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ABSTRACT State of charge (SOC) estimations are an important part of lithium-ion battery management
systems. Aiming at existing SOC estimation algorithms based on neural networks, the voltage increment
is proposed in this paper as a new input feature for estimation of the SOC of lithium-ion batteries. In this
method, the port voltage, current and voltage increment are taken as inputs and the current SOC is used as
output to train a neural network. Different from the adaptive filtering algorithm, which requires complex
equivalent circuit parameter identification, this algorithm uses the voltage increment instead of the open
circuit voltage (OCV); hence, the complexity of the SOC estimation algorithm is reduced, and the problem
of inaccurate estimation caused by neural network algorithms without considering the internal structure of
the battery is avoided. The experimental results show that compared with the traditional neural network
algorithm, the neural network SOC estimation algorithm based on the voltage increment could improve the
accuracy of SOC estimation.

INDEX TERMS Lithium battery, state of charge, neural network, mind evolutionary algorithm, voltage
increment.

I. INTRODUCTION
Lithium batteries are one of the hotspots in the research field
of energy storage, given their high specific energy and power.
As an energy unit, the estimation of the state of charge (SOC)
is critical, as improvement of its accuracy will lead to better
efficiency.

SOC estimation approaches can be divided into four meth-
ods, including the ampere-hour integration method, the open
circuit voltage (OCV) method, the adaptive filtering method
and machine learning algorithms.

The ampere-hour integration method, also known as the
charge accumulation method, is one of the most common
SOC prediction methods. This method obtains the change in
the state of charge or discharge over a period of time after
integrating the current over the battery capacity and then
calculates the present SOC from the known initial value. Luo
et al. [1] obtained the initial SOC value by the OCV method,
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obtained a correction factor for different rates, coulombic
efficiencies and temperatures from a battery pack charge and
discharge test, corrected for the battery capacity, and then
estimated SOC by the ampere integral method.

The OCV method, which is used to calculate the current
SOC [2], is based on the relationship between the OCV and
the battery SOC. However, measurement of the OCV requires
the battery to stand for a long time, which brings great diffi-
culties to the real-time measurement of SOC. Therefore, this
method is often combined with the ampere-hour integration
method to calculate the initial SOC value [1], [3].

For the estimation of SOC in a battery system, adaptive
filtering uses the SOC value as a state variable to obtain an
optimal estimation. The adaptive filtering methods mainly
include Kalman filtering and H∞ filtering [4]. These meth-
ods further include adaptive Kalman filtering [5], adaptive
regression extended Kalman filtering [6], the data-driven
extended Kalman filtering algorithm [7] and so on. In addi-
tion to single algorithms, unscented Kalman filtering can
be combined with the ampere-hour integration method [8].
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These methods are very sensitive to the selection of initial
values. Inaccurate initial values will seriously affect the esti-
mation of SOC, and the accuracy of Kalman filter estimation
depends on the accuracy of the model. Nevertheless, these
algorithms are suitable for variable current conditions.

Compared with the adaptive filtering method, which is
sensitive to the initial value, machine learning algorithms
have wider applicability with a simpler model training pro-
cedure, broader choice of training data, and smaller compu-
tational cost [9]. Machine learning algorithms usually take
the lithium-ion battery port voltage, charge and discharge
current and temperature as the inputs of the model and the
SOC as the output of the model. There is no need to know
the exact relationship between the input/output data, and cal-
culations can be directly based on the input/output data. The
network topology is automatically adjusted to achieve SOC
estimation. For the real-time prediction of the battery state of
charge in hybrid electric vehicles, Chemali et al. [10] used
the Bayesian extreme learning machine (BELM) method.
Regarding the problems of the low accuracy of SOC and
its poor online adaptability, Song et al. [11] used a fast
sparse bayesian algorithm for training and then combined this
algorithm with an incremental learning method to establish
an incremental learning correlation vector machine model,
which improved SOC estimation.

