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ABSTRACT This study proposes a methodology using deep learning and a multi-resolution segmentation
algorithm to perform the semantic segmentation of remote sensing images. Initially the image is segmented
using a CNN, and then an image with homogeneous regions is generated using a multi-resolution segmen-
tation algorithm. Finally, a data fusion process is performed with these two images, generating the final
classified image. The field of study was the Brazilian Amazon region. The proposed methodology classifies
images in the following classes: forest, pasture and agriculture. The input data used were LANDSAT-8/OLI
images. The reference data were extracted from the results of the TerraClass project in 2014. Two datasets
were evaluated: the first with six bands and the second with three bands. Three CNN architectures were
evaluated together with three optimization methods: SGDM, ADAM, and RMSProp and the dropout and L,
regularization methods as methods for generalization improvement. The best model, CNN -+ optimization
method + technique for generalization improvement, evaluated in the validation set, was submitted to a
5-fold cross validation methodology, and the results were compared with pre-trained networks using the
learning transfer methodology; in this case the networks used for comparison were ResNet50, InceptionRes-
netv2, MobileNetv2 and Xception. The proposed methodology was evaluated through image segmentation
of some regions of the Amazon. Finally, the proposed methodology was evaluated in regions used by other

authors. The accuracy values obtained for the images evaluated were over 99%.

INDEX TERMS Deep learning, convolutional neural networks, remote sensing, image segmentation.

I. INTRODUCTION

Remote sensing consists of collecting information about an
object or geographic area without direct contact. This infor-
mation was compiled through various technologies such as
sensors installed on-board aircraft, satellites, or other plat-
forms [1]. The data generated from remote sensing sys-
tems are very useful for several applications, for example:
urban - demographic interventions, government registra-
tions, urban planning, support for the real estate sector;
agricultural - monitoring crop conditions, crop forecast-
ing, soil erosion; geological - minerals, oil and natural gas
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exploration; ecological - monitoring flooded regions, soils,
oceans and continental waters; forest - lumber production,
biomass estimation, monitoring of deforestation) [2].

With regard to monitoring deforestation in the Amazon
through remote sensing, the National Institute for Space
Research (INPE) is a world reference. Among the various
projects developed by INPE for this monitoring, the Pro-
gram for Monitoring Deforestation in the Legal Amazon
(PRODES) and TerraClass stand out [3], [4]. PRODES pro-
vides data through annual maps of deforestation in the Ama-
zon region. The TerraClass project uses the data generated by
PRODES to perform a land use and land cover classification
in the following classes: forest, pasture, agriculture, urban
areas, mining and others. This information helps government
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agencies develop public prevention policies to contain defor-
estation [5]. In 2018 and 2019, deforestation in the Amazon
affected 7,535 km? and 10,129 km?, respectively. Therefore,
the deforested area showed an increase of 34% from 2018 to
2019. In 2019, 84.56% of all deforestation observed in the
Amazon occurred in the states of Para, Mato Grosso, Ama-
zonas, and Rondonia [6]. Although PRODES and TerraClass
are large projects and provide very reliable data, they still rely
on a significant portion of work done by human intervention.
In order to speed up and make the process more efficient,
several studies have been done using machine learning tools
[7]-[18].

In [11], [12], [15], the authors performed image
segmentation using threshold classification. The results
obtained by these authors had an accuracy above 90%. Some
works classified images through selecting random forests,
as seen in [8], [13], [16]. In [13], the authors obtained an
accuracy above 98%. In [8] and [16] the accuracy was 85%
and 88%, respectively.

The works of [7] and [17] employed unsupervised
classification to segment remote sensing images. In [17],
the authors used Bayesian Updating of Land Cover: Unsu-
pervised (BULC-U) and obtained an accuracy of 80%. In [7],
the authors used K-Nearest Neighbors (KNN) and obtained
an accuracy of 75.95%.

According to [19], from the first decade of this century,
the neural network was reborn under the new label known
as deep learning. Deep learning makes use of computational
models with hierarchical architectures composed of multiple
processing layers, in order to ‘“‘learn” representations of
data in very different formats: audio, images, and text [20].
According to [19], the large amount of data available in
recent years, together with the increase in computational
power, allowed the use of deeper architectures that were not
previously possible.

The works of [9], [10], [18] used deep learning to detect
deforested areas in regions of the Brazilian Amazon. The
results obtained by these authors were quite satisfactory.
However, the authors evaluated a specific region of the Ama-
zon. Another criticism we make of the previously published
studies is that they have not made available the dataset used
for benchmarking.

A major challenge in training CNNs with remote sensing
images is that the classes are unbalanced. In other words, in a
region captured by a satellite image, there is a great imbalance
in terms of the area of various types of soils. This problem can
lead, in CNN training, to optimization methods performing
better in the most frequent classes. This work proposes a
method to solve the difficulties in the segmentation of land
use and coverage in different regions of the Amazon using
CNNs. To circumvent the imbalance problem, the mosaic
image technique is proposed in this work for training CNN in
remote sensing applications. In this technique, small rectan-
gular samples of agriculture, forest and pasture are extracted
from satellite images. From these samples, a large image is
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created, with almost the same number of small rectangles of
forest, agriculture, and pasture.

