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ABSTRACT Transmission computed tomography (TCT) is a nondestructive imaging technique that provides
cross-sectional images from attenuated transmission measurements. In this work we introduce a penalized-
likelihood image reconstruction method for TCT where the penalty term takes the form of a median
regularizer. More precisely, we develop a center-weighted median regularizer that assigns a variable weight
only to the central pixel of each median window so that the fine details can be better preserved. To select an
optimal value of the center weight for each median window, we propose an adaptive method that increases
the value of the center weight, as the corresponding center pixel is more likely to belong to an edge, and vice
versa. The edge-likeliness is measured by the pixel-wise standard deviation (SD), each of whose pixels is
transformed into the center weight for the corresponding pixel via themonotonically non-decreasing function
derived from the normalized cumulative histogram of the SD image. By noting that the performance of the
weighted median regularization is affected by the smoothing parameter that weights the regularization term
with respect to the likelihood term, we also propose a similar method to adaptively select the smoothing
parameter for each pixel. The experimental results indicate that our proposed method improves not only the
overall reconstruction accuracy in terms of the percentage error, but also the contrast recovery coefficients
measured in several regions of interest.

INDEX TERMS Transmission computed tomography, image reconstruction, penalized-likelihood methods,
median regularization, inverse problems.

I. INTRODUCTION
Transmission computed tomography (TCT), such as X-ray
CT, has played a prominent role in medical imaging by pro-
viding three-dimensional (3-D) high-resolution anatomical
images for diagnostic and therapeutic purposes in various
medical disciplines. In the modern TCT scanner, the pair
of X-ray source and arc-shaped detector within the system
rotates a full 360◦ around the patient so that the attenu-
ated intensity after the penetration (or the projection) of
the X-ray through the body can be measured. To visualize the
cross-sectional image of the attenuation coefficient from the
given measurements, a mathematical inversion method that
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can reconstruct an image from attenuated 3-D cone-beam or
2-D fan-beam projections must be used.

The early TCT reconstruction algorithm was based on the
analytic method that takes a direct inversion of the forward
projections. In this case the path connecting the X-ray source
and the detector bin was approximated by a pencil-beam
geometry so that the log of the attenuated projections could
be expressed as the Radon transform [1], [2]. To reconstruct
a cross-sectional image, the discrete version of the inverse
Radon transform, also known as the filtered back-projection
(FBP) algorithm, has been used over the last decades. Unfor-
tunately, however, the FBP algorithm is known to suffer
from its poor image quality with strong streak artifacts
smeared back into the image space along the back-projection
rays, unless the intensity of the X-ray beam is kept high
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enough to yield projection data with a high signal-to-noise
ratio. To overcome this problem, a different approach using
algebraic methods, such as the simultaneous algebraic recon-
struction technique (SART) and the simultaneous itera-
tive reconstruction technique (SIRT), was developed for
TCT reconstruction, where the data formation process was
expressed as a system of linear equations [1], [2] so
that the underlying image could be reconstructed by solv-
ing the linear equations iteratively. Unfortunately, however,
the SART/SIRT and their modified versions [3] still suffer
from fundamental limitations in overcoming the ill-posed
nature of the reconstruction problem that arises from the
sparsity of the measurements in TCT imaging due to the
finite projection measurements from the continuous under-
lying object.

Recently, efforts have been made to reduce the radiation
dose in TCT imaging so that the negative risk of cancer
from harmful radiation exposures can be reduced. In general,
however, as the dose level of radiation decreases, the noise
becomes severe in the measurements, whichmakes the recon-
structed image more degraded. To maintain the image quality
while allowing the low dose, the (non-deterministic) sta-
tistical approach, which provides more accurate solutions
by statistically modelling the data acquisition process of
imaging systems has been extensively developed over the
last decades [4], [5]. The early statistical approach was
based on the maximum-likelihood (ML) approach using the
expectation maximization [6]. Later, the ML approach was
extended to the maximum a posteriori (MAP) approach, also
known as the penalized-likelihood (PL) approach [7]–[13]
by adding suitable regularizers in otherwise unstable
ML reconstructions.

Since the PL approach requires repeated computations of
time-consuming projection-backprojection operations along
with regularization operations, early efforts [14]–[16] have
been expended on the development of block-iterative meth-
ods that can improve convergence rate. Due to the com-
putational limitation, however, these methods were not as
practical as the similar methods developed for emission com-
puted tomography (ECT) whose typical pixel resolution is
much lower than that of TCT. Later, with the introduction
of high-performance computing techniques using commod-
ity graphics hardware, such as graphics processing units
(GPUs), the PL-based methods developed for ECT recon-
struction influenced the new developments of the PL-based
methods for TCT reconstruction with much higher pixel
resolutions [17]–[19].

As the typical underlying image of TCT contains sharp
anatomical boundaries formed by different tissues or organs
with different attenuation coefficients, most of the PL meth-
ods use the convex non-quadratic (CNQ) smoothing penal-
ties developed for ECT reconstruction [20]–[22], where
the convexity provides mathematically desirable local and
global convergence properties and the non-quadratic form
provides edge-preserving smoothing by performing limited
smoothing across edges. In recent years, the non-local means

approach [23], which was developed for image denoising,
has also been widely used in tomographic image reconstruc-
tion [24]–[26]. Unlike the conventional local regularization
methods, which often smooth out fine structures and details
by treating them as noise, the non-local means methods pre-
serve fine structures and details by performing a weighted
smoothing process using the self-similarity measured by
comparing patch differences. On the other hand, the patch-
based regularization methods [27], [28] also take advantage
of the self-similarity of an image but preserve edges with the
aid of a CNQ penalty rather than with weighted smoothing.