Artificial neural network algorithms, a kind of machine
learning algorithms have always been concerned. RNN
(recurrent neural network), which is composed of many mas-
sively connected simple neurons that can operate concur-
rently, is widely used in recent years [12]. Therefore, a lot of
related methods on soc estimation have been presented, such
as dynamically driven recurrent networks (DDRNs) [13],
the combination of long short-term memory networks and
recurrent neural networks [14], the combination of con-
volutional neural networks and long short-term arithmetic
memory networks [15], convolutional gating recurrent neural
networks [16], improved BP neural networks [17], MEA-BP
neural networks, recurrent neural networks (RNNs) based
on a gated recurrent unit (GRU) [18], improved nonlinear
autoregressive with exogenous input (NARX)-based neu-
ral network (NARXNN) algorithms [19], a hybrid of the
vector autoregressive moving average (VARMA) approach
and long short-term memory (LSTM) [20], and improved
back-propagation neural networks (BPNNs) using the back-
tracking search algorithm (BSA) method [21]. Chaoui and
Ibe-Ekeocha [13] proposed an accurate estimation method
for SOC based on the combination of long-short-term mem-
ory (LSTM) and a recurrent neural network. This method can
be used in systems without using any battery model, filter or
Kalman filter. Wang et al. [15] proposed a combined con-
volutional neural network (CNN) and long short-term mem-
ory (LSTM) network, inferring battery SOC frommeasurable
data such as current, voltage, temperature, etc., which can
be more accurately estimated at different temperatures than
those appropriate for SOC measurement. Hu and Wang [16]
proposed a convolution recursive unit (CNN-GRU) network

for the estimation of the state of charge of lithium-ion bat-
teries. This method compared two deep learning models
(recursive neural network and gated recursive unit models)
and two traditional machine learning methods (support vec-
tor machines and extreme learning machines) with respect
to their SOC estimation accuracy for lithium-ion batteries.
To improve the GA-BP algorithm, Guo et al. [17] proposed
an SOC estimation model based on the fuzzy weighting
algorithm and combined a GA-BP neural network with the
ampere-hour integration method to achieve more accurate
SOC estimation. The adaptive filtering algorithm requires
battery modeling, making the calculation process more com-
plicated. It is not necessary to model the battery to estimate
SOC by neural network, but it is not accurate to estimate
SOC by using only the port voltage, current and temperature.
Computationally efficient algorithms were proposed in [22]
to approximate each cell’s SOC at any time of the equaliza-
tion process and to calculate the system equalization time.
Han et al. [23] proposed a computationally efficient algo-
rithm for estimating the battery cell state evolution through-
out the charge equalization process.

Different from the idea of re-extracting features of con-
volutional neural networks, a novel idea is proposed in this
paper; that is, based on the voltage and current of the port,
the voltage increment is introduced as a new feature, and
an MEA-BP (mind evolutionary algorithm-back propaga-
tion) neural network is used to estimate the SOC to achieve
increased estimation accuracy. When using 0.2C charging
data from an energy-storage lithium battery for simulation,
the mean square error estimated by the MEA-BP network
is 4.079e-05, while that of the voltage increment MEA-BP
algorithm is reduced to 1.765e-05.

II. SOC ESTIMATION BASED ON MEA-BP NETWORK
To reflect the superiority of the incremental neural network
in terms of SOC estimation, an MEA-BP neural network is
proposed in this paper. The algorithm block diagram is shown
in Fig. 1.

To optimize the initial threshold and weight of the BP
algorithm and enhance its robustness, the mind evolutionary
algorithm (MEA) is chosen to optimize the BP algorithm. The
main idea of MEA-BP is to map the solution space to the
code space by BP topology, where each code corresponds to
a value of the problem. In this paper, the 2-5-1 BP topology
is selected, and the reciprocal of the mean square error of the
training set is used as the scoring function of each individual
and population. By using MEA, continuous iterations are
repeated to output the optimal individual, and the results serve
as the initial BP weights and thresholds used to train the
network.

Step 1: Process data, manage and analyze the experimental
data, and calculate the incremental voltage.

Step 2: Generate the training set and the test set by extract-
ing the odd columns as the training data set and the even
columns as the test data set.
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FIGURE 1. SOC estimation process based on the MEA-BP algorithm.

Step 3: Generate the initial population, winning subpop-
ulation and temporary subpopulation by using the MATLAB
initial population generation function and subpopulation gen-
eration function.

Step 4: Perform a convergence operation on all subpop-
ulations and then determine whether the subpopulations are
mature. If true, the convergence operation will end. If false,
a subpopulation is generated with a new center, and then the
convergence operation is performed again until the subpopu-
lation matures. Subsequently, the individual with the highest
score in each subpopulation is regarded as the individual of
that subpopulation.

Step 5: After the convergence operation is completed,
perform the alienation operation and release or replace the
winning subgroup and temporary subgroup according to the
score.

Step 6: When the condition for stopping iteration is sat-
isfied, the optimization process is ended. According to the
coding rules, obtain the best individual for analysis and obtain
the initial weight and threshold of the BP network.