Another contribution of this study is that it boosts the
results obtained with CNN in soil classification by fusing its
output with the output of a segmentation algorithm of homo-
geneous regions. The fusion results outperform the results
obtained only with CNN.

Finally, we compare the results obtained with customized
CNN architectures trained from scratch with the results
obtained with transfer learning (TL), using shallow
training of the following architectures: ResNet50 (RN50),
InceptionResnetv2 (IR2), MobileNetv2 (MN2), and Xception
(XO) [21]-[24].

Therefore, the main contributions of this paper are the

following:
1) Proposing customized CNN architectures for semantic

segmentation of different types of use and land cover,
in different regions of the Amazon.

2) Proposing a training, validation and testing method-
ology of CNN networks, for the remote sensing area,
using the mosaic image concept.

3) Comparing the results of the proposed CNN architec-
tures, trained from scratch, with the results of transfer
learning architectures.

4) Proposing a fusion technique using CNN data and
data from a segmentation algorithm of homogeneous
regions for improving the soil classification in remote
sensing applications.

5) Availability of a dataset of types of land use/cover
(forest, agriculture and pasture) in the Amazon region,
which may be used as a base for another research in the
Amazon region.

II. LITERATURE REVIEW

In [7], [16], [17], the authors carried out the classification
of images in different regions of the state of Mato Grosso,
Brazil. The classes used by the authors were agriculture,
forest, and pasture. In [7], the authors used LANDATA-5/TM
images as input dataset. The training and testing dataset
were built from information from the TerraClass2008 project.
The authors used the following classifiers: Decision Tree
(DT), Naive Bayes (NB), KNN, Support Vector Machine
(SVM), and Optimal Path Forest (OPF). The best results were
obtained using the SVM classifier in the region corresponding
to image 227/68 (LANDSAT-5/TM image). For this region,
an accuracy of 86.04% was obtained. In [16], the authors used
LANDSAT-8/0OLI and PROBA-V CI images. The classifier
used by the authors was the random forest, and the accuracy
obtained was 88%. In [17], the region of the state of Mato
Grosso evaluated by the authors included the municipalities
of Alto Boa Vista, Queréncia, Ribeirdo Cascalheira, and
Canarana. The images used were LANDSAT-5, and the
data from the GlobCover project of 2009 were used as the
gold standard. The authors used the unsupervised classifier
called BULC-U. Using this classifier, the accuracy obtained
was 80%.
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In [8], the authors used random forests to classify
regions of the state of Ronddnia in the following
classes: deforestation, degradation, and forest. The authors
used LANDSAT-5/TM and LANDSAT-8/OLI images. The
accuracy obtained was 85%.

In [11], [12], [15], the authors employed a threshold seg-
mentation for remote sensing image classification. In [11],
the authors evaluated a region of the state of Mato Grosso with
the objective of classifying deforestation and environmental
degradation in the region. The region assessed corresponds
to an area of scene 226/68 of LANDSAT. LANDSAT-5/TM
images from 2005 to 2011 and LANDSAT-8/OLI images
from 2013 to 2017 were used. The accuracy obtained
by the authors was 94.93%. In [12], the authors used
LANDSAT-8/0OLI and Sentinel-2 images to classify selective
cut in a region of southern Amazonas State, near the village
of Santo Antonio do Matupi. The accuracy obtained by the
authors was 95.7% for the LANDSAT-8/OLI images and
96.7% for the Sentinel-2 images. In [15], the authors carried
out the classification of images in the region of the Carajas
mines, located in the south of the state of Para. The classes
defined by the authors were cerrado, forest, water and mining
area. The authors used iknos, geoeye and world view images,
and the gold standard was generated by the authors them-
selves through visual interpretation. The accuracy obtained
by the authors was 91%.

In [18], the authors used CNN to perform the classification
of deforested areas in a region of southern Pard state. The
authors used Landsat-8/OLI images and PRODES data as the
gold standard. Using CNN U-NET, the authors obtained an
accuracy of about 95%.

In [9], the authors mapped deforestation between images
one year apart from the other, between 2017 and 2018 and
between 2018 and 2019, using a deep learning method-
ology. The images used were scenes 227/63, 227/65, and
230/65 from LANDSAT-8/OLI, which correspond to regions
of the state of Pard and Amazonas, Brazil. The deforesta-
tion was extracted from the PRODES project. The authors
used three CNN architectures available in the literature:
SharpMask, U-Net and ResUnet, and two classical machine
learning algorithms: random forest (RF) and multi-layer per-
ceptron (MLP). The best results obtained with the CNN
ResUnet had an accuracy and an F1-Score of 99.93% and
94.65%, respectively.

In [10], the authors evaluated deep learning strategies for
automatic deforestation detection. The experiments used two
Landsat-8/OLI images, acquired at different dates. The first
study area corresponds to a small region of the Amazon
biome, located, more specifically, in the state of Par4, Brazil.
The state of Pard comprises 26% of the Brazilian Ama-
zon, and most of it is covered by dense tropical forest. The
reference data used in this experiment refer to the defor-
estation that occurred between August 2016 and July 2017.
The second study area is a small region of the Brazilian
Cerrado biome, located in the state of Maranhao, Brazil.
For this case, the deforestation took place in the years 2017
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and 2018. The authors obtained an accuracy and F1-Score
of 95% and 63%, respectively, in the Amazon, and 97% and
78%, respectively, in the Cerrado. The last results, obtained
in the Cerrado reached higher percentages than those of the
Amazon. According to the authors, this is due to the pattern
of deforestation in the Cerrado biome that removes all vege-
tation, in contrast with the Amazon, where vegetation is not
completely removed.