Although the non-local means and patch-based methods
usually show several advantages over conventional local reg-
ularization methods, any enthusiasm for the use of such
methods is tempered by the fact that the computation time
significantly increases as the patch size (or the number of
pixels within a patch) increases. In addition, the patch-based
methods as well as the conventional local regularization
methods use CNQ penalties that involve control parameters
to adjust the shape of a penalty function. Unfortunately, it is
hard to determine the proper value of a control parameter so
that true edges can be distinguished from false ones in the
presence of noise.

In recent years, there has been increasing interest
in developing deep-learning-based methods for medical
imaging applications [29]–[31]. For tomographic image
reconstruction, however, it has been of a challenging prob-
lem to incorporate deep neural networks into the iter-
ative reconstruction framework, which involves repeated
projection-backprojection processes. Therefore, most of
the deep-learning-based methods have been focused on
post-reconstruction corrections. Nevertheless, with the con-
tinuing need for the deep learning-based methods, the deep
neural network-incorporated iterative tomographic recon-
structionmethods have great potential to be further developed
in the near future.

Independent from the reconstruction methods described
above, median-based regularization methods have also been
introduced for both emission and transmission reconstruc-
tions [32]–[34]. The median-based regularization is attractive
in that, unlike conventional smoothing-based regularization
methods, where each pixel to be updated is prone to corrup-
tion if impulsive noise is present, it preserves edges as well
as locally monotonic regions by imposing the behavior that
each pixel is attracted to its local median and is thereby less
affected by impulsive noise.

The earlymedian prior model developed for iterative tomo-
graphic reconstruction, namely the median-root prior (MRP)
reported in [32], [33], was based on a heuristic empirical
method using a kind of one-step-late (OSL) algorithm [20]
which is not derivable form an objective function. Since
the convergence of the OSL algorithm is not guaranteed,
any reconstruction method using the OSL algorithm, which
includes the MRP algorithm, can diverge for relatively large
values of the smoothing parameter. Moreover, the local
median in the MRP algorithm is obtained by the median
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operation within the window at each iteration, rather than it
is obtained by optimizing an objective function, which makes
the resulting algorithm unanalyzable. Later, Hsiao et al. [34],
proposed a new convex median prior for emission tomogra-
phy reconstruction and showed that the median regularization
could be formulated within a PL context.

In this work we generalize the median prior originally
developed for ECT in [34] and re-derive the PL reconstruction
algorithm dedicated to TCT. A similar attempt to use the
median prior in TCT reconstruction was reported in [35].
However, it simply converts the inverse problem of transmis-
sion imaging to that of emission imaging by taking the log
of the projection measurements and directly uses the method
in [34], which is dedicated to ECT. Unfortunately, due to the
non-linear transform of the log of the attenuated transmis-
sion data, it does not preserve the statistical character of the
measured data and therefore is not regarded as a statistical
reconstruction method dedicated to TCT. In contrast, our new
method derives a statistical TCT reconstruction algorithm
without transforming the measured data prior to the recon-
struction process.

Besides the re-derivation of the PL algorithm with the
median regularizer for TCT reconstruction, a major improve-
ment considered in this work is to use the center-weighted
median regularization. In the formulation of our reconstruc-
tion algorithm, the penalty for the prior is expressed as a
convex function and involves a weight for the center ele-
ment of the median window [36]–[38]. The center-weighted
median regularization in this case allows the center element
in each median window to be more probable to become a
median so that the regularization process can better restore
fine details by avoiding a typical problem of the conventional
median regularization that often eliminates any structure that
occupies less than half of the window elements. (Similar
works using weighted median filtering for non-tomographic
applications can be found in [36]–[43].)

In this work we propose a novel method to adaptively
choose the optimal value of the center weight for each pixel
by using a nonlinear mapping function derived from the
previous estimate of the underlying image. We also investi-
gate the effect of the smoothing parameter in the weighted
median regularization and finally propose a similar method
of choosing the optimal value of the smoothing parameter
for each pixel as well so that both of the two closely-related
parameters can be adaptively chosen.

II. PENALIZED-LIKELIHOOD APPROACH TO TCT
RECONSTRUCTION
We first define our notations to explain the geometry of
a typical TCT scanner shown in Fig. 1. In TCT recon-
struction, the parameters to be estimated are the attenuation
coefficients µ of an underlying object from the transmission
measurements y. In this article, the vectors µ and y are lexi-
cographically ordered so thatµj represents the j(x, y)-th pixel
of the underlying imageµ = {µj|j = 0, . . . , J−1} in the 2-D
space and yi represents the i(t, θ + α)-th measurement of the

FIGURE 1. Schematic geometry of fan-beam projection for TCT.

observed transmission data y = {yi|i = 0, . . . , I − 1} in the
2-D space of Ia×Ib, where Ia is the number of discrete angles
and Ib is the number of elements (or bins) in the detector
array. (See Fig. 1 for t , θ and α.) Fig. 1 shows a schematic
geometry of the fan-beam projection used in this work, where
the detector array consisting of Ib elements rotates about the
center of rotation, over 360◦ discretized into Ia angles.
The transmission measurement of the i-th ray denoted as

yi is independent and identically Poisson distributed with
mean ȳi as follows:

yi ∼ Poisson {ȳi}, where ȳi = bie−[Aµ]i + ri. (1)

In (1), bi denotes the blank scan counts (generated from
the radiation source) of the i-th ray, ri is the mean of the
background events, andA is the systemmatrix whose element
aij represents the contribution of the attenuation coefficient
µj in the j-th pixel to the i-th ray. The term [Aµ]i =

∑
j aijµj

indicates the projection of the underlying object through the
i-th ray.

The PL approach to TCT reconstruction is then to estimate
attenuation coefficients µ using the following minimization:

µ̂ = argmin
µ

[−L(y|µ)+ λR(µ)] , (2)

where L(y|µ) is the log-likelihood, R(µ) is the regularizer
(also known as the prior) and λ is a smoothing parameter that
weights the regularization term relative to the likelihood term.
The negative log-likelihood, after eliminating constant terms,
is given by

−L(y|µ) =
∑
i

[
ȳi − yi log (ȳi)

]
=

∑
i

ϕi ([Aµ]i),

where ϕi(l) = (bie−l + ri)− yi log(bie−l + ri).