Step 7: Train the BP network algorithm.
Step 8: Calculate the hidden layer output, Hj, output layer

output, Yk ,and error, ek ;

Hj = f (
n∑
i=1

WijXi − aj) (1)

where j = 1, 2, . . . , l, X is the input parameter, and Hj is the
hidden layer output.

Yk =
l∑
j=1

HjWjk − bk (2)

ek = Ok − Yk (3)

where the weight isW , the threshold is b, the real result is O,
and the values of k are 1, 2, . . . , m.
Step 9: Update weights and thresholds. If the error meets

the conditions, the training is completed; if not, the weights
and thresholds are updated. Then, repeat step 8 until the
conditions (the training mean square error is less than 10^(-4)
or the number of training times is more than 100) are met.

Wij = Wij + ηHj(1− Hj)X (i)
m∑
k=1

Wijek (4)

Note: i take 1, 2, . . . , n; j take 1, 2, . . . , l.

Wjk = Wjk + ηHjek (5)

Note: j take 1, 2, . . . , l; k take 1, 2, . . . , m.

aj = aj + ηHj(1− Hj)
m∑
k=1

Wjkek (6)

Note: k take 1, 2, . . . , m; j take 1, 2, . . . , l.

bk = bk + ek (7)

Note: k take 1, 2, . . . , m; aj, bk are constantly updated
thresholds.

III. SOC ESTIMATION INPUT FEATURE SELECTION BASED
ON THE MEA-BP NETWORK
Different from SOC estimation algorithms based on a phys-
ical model, a neural network can directly estimate SOC.
Only the parameters voltage, current, and temperature during
battery charging and discharging are used, and the change in
the equivalent circuit parameters of the battery is not consid-
ered. The estimation results are not accurate enough. If the
adaptive filtering algorithm is used for complex equivalent
circuit parameter identification, the calculation time for SOC
estimation is greatly increased. Based on the research on SOC
estimation algorithms and neural networks, this paper intro-
duces the incremental voltage as an input feature quantity to
improve the estimation accuracy of SOC in a neural network
algorithm.

A. FACTORS INFLUENCING THE SOC OF
ENERGY-STORAGE LITHIUM BATTERIES
Energy-storage lithium batteries are a nonlinear system; the
SOC depends on many factors, such as the ambient temper-
ature, the charge and discharge rate, the working state of the
battery, and the internal structure of the battery.
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1) AMBIENT TEMPERATURE
Lithium ion energy-storage batteries work normally at a
certain temperature. If the ambient temperature changes,
the available capacity of the battery will change. When
the temperature is low, the battery activity is low, and the
available capacity of the battery will decrease. When the
temperature is too high, the battery activity increases, and
the available capacity will also increase. Therefore, when
estimating the battery SOC, it is necessary to consider the
influence of the battery temperature.

2) BATTERY CHARGE/DISCHARGE RATE
The charge and discharge current of the battery will affect
the capacity of the battery. When only considering the charge
and discharge rate, the discharge capacity is negatively related
to the discharge rate, and the charge capacity is negatively
related to the charge rate.

3) WORKING STATE OF THE BATTERY
Charging and discharging are not directly opposite processes
with respect to the battery SOC, but have a hysteresis-like
curve.

4) THE INTERNAL STRUCTURE OF THE BATTERY
The internal structure of different batteries is reflected in
different battery parameters; that is, the equivalent circuit
parameters of the battery are different. In the case of the
Thevenin equivalent circuit in Fig. 2, different batteries have
different resistances and capacitances.

FIGURE 2. Thevenin equivalent circuit of the battery.

Although the neural network algorithm is relatively simple
to use, it only uses the port voltage, current and temperature
as the parameters for SOC estimation and does not take into
account the internal structure of the battery, which leads to
insufficient accuracy of the estimated results. Though the
OCV method and the adaptive filtering method take into
account the internal structure of the battery, parameter iden-
tification is required, which results in overly cumbersome
calculations. Based on experience, it is decided to introduce a
new input feature quantity that takes into account the internal
structure of the battery into the neural network algorithm.

B. SOC ESTIMATION ALGORITHM WITH THE VOLTAGE
INCREMENT AS AN INPUT CHARACTERISTIC QUANTITY
Based on the input and output characteristics of the battery,
the introduction of the OCV into the neural network can
improve the SOC estimation effect. The OCV can be mea-
sured or calculated. Themeasurement of the OCV can only be

carried out after the battery is unloaded and has been standing
for a long time. OCV calculation requires equivalent circuit
parameters after parameter identification. The measurement
of OCV and its calculation is too complicated to be a new
feature of the neural network.