The papers presented in this review showed that machine
learning techniques have great potential to classify remote
sensing images and to perform automatic segmentation in the
most varied types of vegetation cover in the Amazon region.
In [9], [10], [18], the authors used deep learning techniques
to classify deforestation regions in the Amazon. The results
achieved were quite satisfactory. However, in each work,
a specific region of the Amazon was used. Another criticism
we make of the previously published works is that they
have not made available the dataset used for the benchmark.
This limits the diversification of solutions to the real world.
No papers were found that presented an adequate model
in deep learning for land use/cover classification for the
Amazon region, encompassing the many varieties of existing
environments.

In this work we make available the dataset used, which
covers different areas of the Amazon. These areas cover
the Brazilian states of Amazonas, Mato Grosso, Pard, and
Rondonia.

Ill. MATERIALS AND METHODS

This work aims proposing a method to solve the difficulties in
the segmentation of land use and coverage of different regions
of the Amazon region. Figure 1 shows a flowchart of the
methodology used for segmentation of land use and coverage.
As shown, there are two branches: The left one corresponds
to CNN processing and the right one to segmentation with
homogeneous regions. In the first block of the left branch,
the band’s selection is performed. After, in the semantic seg-
mentation block, the CNN performs the identification of the
different soil coverage. In the right branch, we perform the
segmentation of homogeneous regions. At the end, uniting
the two branches, we have the fusion block. In the following
sections, each block of this flowchart will be explained in
detail.

A. LANDSAT IMAGE

In this work, LANDSAT-8/OLI images from the Amazon
region, from 2014, were used. These images are available
for free at [25]. As shown in Table 1, the images used cover
the Brazilian states of Amazonas, Mato Grosso, Para and
Rondonia.

For generating the gold-standard images for the classifier,
the results of the TerraClass project, from 2014, were used.
The data were acquired free of charge on the INPE website
[4]. The data generated in the TerraClass project delimit the
regions of the Brazilian Amazon in the following classes: for-
est, agriculture, pasture, unobserved area, urban area, mining,
others, non-forest and hydrography.
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FIGURE 1. Flowchart of methodology used.

TABLE 1. List of images used.

o/P* Date o/pP* Date Oo/P* Date

001/65  08/12/2014 229/66 08/09/2014  231/66 08/23/2014
001/66  08/12/2014 230/64 08/16/2014  232/64 08/30/2014
001/67  08/12/2014 230/65 08/16/2014  232/65 08/30/2014
002/65  08/03/2014 230/66 07/15/2014  233/65 08/21/2014
002/66  08/19/2014 231/64 09/08/2014  233/66 08/21/2014
229/65  08/09/2014 231/65 08/23/2014  233/67 08/21/2014
223/68  08/15/2014 226/67 08/04/2014  227/71 08/11/2014
224/67  08/06/2014 226/68 08/04/2014  228/67 08/18/2014
224/68  07/21/2014 226/69 08/04/2014  228/68 08/18/2014
224/69  08/06/2014 226/70 08/04/2014  228/69 07/01/2014
224/70  08/22/2014 226/71 08/20/2014  228/70 08/18/2014
225/67 08/13/2014 227/67 07/26/2014  228/71 08/18/2014
225/69  08/13/2014 227/68 08/11/2014  229/68 08/09/2014
225/70  08/29/2014 227/69 08/11/2014  229/70 08/09/2014
225/71  08/13/2014 227/70 08/11/2014  229/71 08/09/2014
222/62  10/27/2014 224/63 07/05/2014  225/62 10/27/2014
223/62  09/16/2014 224/64 07/05/2014  225/65 10/27/2014
223/66  07/30/2014 224/65 08/22/2014  226/62 08/20/2014
223/67  08/15/2014 224/66 08/06/2014  227/65 08/11/2014
230/68  08/16/2014 231/67 08/23/2014  232/66 08/14/2014
230/69  07/31/2014 231/68 08/23/2014  232/67 08/14/2014

*QOrbit/Point

For this work, information on forest, pasture and
agriculture areas were used corresponding to a problem with
three classes. The classes of unobserved area, urban area,
mining and others were not considered because they represent
a very small percentage area, and it would not be possible
to extract a significant amount of samples to be used in the
process of semantic classification with CNNs. The nonforest
and hydrography areas were not used because they are part
of an INPE exclusion mask. Thus, these regions are not
considered in the systematic mapping.

B. BAND SELECTION

According to [26] the bands Blue (B2), Green (B3), Red
(B4), Near Infrared (B5), Shortwave Infrared 1 (B6), and
Shortwave Infrared 2 (B7) are the most suitable for vegetation
analysis. According to [27], B4, BS, and B6 is the best
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(a) (b) (c)

FIGURE 2. Image patches in color composition of bands
B6-B5-B4 corresponding to: (a) forest (b) pasture (c) agriculture.

TABLE 2. Splitting image patches.