(3)

The regularizer is usually modeled as a penalty function
that forces each pixel in the reconstructed image to be similar
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to its neighbors so that irregular pixels due to noise can be
regularized. In this work, instead of using the conventional
edge-preserving CNQ penalties determined by measuring
the distance between the pixel to be updated and its neigh-
bors, we use different penalty function designed for median
regularization. The mathematical formulation of the median
regularizer is described in the following section.

III. METHODS
A. MEDIAN REGULARIZATION FOR TCT RECONSTRUCTION
The penalty function for median regularization is given
by [34]

R(µ,m) =
∑
j

∑
j′∈Nj

ωjj′
∣∣µj − mj′ ∣∣, (4)

where m is the auxiliary vector whose j′-th component mj′
is in register with µj,Nj represents the local neighborhood
system of the pixel located at j including j itself, ωjj′ rep-
resents the weight between µj and {mj′; j′ ∈ Nj}. Note
that, while the conventional edge-preserving CNQ penalty
function usually penalizes the neighboring pixels’ difference,
µj − µj′ , by decreasing the increment of the penalty for a
relatively large pixels’ difference, the penalty function for
median regularization penalizes the difference between µj
and mj′ . (The details on the role of the auxiliary variable
m and the proof of convexity of the form in (4) can be
found in [34].) Since the regularization term in (4) depends
on the two variables µ and m, the PL approach described
in (2) must be modified to the form of a joint minimiza-
tion over the two variables. When ωjj′ = 1 optimizing (4)
leads to the local median. For example, finding the value of
µj by minimizing

∑
j′∈Nj

∣∣µj − mj′ ∣∣ leads the local median
of mj′ ’s. Since the PL approach described in (2) will be
modified to a joint minimization problem over both µ and
m,mj′ ’s also become themselves local medians ofµj’s within
the new alternating minimization procedure. In this work,
since the penalty term involving the absolute value (4) is
non-differentiable, the penalty function of absolute value,
ψ(ξ ) = |ξ |, is approximated as follows [34]:

ψ(ξ ) = lim
ε→0

√
ξ2 + ε (5)

When positive weights are assigned independently to ωjj′
for j′ ∈ Nj, (4) is generalized to the weighted median
regularization (WMR). To understand the behavior of WMR
in (4), readers may refer to the interpretation of weighted
median in the aspect of least absolute regression [44], where
the weighted median of {mj′; j′ ∈ N (j)}, for example, is rep-
resented by

MED
{
ωjj′♦mj′; j

′
∈ N (j)

}
. (6)

In (6) MED {·} is the median operation and ♦ denotes

duplication. For example,ω♦ς =
ω−times︷ ︸︸ ︷
ς, . . . , ς .AlthoughWMR

in (4) is conceptually related to (6), it cannot be represented

by (6), and the value of ωjj′ in (4) is not limited to a positive
integer.

With the WMR that involves the two variables µ and m,
the PL approach in (2) is modified as the following minimiza-
tion problem of a joint objective 8(µ,m):

µ̂, m̂ = argmin
µ,m

[8(µ,m)],

where 8(µ,m) = −L(y|µ)+ λR(µ,m). (7)

To solve the above joint minimization problem, the following
alternating iterative algorithm is used [34]:

µ̂
n+1
= argmin

µ

[
8(µ, m̂n)

]
, (8)

m̂n+1
= argmin

m

[
R(µ̂n+1,m)

]
. (9)

The actual minimizations in both (8) and (9) are performed
by iterative procedures. The details on the iterative procedure
for each minimization will be described in Sec. III. C.

B. ADAPTIVELY SELECTING FREE PARAMETERS FOR
WEIGHTED MEDIAN REGULARIZATION
In this work we adopt a special case of weighted median
filters, namely the center weighted median filter [36]–[38],
which assigns non-unity weight wjj′ to the center pixel of
the median window while setting all other pixels to one.
The center weighted median filter is performed by multiply
duplicating the center pixels so that the center pixel and
its duplicated pixels become as many as the value of the
center weight. When non-integer real positive weights are
used, the filter operation can be performed by sorting the
elements in the median window from the largest to the small-
est and choosing the element whose accumulated weights
from the largest element just exceeds half of the total sum
of weights [39].

Ko and Lee [36] showed assigning higher weight to the
center pixel within the window can accurately preserve the
image detail including step edges and lines while reduc-
ing the noise when they are corrupted by Gaussian noise.
However, as the center weight increases beyond a certain
level, the resulting image starts to deteriorate. In fact, as the
center weight increases, the weighted median regularization
defined in (4) tends to increase the roughness in monotonic
regions while enhancing the edges, which implies that when
the center pixel is corrupted by noise, it is less probable to
be replaced by an uncorrupted pixel due to its high weight.
To solve this problem, the center weight needs to be selec-
tively chosen to keep low values in monotonic regions and
high values at edges.

In this work we use an adaptive method of choosing the
center weight in accordance with the pixel-wise roughness
measured by calculating the standard deviation (SD) image
defined as follows:

snj =

√√√√√ 1
N − 1

∑
k∈Wj

µ̂nk −
 1
N

∑
j′∈Wj

µ̂nj′

2

, ∀j, (10)
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where snj is the j-th pixel in the SD image sn ∈ {snj ; j =
0, . . . , J − 1} calculated within the 3× 3 windowWj centerd
at j in the previous (the n-th) estimate µ̂nand N = 9 in this
case.

