,’’ Syst.
Control Lett., vol. 109, pp. 43–48, Nov. 2017.

[27] E. Fridman, ‘‘Lyapunov-based stability snalysis,’’ in Introduction to Time-
Delay Systems Analysis andControl. Basel, Switzerland: Birkhäuser, 2014,
pp. 51–133.

[28] M. A. Rami and X. Y. Zhou, ‘‘Linear matrix inequalities, Riccati equations,
and indefinite stochastic linear quadratic controls,’’ IEEE Trans. Autom.
Control, vol. 45, no. 6, pp. 1131–1143, Jun. 2000.

193576 VOLUME 8, 2020



C. Xiao, T. Hou: Stabilization and Event-Triggered Control of Stochastic Delay Systems With Markovian Jump Parameters

CHUNJIE XIAO received the B.S. degree in math-
ematics from the School of Mathematics and
Statistics, Shandong Normal University, China,
in 2018. Her research interest includes stability
analysis of stochastic time-delay systems.

TING HOU received the M.S. degree from Shan-
dong Normal University, Jinan, China, in 2004,
and the Ph.D. degree from the Shandong Univer-
sity of Science and Technology, Qingdao, in 2010.
Her research interests include stochastic stability
and robust control.

VOLUME 8, 2020 193577