Class Training Validation Test
Agriculture 2,000 1,000 1,000
Forest 75,000 75,000 75,000
Pasture 3,000 1,500 1,500

(©
(d)

©

(b)

FIGURE 3. Example of mosaic image. In (a) is shown a mosaic image in
color composition of bands B6-B5-B4, composed of agricultural, forest
and pasture patches, in (b) the gold standard image, and in (c), (d) and
(e) we have the gold standard for each image patch, corresponding to
agriculture, pasture and forest area, respectively.

combination of three bands for remote sensing applications
whose purpose is to perform soil classification. Thus, two
versions of image datasets were assembled: the first with the
six bands (B2, B3, B4, B5, B6, and B7) and the second with
three bands (B4, BS5, B6).

Using the reference data from the TerraClass project for
the year 2014, 40 x 40 pixel-sized patches were gener-
ated for each class. Figure 2 presents three examples of
these patches, corresponding to forest, pasture, and agricul-
ture. Using the LANDSAT-8/OLI images, 4,000 agricultural
patches, 225,000 forest patches, and 6,000 pasture patches
were generated. These patches were divided into three sets:
training, validation and testing, as shown in Table 2.

Using the patches previously described, large images,
defined as mosaic images, are generated. Each mosaic image
has dimensions of 400 x 400 pixels and is formed by
100 patches. Each unit of the mosaic image is randomly
generated selecting a patch of agriculture, forest, or pasture.
Each mosaic image has a gold standard image. For build-
ing the gold standard image, the pixels corresponding to
forest regions were marked with the value 255, the pixels
corresponding to pastures region were marked with the value
100, and the pixels corresponding to agriculture regions were
marked with the value 1. Figure 3 shows an example of a
mosaic image and the corresponding gold standard. It can be
observed that, out of the 100 patches, 34 are from agriculture,
35 from forest, and 31 from pasture regions.

Two versions of image datasets were generated with a total
of 4,000 mosaic images each. For each version, 70% of the
images (2800) were destined for the training set, 15% (600),
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FIGURE 4. CNN architectures used in this work.

TABLE 3. Mosaic image dataset generated with the quantity for training,
validation, and testing sets.

Class Bands Total Training Validation Test
1 B2, B3,B4,B5,B6,B7 4,000 2,800 600 600
2  B4,B5,B6 4,000 2,800 600 600

for the validation set and 15% (600), for the test set. The first
version consists of 6-band images: B2, B3, B4, B5, B6 and
B7. The second version is composed of three-band images:
B4, B5, and B6. Table 3 presents the image datasets generated
used in this work.

C. CNN SEMANTIC SEGMENTATION

Three CNN architectures (Figure 4) used in this work were
based on the architecture proposed in the work of [28].
In this work, the authors performed the lumen segmenta-
tion in intravascular optical coherence tomography (IVOCT)
images.

As shown in Figure 4, CNN1 has four sub-sampling steps
(maxpooling). Before and after the first subsampling step,
there are three sequences of 3 x 3 convolutive layers, batch
normalization layer, and ReLU. After the second, third and
fourth subsampling steps, there are four sequences of 3 x 3
convolutive layers. In addition, CNN1 is composed of four
oversampling steps. CNN2 has two subsampling steps (max-
pooling) and two oversampling steps. Before each sub-
sampling, there are three sequences of 3 x 3 convolutive lay-
ers, a batch normalization layer, and ReL.U. Finally, CNN3,
like CNN2, also has two subsampling steps (maxpooling) and
two oversampling steps. However, before each subsampling
there is only one sequence of 3 x 3 convolutive layer, batch
normalization layer, and ReL.U.
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FIGURE 5. Flowchart of the fusion process.

The optimization methods evaluated were SGDM, ADAM
and RMSProp. For each of these methods the following meth-
ods were used to improve generalization: dropout, L, regular-
ization and dropout with L, regularization. Mosaic images
were used as the input dataset. Two groups of simulations
were done. Both groups are comprised of 36 simulations
(3 architectures x 3 optimization methods x 4 improving
generalization methods). In the first group, six-band mosaic
images were used as CNN inputs, while in the second
group, three-band mosaic images were used as CNN
inputs.

For each dataset version, the model (architecture + opti-
mization method + improving generalization method) with
best performance, evaluated in terms of accuracy in the
validation set was selected.
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FIGURE 6. lllustration of fusion process: (a) original image; (b) result image of homogeneous region segmentation algorithm. Inside the small rectangle,
three small regions are selected and magnified. The upper region has more gray pixels so it is classified as pasture. The central region has more black
pixels so it is classified as agriculture, and because there are more white pixels in the lower region, it is classified as forest.

The CNN performances were compared with pre-trained
network performances, using transfer learning, with shallow
training. The pre-trained networks used in this work were
ResNet50, InceptionResnetv2, MobileNetv2, and Xception
combined with SGDM, ADAM, and RMSProp optimization
methods, six-band mosaic images as input. A total of twelve
experiments were performed.

A Dell Precision 5820 Workstation with Intel Xeon
W-2102 2.9GHz, 64GB RAM, Windows 10, Matlab 2019a
and NVIDIA Quadro GV100 32GB was used in the exper-
iments. The following parameters were used for the CNN
training: initial learning rate = 0.001, learning rate dropout
factor = 0.5, number of epochs = 200, batch size = 2, dropout
layer parameter = 0.3, L, smoothing factor = 0.001.