In order to select the center weight with the aid of the
SD image, one can consider directly using the SD image so
that each pixel value of the SD image can be linearly trans-
formed into a center weight for WMR. However, a typical SD
image usually exhibits meaningfully high SD values only for
the coarse-scale edges with relatively high contrast. There-
fore, using the SD image may ignore fine-scale edges with
relatively low contrast. To overcome this problem, instead of
directly using the SD image, we propose to use a cumulative
histogram of the SD image. Our motivation of using the
cumulative histogram lies in our notion that it can not only
reflect the roughness determined from the SD image, but
also provide a more suitable transform that can boost up the
value of the center weight so that the fine-scale edges with
low contrast can be better preserved. Transforming the SD
image into the center weight is performed by the following
procedure: (i) compute the histogram of the SD image sn

at the n-th PL iteration; (ii) calculate the normalized cumu-
lative histogram (NCH); (iii) for each pixel of the current
estimate µ̂n+1j , refer to the corresponding pixel value snj in
the SD image and transform it into the center weight via the
NCH curve.

The use of the NCH curve can also be viewed as equalizing
the histogram of the SD image. Note that the histogram
equalization process is usually performed by transforming
the pixel intensities via a mapping function (also known as
a look-up table) generated by accumulating the histogram.
The motivation for this transformation comes from treating
the pixel intensity as a random variable. Suppose that we
transform a random variable X , whose probability density
function Pr(X = x) = fX (x) is known, into a new random
variable V = g(X ). If the function v = g(x) has a unique
inverse and its real root is x1, the new probability density
function is given by

Pr(V = v) = fV (v) =
fX (x1)
|g′(x1)|

. (11)

If the function for the transformation is given by g(x) =
Pr(X ≤ x), which is the probability distribution of X ,
the probability density function of the new random variable V
in (11) becomes uniform. Therefore, transforming the
SD image via the NCH curve is equivalent to equalizing the
histogram of the SD image. In our case, using the histogram-
equalized SD image has the effect of spreading out the most
frequent SD values so that the areas of low median weights
can gain high values enough to preserve fine-scale edges with
low contrast.

The cumulative histogram Hn(τ ) of the SD image at the
n-th iteration sn can be calculated by

Hn(τ ) =
τ∑

k=0

hn(k), (12)

where hn(·) is the histogram of sn and τ is the quantized
SD value. The center weight for the j-th pixel at the n-th
iteration ωnjj is then given by

ωnjj = 0
n
ω(sj), where 0nω(τ ) = 1+

(uW − 1)Hn(τ )
Hn(T )

. (13)

In (13)0nω(τ ) is the NCH of the SD image at the n-th iteration,
T is the maximum value of τ and uW is the maximum value of
the center weight. Note that the range of0nω(τ ) is now [1, uW].
We call this method the adaptive WMR (AWMR).

In general, the performance of a PL-based method is
strongly affected by the smoothing parameter λ that weights
the regularization term with respect to the likelihood term.
Larger smoothing parameter may overweight the strength of
regularization. When the regularizer is modeled by a sim-
ple quadratic form, large values of the smoothing parameter
result in oversmoothed images whose edges and fine details
are blurred. According to our own observation, when the
regularizer is modeled as a center-weighted median opera-
tion, the effect of increasing the smoothing parameter λ is
similar to that of decreasing the median center weight, and
vice versa. While various methods [45]–[49] of selecting the
smoothing parameter (or the regularization parameter) have
been proposed, each method is suitable only for a specific
regularizer. Therefore, a parameter selected for a specific
regularizer may not work for other regularizers [49].

In this work, to find the optimal value of λ for a given
center weight, we attempt to adaptively adjustλ using the
roughness information obtained from the SD image as done
for the AWMR. The only difference in employing the
NCH curve for λ compared to that for the center weight is
to use the monotonically decreasing character of the transfor-
mation as opposed to the monotonically increasing character
for the median center weight. To design a monotonically
decreasing function by using the NCH curve, we first flip
the NCH curve with respect to the abscissa (the τ axis) and
shift it in the ordinate by the maximum value of NCH. In this
case the value of the smoothing parameter λn+1j for the current
estimate µ̂n+1j is given by:

λn+1j = α
{
0nλ(T )− 0

n
λ(τ )

} ∣∣
τ=sj ,

where 0nλ(τ ) =
2ηHn(τ )
Hn(T )

+ (1− η). (14)

In (14) α is an initial guess of λn+1j and η ∈ [0, 1].
Hence the value of λn+1j is determined within the range of
[α(1− η), α(1+ η)] centered at α.

C. OPTIMIZATION METHOD
To optimize the penalized-likelihood objective for
TCT reconstruction, a variety of different methods [8], [15],
[50]–[52] have been proposed. For our reconstruction prob-
lem described in (7), we employ the method of optimization
transfer using separable paraboloidal surrogates (SPS) [15],
which transforms the complex objective function into sim-
pler quadratic surrogate functions that are convergent to
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the original objective function. In this case, the quadratic
optimization is performed for the surrogate function in place
of the original function at each iteration. To increase the
convergence rate of the algorithm, a block-iterative method,
such as the well-known ordered subsets (OS) method [53],
can be used. The OS method subdivides the observed data
into several subsets (or blocks) and then progressively pro-
cesses each subset of the data by performing projection
and back-projection operations at each iteration. While the
OS-based methods have been very popular in tomographic
reconstruction, they usually do not converge to the optimal
solution. In this work, we also apply the OS principle to our
reconstruction algorithm but employ the improved version of
the paraboloidal surrogates method, namely the transmission
incremental optimization transfer (TRIOT) algorithm [50],
which is not only faster than the SPS algorithm and even its
accelerated version by the OS method, but also guaranteed to
converge to the optimal solution.

To apply the OS principle, we first partition the objective
function 8(µ, m̂n) into a set of the P angular subsets as
follows:

8(µ, m̂n) =
∑
p

8p
(
µ, m̂n,p),

where 8p
(
µ, m̂n,p)

=

∑
i∈S(p)

ϕi ([Aµ]i)


+
λn

P
R
(
µ, m̂n,p). (15)

In (15) S(p) ∈ {S(p); p = 0, . . . ,P− 1} is the p-th angular
subset. In the TRIOT algorithm, the quadratic surrogates,
φp(µ; µ̂

n
, m̂n,p), which are tangent to the original subob-

jective function 8p(µ, m̂n) at the current estimate, are used
in place of 8p(µ, m̂n) so that the minimization problem
becomes a simple quadratic optimization problem. In addi-
tion, for the global convergence, the following augmented
function is minimized at each iteration:

F(µ; (µ̂n,0, . . . , µ̂n,P−1), m̂n,p) =
P−1∑
v=0

φv(µ; µ̂
n
, m̂n,p)

≥ 8(µ, m̂n). (16)

The above augmented function is expressed as the following
separable quadratic surrogates [15]:

φp(µ; µ̂
n
, m̂n,p) = 8p(µ̂

n
, m̂n,p)+∇8p(µ̂

n
, m̂n,p)(µ−µ̂n)

+
1
2
c̆pj(µ̂

n
, m̂n,p)(µ− µ̂n)2, (17)

where ∇ denotes the partial derivative with respect to µj and
c̆pj is the curvature term of φp, which is given by

c̆pj(µ, m̂n,p)=
∑
i∈S(p)

aijγici([Aµ]i)+
2λnj
P

∑
j′∈Nj

$ψ (µj−m̂
n,p
j′ ),

(18)

where γi =
∑

j′ aij′ is for the decoupling problem [54]. For
the derivation of the surrogates for8p(µ, m̂n), the surrogates

for the likelihood and the regularization terms are constructed
separately. Here, ci and $ψ (ξ ) = ∇ψ(ξ )

/
ξ represent the

curvatures of the surrogates for the likelihood and the regular-
ization terms, respectively. In this work, we use the optimum
curvature for the likelihood term, which provides the fastest
convergence rate while sustaining monotonicity [15].

The final update equation for µ derived from (17) is given
by

µ̂
n,p+1
j =

∑
p

µ̂n,pj c̆pj(µ, m̂n,p)−

∑
i∈S(p)

aij∇ϕi([Aµ̂
n,p]i)

+
λnj

P

∑
j′∈Nj

∇ψ(µ̂n,pj −m̂
n,p
j′ )


/∑

p

c̆pj(µ, m̂n,p), ∀j,

(19)

where µ̂n,pj represents the j-th pixel value of µ estimated
from the p-th angular subset at the n-th iteration. Since one
iteration is completed after computations for all the subsets
{S(p); p = 0, . . . ,P− 1} are done, the final update at the n-th
iteration is assigned as µ̂n = µ̂n,P−1, where µ̂n is the estimate
at the end of the n-th iteration, which is equal to the estimate
after all P projection views are processed. In this work,
as suggested in [53] for further accelerations, we performed
a few iterations of the ordered-subsets separable paraboloidal
surrogates (OS-SPS) algorithm in initial iterations. (Since the
OS-SPS algorithm is not guaranteed to converge, it is used
here in initial iterations only.)

To achieve the alternating iterative algorithm described
in (8) and (9), the minimization of the regularization term
with respect to the auxiliary variablem in (9) is performed by
subiterations of the SPS [15] method so that the local median
is obtained. Given µ̂n,p, the update equation for m is given
by

m̂n,p+1,l+1j′ =

∑
j
ωnjj′

(µ̂n,p+1j +m̂n,p+1,l
j′

)

ψ(µ̂n,p+1j −m̂n,p+1,l
j′

)

2
∑
j

ωn
jj′

ψ(µ̂n,p+1j −m̂n,p+1,l
j′

)

, ∀j′ ∈ Nj, (20)

where l ∈ {l|0, . . . ,L − 1} is the index for the subiteration.
Note that the finally updated value at the (L − 1)-th iteration
is assigned as m̂n,p

= m̂n,p,L−1, where m̂n,p is the estimate at
the end of the n-th iteration after processing L subiterations.

Table 1 shows the outline for the PL algorithm using
AWMR with adaptive smoothing (hereafter referred to as
AWMR-AS), where c̆pj(µ, m̂) is the curvature defined in (18)
and ∇8p(µ̂, m̂) is the partial derivative of the partitioned
objective function for the p-th angular subset described
in (15). For the PL algorithm using AWMR only, the smooth-
ing parameter λ is fixedwith amanually chosen value. For the
PL algorithm usingWMRwith adaptive smoothing (hereafter
referred to as WMR-AS), the center weight ω is fixed with a
manually chosen value.

While the PL algorithm with the standard median regu-
larizer derived in this work is guaranteed to converge, the
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TABLE 1. Outline for PL algorithm using AWMR-AS.

adaptive versions, such as AWMR, AWMR-AS and
WMR-AS, are not provably convergent. According to our
own observations, however, the convergence behaviors of
the objective versus iterations were almost indistinguishable
between the non-adaptive version and the adaptive version.
In addition, the results of the adaptive methods were not
affected by the initial states.

IV. SIMULATIONS AND RESULTS
To evaluate the performance of our proposed method,
we performed the 2-D simulation studies using the extended
cardiac-torso (XCAT) software phantom (version 2) [55] con-
sisting of 256 × 256 square pixels with the 2.3mm width
as shown in Fig. 2(a), which provides a virtual model of
the patient’s anatomy. (The phantom image is regarded as
the true underlying image whose pixel values indicating the
attenuation coefficients are generated as if they were from
a live patient.) The transmission data were acquired from
the fan-beam projector with 430 detector bins (Ib in Fig. 1),
each of which is 1.37mm long, and 480 discrete angles
(Ia in Fig. 1) over 360◦. To evaluate our proposed methods
quantitatively, we generated 50 independent Poisson noise
trials of the transmission data and reconstructed 50 images for
each reconstruction method. A sample of the simulated data
using the phantom in Fig. 2(a) is shown in Fig. 2(b), where the
total number of counts is approximately 1.7× 106 excluding
the blank counts. Fig. 2(c) shows a typical noise level when
the image is reconstructed by the conventional FBP method.