To evaluate the results, the Global Accuracy (GA), Average
Accuracy (AA), Jaccard Similarity Coefficient (J), Weighted
Jaccard Similarity Coefficient (WJ) and F1 Score (F1) were
calculated [29].

In this work, CNN was trained using mosaic images
consisting of 40 x 40-pixel patches that tend to generate
images cut out with patches of the same size. To neu-
tralize this trend and improve classification/segmentation,
a fusion process using the CNN output and a multi-resolution
homogeneous region segmentation algorithm was used. This
algorithm and the fusion process are described in the
sequences.

D. SEGMENTATION OF HOMOGENOUS REGIONS

The segmentation of homogeneous regions consists of cre-
ating an image with regions of the same homogeneity based
on the value of the pixel of the image. In this work, the algo-
rithm called a multiresolution segmentation proposed by [30]
was used, which performs a general segmentation based on
homogeneity definitions combined with local and global opti-
mization techniques. A scale parameter is used to control the
average size of the image object. According to the authors,
multi-resolution segmentation is a technique for merging
regions starting with one-pixel objects. In several subsequent
steps, smaller image objects are merged into larger objects.
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Throughout this pairwise grouping process, the underlying
optimization procedure minimizes the heterogeneity of the
resulting image objects. At each step, this pair of adjacent
image objects is merged, resulting in the smallest growth of
the defined heterogeneity. If the smallest growth exceeds the
limit defined by the scale parameter, the process stops. In this
way, we can say that multiresolution segmentation is a local
optimization procedure. In this work, the use of this algorithm
was performed through the e-Cognition Software. The scale
factor used was 200.

E. DATA FUSION

The data fusion consists of using the image resulting from the
multi-resolution algorithm and the image resulting from the
semantic classification made by the CNN model. The data
fusion used in this work is illustrated by means of the
flowchart presented in Figure 5. For each region generated
by the homogeneous region segmentation algorithm, we eval-
uated the pixel classification by the CNN. The most fre-
quent class of pixels in a region is considered the class
of that region. Figure 6 illustrates this process: Figure 6(a)
shows an original image; Figure 6(b) shows the results of
the homogeneous region algorithm applied in Figure 6(a).
In Figure 6(b), inside a black rectangle, three small neighbor
regions, which are magnified in the right side, are selected.
These selected regions are filled with a hypothetical pixel
classification by the CNN. The upper region has more white
pixels, so it is classified as forest. The central region has
more black pixels, so it is classified as agriculture, and the
lower region has more gray pixels, so it is classified as
pasture.

IV. RESULTS AND DISCUSSION

A. CNN SIMULATION

Tables 4 and 7 present the performance metrics of the three
CNN architectures proposed in this work using the six-band
and three-band mosaic image dataset, respectively. For the
six-band dataset, the model with the best performance was
the one in which CNN1 was used, together with the RMSProp
optimization method and without using methods for
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TABLE 4. Performance of CNN1 with six-band dataset.

GA AA J WwJ F1  Train

Experiment (%) (%) () () (%) Time
(h)
CNN1/SGDM 99.83 99.83 99.65 99.65 99.45 94.14
CNN1/SGDM/Dropout 99.87 99.87 99.75 99.75 99.64 58.99
CNN1/SGDM/L, 99.93 99.93 99.85 99.85 99.82 99.50
CNN1/SGDM/Dropout/L, 99.94 99.94 99.88 99.88 99.85 96.09
CNN1/ADAM 99.87 99.87 99.75 99.75 99.70 142.30
CNN1/ADAM/Dropout 99.95 99.95 99.89 99.89 99.91 130.46
CNN1/ADAM/L, 99.84 99.84 99.68 99.68 99.76 139.95
CNN1/ADAM/Dropout/L, 99.84 99.84 99.68 99.68 99.76 138.28
CNNI1/RMSProp 99.98 99.98 99.96 99.96 99.95 123.41
CNN1/RMSProp/Dropout 99.96 99.96 99.93 99.93 99.91 133.00
CNNI1/RMSProp/L, 99.89 99.89 99.78 99.78 99.84 134.26
CNNI1/RSMProp/Dropout/L, 99.91 99.91 99.81 99.81 99.85 134.34
CNN2/SGDM 97.52 97.53 9521 9520 91.30 52.89
CNN2/SGDM/Dropout 97.48 97.49 95.13 95.12 92.08 50.01
CNN2/SGDM/L, 98.33 98.33 96.73 96.72 93.29 40.22
CNN2/SGDM/Dropout/L, 98.20 98.20 96.49 96.48 93.60 74.84
CNN2/ADAM 98.92 98.92 97.86 97.86 94.64 95.02
CNN2/ADAM/Dropout 98.79 98.80 97.63 97.62 94.63 52.68
CNN2/ADAM/L, 99.36 99.36 98.73 98.72 96.47 94.95
CNN2/ADAM/Dropout/L, 99.11 99.11 98.24 98.24 95.76 91.50
CNN2/RMSProp 98.90 98.90 97.83 97.83 94.50 92.61
CNN2/RMSProp/Dropout 98.75 98.75 97.54 97.54 94.50 51.62
CNN2/RMSProp/L, 99.23 99.23 98.47 98.47 9592 105.30
CNN2/RSMProp/Dropout/L, 99.02 99.02 98.06 98.06 95.39 81.47
CNN3/SGDM 9538 9540 91.33 91.31 86.01 45.21
CNN3/SGDM/Dropout 94.40 9441 89.63 89.60 86.44 48.49
CNN3/SGDM/L, 95.29 9531 91.17 91.15 86.00 32.75
CNN3/SGDM/Dropout/L, 93.88 93.88 88.73 88.70 82.67 42.50
CNN3/ADAM 96.32 96.34 93.02 93.00 86.73 67.73
CNN3/ADAM/Dropout 95.70 95.71 91.88 91.86 87.98 49.92
CNN3/ADAM/L, 96.30 96.31 9297 9295 87.27 57.11
CNN3/ADAM/Dropout/L, 95.73 9575 91.96 91.94 B88.13 68.47
CNN3/RMSProp 96.20 96.21 92.80 92.78 86.59 67.39
CNN3/RMSProp/Dropout 9530 95.31 91.19 91.17 87.19 49.50
CNN3/RMSProp/L, 96.17 96.18 92.74 92.72 86.51 57.40