FIGURE 2. Illustration of conventional FBP reconstruction using 2-D
software phantom, (a) 256× 256 XCAT software phantom, (b) 430× 480
noisy transmission data, (c) FBP reconstruction from the data in (b).

To compare the proposed PL reconstruction method using
WMR with other existing methods, we first show ML
and PL reconstructions using the conventional regulariz-
ers, such as quadratic (QD) and CNQ regularizers. For the
CNQ regularizer, we used the penalty function defined as
ψ(ξ ) = δ2

[
|ξ
/
δ| − log(1+ |ξ

/
δ|)
]
with δ > 0 [20].

Figs. 3(a) and (b) showML reconstructions using the ordered
subsets convex (hereafter referred to as ML-OSC) algo-
rithm [14] with 32 subsets stopped at the 10-th iteration and
20-th iteration, respectively. (The percentage error (PE) used
for the accuracy measure of each reconstruction is defined
as PE =

∥∥(µ− µ̂)/µ∥∥2 × 100%, where µ is the phantom
image, and µ̂ is the reconstructed image.) Figs. 3(c) and (d)
show the PL reconstructions using the QD regularizer with
λ = 104 and λ = 105, respectively. Figs. 3(e), (f) and (g)
show the PL reconstructions using the CNQ regularizer
with λ = 105 and three different values of δ (10−4, 3 ×
10−4, and 9 × 10−4, respectively). For the PL reconstruc-
tions performed in our simulations, to achieve faster con-
vergence, each algorithm was performed by 2 iterations of
OS-SPS followed by 18 iterations of TRIOT with 32 subsets.
(In this case, considering the 32 subsets used in each algo-
rithm, the effective number of iterations for OS-SPS and
TRIOT was 64 and 576, respectively.)

According the ML-OSC reconstructions shown
in Figs. 3(a) and (b), as the number of iterations increases,
the noise level also increases because the ML algorithm tries
to reconstruct the image which most agrees with the contam-
inated measurements by maximizing the likelihood term. For
the PL algorithm using the QD regularizer (hereafter referred
to as PL-QD), whose results are shown in Figs. 3(c) and (d),
while the noise is smoothed out as the smoothing parameter
λ increases, the edges tend to be oversmoothed as clearly
shown in Fig. 3(d). On the other hand, the PL algorithm
using the CNQ regularizer (hereafter referred to as PL-CNQ),
whose results are shown in Figs. 3(e), (f) and (g), can not only
suppress the noise in the monotonic regions, but preserve the
edges, thereby improving the overall reconstruction accuracy.
Unfortunately, however, the performance of the PL-CNQ
algorithm depends highly on the choice of the additional
parameter δ for a given value of the smoothing parameter λ
as illustrated in Fig. 3(e) and (g).
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FIGURE 3. Anecdotal ML-OSC and PL-QD/CNQ reconstructions from the
transmission data shown in Fig. 2(b) (All of the algorithms were
accelerated by using 32 ordered subsets. The number of iterations used
for ML is either 10 or 20 and that for PL is 20.), (a) ML-OSC with
10 iterations (PE = 17.694%), (b) ML-OSC with 20 iterations
(PE = 21.350%), (c) PL-QD with λ = 104 (PE = 17.787%), (d) PL-QD with
λ = 105 (PE = 23.666%), (e) PL-CNQ with λ = 105 and δ = 10−4

(PE = 15.403%), (f) PL-CNQ with λ = 105 and δ = 3× 10−4

(PE = 14.418%), (g) λ = 105 and δ = 9× 10−4 (PE = 16.019%).

To test our ideas of using WMR for PL reconstruc-
tion, we compared the performances of the following
four median-based regularizers: (i) WMR, (ii) AWMR,
(iii) WMR-AS and (iv) AWMR-AS, where each algorithm
was first performed by 2 iterations of OS-SPS followed by
18 iterations of TRIOT with 32 subsets for further accelera-
tion of the convergence in estimating µ (after 5 subiterations
of the SPS method to estimatem).
First, we attempted to find an optimal pair of the smoothing

parameter λ and center weight ω for WMR by examining the
reconstruction accuracy in terms of the mean of percentage
error (MPE) evaluated over K (set to 50 in this simulation)
noise trials as follows:

MPE =
1
K

∑
k

√√√√√∑
j

(
µj − µ̂

k
j

µj

)2

× 100%, (21)

where µj and µ̂kj are the j-th pixels in the phantom and the
reconstruction from the k-th noise trial, respectively. For Nj
in (4) and (20), we used a 3× 3 local neighborhood for each
pixel j, which yielded the maximum value of 9 for the center
weight ω. Fig. 4 shows the contour plot for the MPEs of the
PL-WMR reconstructions obtained with the 55 different pairs

FIGURE 4. Contour plot for percentage errors (calculated from 50
independent noise trials) of PL-WMR reconstructions obtained with
55 different pairs of the smoothing parameter and the center weight.

of the smoothing parameter λ and center weight ω, where
λ was set to the eleven different values of 5, 7.5, 10, 12.5,
15, 20, 22.5, 25, 30, 37.5 and 45, and ω was set to the five
different values of 1, 3, 5, 7 and 9. In Fig. 4, PL-WMR yields
the minimal value of MPE roughly when λ ∈ (5, 25) and
ω ∈ (3, 9], which indicates that, except for extremely low
values of λ, increasing the center weight leads to the improved
reconstructions in terms of MPE as compared to PL-WMR
with ω = 1 which is the standard MR.

Fig. 5 shows anecdotal PL reconstructions from the data
shown in Fig. 2(b) using WMR, AWMR, WMR-AS, and
AWMR-AS, where the value of the smoothing parameter for
each reconstruction algorithm was set within the range of
λ ∈ (5, 25) according to the result in Fig. 4. For WMR, the
value of ω was set to the three different values of 1, 5 and 9,
and the value of λ was set to the three different values of 7.5,
15 and 22.5. (See Figs. 5(a), (b) and (c) for λ = 7.5,
ω = 1, 5 and 9, respectively, Figs. 5(e), (f) and (g) for
λ = 15, ω = 1, 5 and 9, respectively, and Figs. 5(i), (j) and
(k) for λ = 22.5, ω = 1, 5 and 9, respectively.) For AWMR,
the value of ω was adaptively chosen within the range of
ω ∈ [1, 9] and the smoothing parameter λwas set to the three
different values of 7.5, 15 and 22.5. (See Figs. 5(d), (h) and (l)
for ω = 1, 5 and 9, respectively.) In this work, to avoid
exhaustive search for the smoothing parameter, η in (14) was
set to 0.5. For PL using WMR-AS in Figs. 5(m), (n) and (o),
the value of ω was set to the three different values of 1, 5 and
9, respectively, and λ was adaptively chosen within the range
of λ ∈ [7.5, 22.5]. For AWMR-AS in Fig. 5(p), both ω and
λ were adaptively selected within the ranges of ω ∈ [1, 9]
and λ ∈ [7.5, 22.5], respectively.

The results shown in Figs. 5(a)(b)(c), (e)(f)(g) and (i)(j)(k)
indicate that, as the center weight ω increases for a given
value of λ, the WMR better captures the fine-scale edges,
whereas it increases the roughness in the monotonic regions.
This lies in the fact that the higher the value of ω, the lower
the probability that the center pixel will be replaced by the
neighbors, which is similar to the effect of decreasing the
smoothing parameter λ so that the pixel to be updated is less
affected by its neighbors.
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FIGURE 5. Anecdotal PL-WMR reconstructions from the transmission data shown in Fig. 2(b) using different
values of the smoothing parameter λ and the center weight ω, (a) WMR with λ = 7.5 and ω = 1
(PE = 14.765%), (b) WMR with λ = 7.5 and ω = 5 (PE = 14.900%), (c) WMR with λ = 7.5 and ω = 9
(PE = 15.045%), (d) AWMR with λ = 7.5 (PE = 14.718%), (e) WMR with λ = 15 and ω = 1 (PE = 14.607%),
(f) WMR with λ = 15 and ω = 5 (PE = 14.247%), (g) WMR with λ = 15 and ω = 9 (PE = 14.225%), (h) AWMR
with λ = 15 (PE = 14.242%), (i) WMR with λ = 22.5 and ω = 1 (PE = 15.169%), (j) WMR with λ = 22.5 and
ω = 5 (PE = 14.629%), (k) WMR with λ = 22.5 and ω = 9 (PE = 14.523%), (l) AWMR with λ = 22.5
(PE = 14.666%), (m) WMR-AS with ω = 1 (PE = 14.351%), (n) WMR-AS with ω = 5 (PE = 14.156%),
(o) WMR-AS with ω = 9 (PE = 14.125%), (p) AWMR-AS (PE = 14.116%).

On the other hand, for a given value of the smoothing
parameter, the AWMR adaptively selects the value of the
center weight. Figs. 5(d), (h) and (l) compared with Figs. 5(c),
(g) and (k), respectively, indicate that, the AWMR not only
preserves the fine-scale edges just like the WMRwith ω = 9,
but also better suppresses the noise in monotonic regions than
the WMR with ω = 9.
Note that, for a given value of the smoothing parameter,

the PEs of AWMR in Figs. 5(d), (h) and (l) are close to those
of WMR with ω = 5 in Figs. 5(b), (f) and (j). Similarly, for
a given value of the center weight, the PEs of WMR-AS in
Figs. 5(m), (n) and (o) are similar to those of WMR with

λ = 15 in Fig. 5(e), (f) and (g). However, each of the WMR’s
adaptive versions (AWMR and WMR-AS) is still less than
ideal due to its own limitation in simultaneously preserving
edges and reducing noise. On the other hand, the combined
AWMR and WMR-AS, namely the AWMR-AS, not only
takes advantages of AWMR and WMR-AS in selecting the
values ofω and λ, but also outperforms bothmethods in terms
of PE.

As the AWMR-AS method requires an initial guess
of the smoothing parameter λ, which is denoted as α
in (14), to determine the proper range of λ, we attempted
to observe the effect of λ over a range by measuring

189498 VOLUME 8, 2020



J. E. Jung, S.-J. Lee: Penalized-Likelihood Image Reconstruction for TCT Using Adaptive Median Regularization

the MPEs defined in (21) from 50 independent noise
trials.

Fig. 6(a) shows the MPE curves versus the smoothing
parameter λ for PL reconstructions using WMR with ω =
1, 5 and 9, and AWMR, where each curve was measured
from the results calculated from the eleven different values
of λ within the range of λ ∈ [5, 45] for each reconstruction
algorithm. Similarly, Fig. 6(b) shows the MPE curves for PL
using WMR-AS with ω = 1, 5 and 9, and AWMR-AS. Note
that each MPE value was designated at the center value of λ
(10, 15, 20, 25 and 30) in (14) within each range of λ ([5,15],
[7.5,22.5], [10,30], [12.5,37.5] and [15,45], respectively).

FIGURE 6. Mean of percentage error (calculated from 50 independent
noise trials) versus smoothing parameter curves for PL using WMR (ω = 1,
5, 9), AWMR, WMR-AS (ω = 1, 5, 9) and AWMR-AS, (a) WMR (ω = 1, 5,
9) and AWMR, (b) WMR-AS (ω = 1, 5, 9) and AWMR-AS (Since the
smoothing parameter in both WMR-AS and AWMR-AS is adaptively
chosen for each pixel, its value is unknown. Therefore, each MPE value
was designated at the center value of the smoothing parameter, i.e., 10,
15, 20, 25 and 30.)