CNN3/RSMProp/Dropout/L, 73.32 73.24 58.55 58.54 50.24 68.50

improving generalization. This model obtained a GA
of 99.98%. For the three-band dataset, the model with the
best performance was the one in which CNNI1 is used together
with the RMSProp optimization method and dropout method
to improve generalization. This model obtained a GA of
99.92%. Tables 5 and 8 present the confusion matrix for the
best CNN model for the six-band and three-band dataset,
respectively. From Tables 5 and 8, we observe that these mod-
els presented a greater classification error in regions where
the gold-standard identified areas as forest but were classified
as pasture. These CNN models were evaluated in a 5-fold
cross-validation methodology. The dataset used for these
experiments was the training and test dataset. Tables 6 and
9 present the performance obtained for this experiment using
the six-band and three-band dataset, respectively. For the
5-fold cross-validation methodology, GA of 99.97% and
99.86% were obtained for the six- and three-band dataset,
respectively.

B. SIMULATION RESULTS USING TRANSFER LEARNING
Table 10 presents the results obtained using pre-trained nets.
The best performance was achieved using the Resnet50 net-
work and the ADAM method. For this model, a GA of 94.50%
was obtained. However, this performance was inferior to
the CNN1 model with RMSProp optimization method. This
model presented a GA of 99.98%.
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TABLE 5. Confusion matrix for the best CNN model (CNN1/RMSProp)
using six-band dataset.

Agriculture Pasture Forest
Agriculture 1 2.19E-07 0
Pasture 9.93E-05 0.99 1.12E-04
Forest 3.14E-08 4.07E-04 0.99

TABLE 6. CNN1/RMSProp model performance using a 5-fold
cross-validation methodology and six-band dataset.

Fold GA(%)  AA(%)  J(%)  WI(%)
99,99 99,99 99,99 99,99 99,99
99,99 99,99 9997 9997 99,97
99,89 99,80 99,79 99,79 99,78

1
2
3
4 99,99 99,99 99,99 99,99 99,99
5
A

F1(%)

99,99 99,99 99,97 99,97 99,98
verage 99,97 99,97 99,97 99,97 99,94

TABLE 7. Performance of CNN1 with three band dataset.

Experiment GA(%) AA(%) J(%) WJI(%) F1(%)
CNN1/SGDM 99.75  99.75  99.50  99.50  99.30
CNN1/SGDM/Dropout 99.52  99.53  99.06 99.05 98.84
CNN1/SGDM/L, 99.00  99.00 98.02 98.02 9795
CNN1/SGDM/Dropout/L, 99.73  99.73  99.45 9945  99.46
CNN1/ADAM 99.89  99.89 99.78 99.78  99.77
CNN1/ADAM/Dropout 99.63  99.63  99.26 9926  99.40
CNN1/ADAM/L, 98.51 98.52 97.08 97.08 97.56
CNN1/ADAM/Dropout/L, 98.70  98.70 97.44 9743  97.92
CNN1/RMSProp 99.89  99.89  99.79  99.79  99.78
CNN1/RMSProp/Dropout 99.92 9992 99.84 99.84 99.77
CNN1/RMSProp/L, 99.38  99.38 98.76 98.76  98.74
CNN1/RSMProp/Dropout/L, 97.38 9740 9493 9492 9593
CNN2/SGDM 9598  96.00 9241 9239 86.85
CNN2/SGDM/Dropout 9490 9492 9049 9046 87.11
CNN2/SGDM/L, 96.37  96.38 93.09 93.08 87.98
CNN2/SGDM/Dropout/L, 9595 9596 9233 9231  89.08
CNN2/ADAM 97.16  97.17 9454 9452  89.43
CNN2/ADAM/Dropout 9727 9727 9474 9473  89.83
CNN2/ADAM/L, 97.10  97.10 9442 9441 89.29
CNN2/ADAM/Dropout/L, 96.82  96.84 9391 93.89 90.23
CNN2/RMSProp 97.47 9748 9511 9510 89.52
CNN2/RMSProp/Dropout 96.81 96.81 9388 9387 883l
CNN2/RMSProp/L, 9726 9727 9473 94.72  90.25
CNN2/RSMProp/Dropout/L,  96.53  96.55  93.39  93.37  90.27
CNN3/SGDM 93.09 9312 8741 8738 81.95
CNN3/SGDM/Dropout 91.84 91.86 8535 8532 82.74
CNN3/SGDM/L, 93.16 9318 87.52 8749  82.07
CNN3/SGDM/Dropout/L, 9225 9228 86.01 8597 83.94
CNN3/ADAM 9437 9439 89.57 89.54 8195
CNN3/ADAM/Dropout 93.08 93.10 8737 8734 83.36
CNN3/ADAM/L, 94.07  94.08 89.03 89.00 8292
CNN3/ADAM/Dropout/L, 9294 9297 87.15 87.12 8447
CNN3/RMSProp 9422 9424 89.32 89.30 81.63
CNN3/RMSProp/Dropout 9322 9325 87.61 87.58 83.72
CNN3/RMSProp/L, 9385 93.87 88.66 838.64 83.21

CNN3/RSMProp/Dropout/L, 9243 9245 86.32 86.29  81.60

C. CLASSIFICATION/SEGMENTATION OF IMAGES FROM
AMAZON REGIONS
To evaluate the methodology proposed in this work, some
images from the Amazon region were selected to perform the
segmentation/classification.

These images were classified using only the model CNN2
+ ADAM optimization method 4 L, regularization and
using the fusion process described in sections III-D and
III-E. In Figure 7, we have an example of the classification
of a LANDSAT-8/OLI image using this process. As shown
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FIGURE 7. LANDSAT-8/0LI images of Amazon regions. (a) original image displayed in color composition of bands B6-B5- B4;
(b) gold standard; (c) semantic classification made by CNN, with an accuracy of 96.84%. (d) output image resulting from the
multi-resolution segmentation; (e) result of classified image after data fusion process, with an accuracy of 99.8%.

TABLE 8. Confusion matrix for the best CNN model (CNN1/RMSProp)
using the six band dataset.

Agriculture Pasture Forest
Agriculture 0.99 3.05E-04  8.82E+08
Pasture 3.03E-04 0.99 8.72E-04
Forest 2.67E-04 7.14E-04 0.99

TABLE 9. CNN1/RMSProp model performance using a 5-fold
cross-validation methodology and six-band dataset.

Fold ___GA(%) AA(%) J(%)
99.86  99.86 99.72  99.72  99.65
99.87  99.87 9974 9974  99.71
99.76 9976  99.53  99.52  99.59

1
2
3
4 99.87 99.87 99.74 99.74 99.72
5
A

WI(%)  F1(%)

99.94 99.94 99.89 99.89 99.87
verage 99.86 99.86 99.72 99.72 99.71

in Figure 7(c), in the results of CNN classification, there are
some regions incorrectly classified as forest.

In Figure 7(e), which shows the result of the fusion
process, these misclassifications are minimized. The accu-
racy obtained using only CNN semantic segmentation was
96.84%. After the data fusion process, the accuracy increased
t0 99.81%.

We can observe that the proposed methodology presented
impressive performances. The best results were obtained
using the CNN2 model, the ADAM optimization method,
and L, regularization for improving generalization. The data
fusion process has increased the image classification accu-
racy, as shown in Figure 7. Table 11 presents a comparison of
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TABLE 10. Performance using transfer learning.

Fold GA(%) AA(%)  J(%) WJI(%) F1(%)
RN50/SGDM 9226 9228 8603 8600 8631
RN50/ADAM 9450 9451 8977 8975  87.73
RN50/RMProp 9417 9419 8921  89.18  88.70
IR2/SGDM 89.77 8979  81.84 8181  80.44
IR2/ADAM 87.62  87.66 7814 7811 7175
IR2/RMSProp 8823 8825 7938 7935  79.91
MN2/SGDM 7787 77.93  64.00 6395  57.17
MN2/ADAM 7741 7744 6380 6376 5627
MN2/RMSProp 7783 7786 6427 6423  58.92
XC/SGDM 9225 9227 8596 8593  82.67
XC/ADAM 9134 9136 8441 8437  83.02
XC/RMSProp 91.18 9120 8421 84.17 8221

TABLE 11. Performance of image segmentation shown in Figure 7 using
only CNN2/ADAM/L, and the data fusion process.

Segmentation GA AA J wJ F1
Method (%) (%) (%) (%) (%)
CNN2/ADAM/L, 96.84  96.42 93.09 93.90 81.08

Data Fusion Process 99.81 99.82  99.56 99.61 98.09

the image segmentation performance of Figure 7 using only
CNN model and the data fusion process.

In Figure 8, we show two LANDSAT-8/OLI images of
Amazon regions with their respective gold standard, and
the classified image using the CNN2 + ADAM optimiza-
tion method + L, regularization and data fusion process.
Image 1 corresponds to a region of scene 228/67, and image
2 corresponds to a region of scene 226/68. The accuracies
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FIGURE 8. LANDSAT-8/0LI images of Amazon regions. (a) original images displayed in color composition B6-B5-B4; (b)
gold-standard image; (c) images classified by CNN2/ADAM/L, model and fusion process. The accuracy obtained for images

1 and 2 was 99.63%, 99.08%, respectively.

TABLE 12. Datasets assembled using images evaluated by [9] and [10].