According to Fig. 6(a), the overall MPEs for AWMR are
much smaller than those for WMR with ω = 1 and com-
parable to those for WMR with ω = 5. On the other hand,
Fig. 6(b) shows that, by adaptively selecting the smooth-
ing parameter at each pixel, the range of each MPE curve
is relatively smaller than that of each MPE curve shown
in Fig. 6(a). Note that the ranges of λ for WMR-AS and
AWMR-AS are the same as those for WMR and AWMR.

Note also that AWMR-AS with λ ∈ [7.5, 22.5] outperforms
other algorithms in terms of MPE.

To validate our proposed methods more quantitatively,
we conducted regional studies using the contrast recovery
coefficient (CRC) [56] which represents the degree of the
recovered contrast of a region relative to the background
region. The CRC in each region of interest (ROI) is defined
as

CRCk
<
=
CRk
<

CR0
<

, where CRk
<
=

∣∣Z k
<
− Z kB

∣∣
Z kB

. (22)

In (22), CR0
<
is the true contrast in the phantom, Z kB is the

mean attenuation in the background region, and Z k
<
represents

the mean attenuation in each ROI < at the k-th noise trial,
i.e., Z k

<
=
∑

j∈<

(
µ̂kj

/
u<
)
, where u< is the number of pixels

in each ROI. The ensemble mean of CRC is then defined as

CRC< =
1
K

K∑
k=1

CRCk
<
. (23)

The ensemble mean of the background SD is calculated by

σ̄B =
1
K

K∑
k=1

σ kB,

where σ kB =

√√√√√ 1
uB−1

∑
j∈B

µ̂kj −
 1
uB

∑
j′∈B

µ̂kj′

2

.

(24)

In (24), uB is the number of pixels in pre-selected background
region B.

Fig. 7(a) shows the pre-selected four regions (R1, R2, R3
and R4) containing edges and a background region located in
the dark area. Note that the background SD on the abscissa is
not the SD of the background region for the CRCs but is the
SD of a background region to measure the noise level of each
reconstruction, which is not shown in Fig. 7(a).

Figs. 7(b), (c), (d) and (e) show the ensemble mean (calcu-
lated from 50 independent noise trials) of the regional CRC
versus the background SD curves for the PL using WMR
with ω = 1, 5 and 9, AWMR, WMR-AS with ω = 1,
5 and 9, and AWMR-AS, where each CRC-SD curve for the
WMR with ω = 1, 5 and 9, and AWMR includes the results
from the eleven different values of λ within the range of
λ ∈ [5, 45]. For WMR-AS with ω = 1, 5 and 9, and AWMR-
AS, each CRC-SD curve was measured from the results with
the smoothing parameter adaptively selected at each pixel
within the ranges of λ ∈ [5, 15], [7.5, 22.5], [10, 30], [12.5,
37.5] and [15, 45] centered at λ = 10, 15, 20, 25 and 30,
respectively.

According to the results from the ROI studies, WMR with
ω = 9 yields relatively high CRCs only when its background
SDs are very high. This indicates that setting the center
weight for WMR to a larger value allows the algorithm to
provide the higher regional contrast but yields unfortunate

VOLUME 8, 2020 189499



J. E. Jung, S.-J. Lee: Penalized-Likelihood Image Reconstruction for TCT Using Adaptive Median Regularization

FIGURE 7. Mean of regional contrast recovery coefficient versus mean of background standard deviation (calculated from 50 independent
noise trials) curves for PL using WMR (ω = 1, 5, 9), AWMR, WMR-AS (ω = 1, 5, 9) and AWMR-AS, (a) ROIs for regional contrast recovery
coefficient, (b) results for R1, (c) results for R2, (d) results for R3, (e) results for R4.

effect of degrading the performance of noise suppression
in the locally monotonic regions. In contrast, the AWMR
overcomes this limitation due to the trade-off between CRC
and background SD by adaptively choosing the value of the
center weight ωjj at each pixel. Similarly, as the smooth-
ing parameter λj is adaptively adjusted, the limitation of
WMR due to the trade-off between the CRC and background
SD can be overcome. Finally, AWMR-AS further improves

WMR-AS and achieves the exceptional performance in the
regional contrast recovery while maintaining relatively low
background SDs.

V. SUMMARY AND CONCLUSION
We have developed a new method of adaptively selecting
the weight for the center-weighted median regularizer in
PL reconstruction for TCT. Our method of using the
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cumulative histogram of the SD image has the effect of
enhancing the fine-scale edges by boosting up the center
weights of the pixels with relatively low SD values. Trans-
forming each pixel of the SD image into the center weight via
the NCH curve is equivalent to transforming each pixel of the
histogram-equalized SD image into the center weight. With
the histogram-equalized SD image, the AWMR can preserve
edges with low SD values as well as edges with high SD
values. According to our simulation results, for all levels of
the smoothing parameter, the accuracies of theAWMR results
in terms of MPE were comparable to or even better in some
cases than those of the best WMR results with the manually
chosen center weights.

We have also tested the similarmethod of adaptively select-
ing the optimal value of the smoothing parameter for each
pixel using the flipped NCH curve that transforms the high
pixel values of the histogram-equalized SD image into the low
values of the smoothing parameter, and vice versa. Our exper-
imental results indicate that, when the smoothing parame-
ter is adaptively chosen for each pixel in AWMR, which
is referred to as AWMR-AS, the performance is improved
further in terms of the ensemble mean of regional CRC as
well as the MPE. Although WMR can generate better results
than AWMRor AWMR-AS for some particular combinations
of the center weight and smoothing parameter, it does not
guarantee reliable results with equally good image qualities
for different objects.

The net conclusion is that our PL algorithm using AWMR
or AWMR-AS is more practical and reliable than other
median-based regularization methods, such as the methods
proposed in [33], [35], in that it is not only derived completely
as the minimization of a joint convex objective dedicated to
TCT, but also alleviates the difficulty in judicious choices of
hyperparameters, such as the median center weight and the
smoothing parameter.
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