Dataset Obit/Point Date Train Validation

227/63 07/08/2017
227/63 07/21/2017
1ol 227/65 08/18/2017 1400 600
227/65 07/21/2018
230/65 06/21/2017
2110] 230/65 06/24/2018 1400 600

TABLE 13. Performance of three best models of each CNN using the
same regions used by [9] and [10].

DT* _ Experiment GA(%) AA(%) X%) WJI(%) FI1(%)
CNN1/RMSProp 9848 9798 09626 9703 99.68
1  CNN2/ADAMIL, 9844 9794 9689 9693  98.68
CNN3/RMSPropL, 9796  97.30 9591 9599  98.14
CNN1/RMSProp 9859 98.10 9626 9725 99.90
2 CNN2/ADAML. 99.55 9932 9895 99.10  99.60

CNN3/RMSProp/L. 99.52 99.33 98.85 99.05 99.55
*Dataset

obtained for images 1 and 2 were 99.63% and 99.08%,
respectively.

D. EVALUATION OF METHODOLOGY IN REGIONS USED
BY [9], [10]

The methodology presented in this work was also evaluated
in the regions evaluated by [17], [18]. Two datasets with
2000 mosaic images each were assembled using the images
evaluated by [17], [18], respectively. Table 12 shows the
images used for the construction of each dataset and the
division of the set for training and validation. Each mosaic
image is 400 x 400-pixel size and is made up of patches of
20 x 20-pixel size. Each image patch corresponds to a
region of deforestation or nondeforestation. Figures 9 and 10
show examples of mosaic images and the corresponding
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FIGURE 9. Example of a mosaic image for the region used by [9]. In (a),
the mosaic image is displayed in color composition B6-B5-B4 and (b) the
corresponding gold standard.
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FIGURE 10. Example of a mosaic image for the region used by [10]. In (a),
the mosaic image is displayed in color composition B6-B5-B4 and
(b) corresponding gold standard.

gold standards for datasets 1 and 2, respectively. Table 13
resents the performance of the CNN models for each of
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FIGURE 11. LANDSAT-8/0LI images of Amazon regions. (a) Image of a region (3200 x 3200pixels) of the LANDSAT
230/65 scene evaluated by [9] displayed in color composition B6-B5-B4. (b) shows classified image, with accuracy of 99.91%.
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FIGURE 12. LANDSAT-8/0LI images of Amazon regions. In (a), image of a region (2000 x 1200pixels) of the LANDSAT
225/62 scene evaluated by [10] displayed in color composition B6-B5-B4. In (b), image is classified with accuracy of 99.94%.

these datasets. The best model of each CNN presented
in Table 6 was used.

The CNN3/RMSProp/L, model and the data fusion pro-
cess were used to classify images presented in Figure 11 and
12. Figure 11 corresponds to a region evaluated by [17]. For
this image, the obtained accuracy was 99.91% and the value
of F1-Score was 99.94%. The accuracy value was very similar
to the value obtained by [17]. The F1-Score was higher
than the value obtained by the authors, which was 94.65%.
Figure 12 corresponds to a region evaluated by [18]. For this
image the obtained accuracy was 99.94%, and the value of the
F1-Score was 99.92%. The accuracy value was higher than
the best results obtained by [18], which was 95%. In regard
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to the value of the F1-Score, the value was higher than the
one obtained by the authors, which was 63%.

V. CONCLUSION

This study proposed a methodology using deep learning to
solve the difficulties in the segmentation of land use and
land cover for the Amazon region for the pasture, agricul-
ture and forest classes. The proposed methodology consisted
of a data fusion process performed through semantic seg-
mentation using CNN and a homogeneous region algorithm.
LANDSAT-8/OLI optical images of the Brazilian Amazon
region were used to validate the proposed methodology.
The reference data used were the results obtained from the
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TerraClass project of INPE in 2014. The CNN architectures
used in this study were based on the architecture proposed
in the work of [28]. Two datasets were evaluated: the first
using six bands and the second with three bands. The results
for the six-band dataset outperforms the one obtained with a
three-band dataset.

In this study, CNN was trained using mosaic images
consisting of 40 x 40 pixel patches that tend to gener-
ate images cut out with patches of the same size. To neu-
tralize this trend and improve classification/segmentation,
a fusion process using the CNN output and a multi-resolution
homogeneous region segmentation algorithm was used.

The proposed method was compared to some pretrained
CNN architectures using transfer learning. The compari-
son demonstrated the effectiveness of our proposed method
against these well-known CNN architectures in the task of
remote sensing applications. The proposed method proved to
be more appropriate for this specific application. For the same
region evaluated by [9], the results were practically the same.
Regarding the results obtained by [10], our method obtained
better results.

The main contributions of this work to soil classification
in remote sensing applications were twofold. The first one
was to propose the mosaic image technique for training
CNN architectures. The second one was a fusion technique
to improve the soil classification, using two types of data:
the CNN output image and output image of a homogeneous
region segmentation algorithm. Another contribution is mak-
ing the datasets used in this work available, which may be
used as a base for other research in the Amazon Region. Data
will be available upon request. Given the results presented,
we conclude that the methodology proposed in this work
proved to be quite efficient in performing the task of segmen-
tation/classification of remote sensing images for regions of
the Amazon.

For future studies, we propose using more varied classes
of land use, in addition to using other types of remote sensing
images, for example, synthetic aperture radar (SAR) images.
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