Based on the above analysis, the incremental voltage is
introduced as a new feature quantity because the incremental
voltage includes not only the port voltage increment but also
the OCV increment, which takes into account the influence
of the internal structure of the battery on the SOC, and the
calculation is very simple.

The incremental voltage is defined as the increment of
voltage within one minute after cross-flow charging and dis-
charging, and its calculation formula is:

1u = u(t + 1)− u(t) (8)

where t represents time, and u is the measured voltage across
the battery terminals, 1u.

IV. EXPERIMENT
Three new lithium-ion batteries are connected in parallel in
this paper. Constant current charge and discharge experiments
are conducted at 25◦C. All the devices are listed in TABLE 1.

TABLE 1. Information on the experimental device.

A. DATA ACQUISITION AND PREPARATION
To obtain the data required for simulation, battery charging
and discharging experiments are carried out. HV-PACKS
TESTER produced by Digatron, a test system device for
battery, is shown in the Fig.3 and several indexes are exhibited
in Tab.1. During the whole experiment, the port voltage and
current are recorded every 0.1 s for SOC estimation.

The steps of the experiment are as follows:
Step 1: Discharge the parallel battery pack at 0.2C until it

cannot be discharged; that is, the SOC at this moment is 0;
Step 2: After that, charge at 0.2C until the voltage does not

increase, recording the port voltage and current during the
charging process;

Step 3: Discharge at 0.2C until the battery cannot be dis-
charged, that is, the SOC at that moment is 0, and record the
voltage and current values of the port during the process;

Step 4: After that, charge at 0.3C until the voltage does not
increase, recording the relevant data in the process;

Step 5: Finally, discharge at 0.3C to obtain the port voltage
data during discharge.
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FIGURE 3. Internal structure and external structure of the HV-PACKS
TESTER.

The current and voltage data obtained during the experi-
ment are used to verify the algorithm. First, the SOC value at
each moment is acquired using the ampere-hour integration
method. The SOC value at the current moment is calculated
from the initial charge amount and the change in the charge
amount. SOC(t1) at time t1is given, and SOC(t2) at time t2
is calculated by the ampere-hour integration method, and the
calculation formula is as follows.

SOC(t2) = SOC(t1)+

∫ t2
t1
i(t)dt

Qc
(9)

whereQc is the rated capacity of the battery, i(t) is the current
during charging and discharging, charging is positive, and
discharging is negative.

Using SOC values from 0.1 to 0.9, an SOC estimation
simulation experiment based on the incremental voltage of
an energy-storage lithium battery is carried out.

B. EXPERIMENTAL AND RESULTS
Considering that batteries mainly work in the range of SOC
values of 0.2 to 0.8, SOC values in the range of 0.1 to 0.9 are
selected. The port voltage, current, and voltage increment are

input parameters, and the SOC is the output data. In this paper,
0.2C and 0.3C charging and discharging data are selected;
odd-numbered columns are extracted as training data, and
even-numbered columns are regarded as test data.

With increasing epochs, the mean squared error decreases.
Hence, we can achieve proper convergence. At fewer than
20 epochs, themean square error decreases rapidly. At greater
than 20 epochs, the error reduction rate decreases, and at
75 epochs, the error reaches the limit conditions. If we set
a smaller error limitation, the training time would be greatly
increased. Hence, the convergence of the present estimation
error we set is effective. The mean squared error during
training is shown in Fig. 4.

FIGURE 4. Mean Squared Error during training.

In this paper, the GA-BP algorithm, PSO-BP algorithm
and MEA-BP (Mind Evolutionary Algorithm- Back Propa-
gation) algorithm are screened. On the one hand, MEA-BP is
essentially the same as GA-BP. On the other hand, compared
with the GA-BP and MEA-BP algorithms, the calculation of
the PSO-BP algorithm is too slow, which is not conducive
to application. Therefore, the MEA-BP algorithm is selected
in this paper, and a mind evolutionary BP neural network
algorithm is constructed to perform nonlinear data fitting to
realize the estimation of SOC. The simulation results for
charging SOC estimation and discharging SOC estimation are
shown in Fig. 5 and Fig. 6, respectively.

C. COMPARISON
To reflect the advantages of the improvedMEA-BP algorithm
with the voltage increment, SOC estimation by the MEA-BP
algorithm is carried out in this paper. The soc estimation and
real soc in the charging process is shown in Fig. 7. The SOC
estimation and real SOC in the discharging process is shown
in Fig. 8.

To measure the improvement of the algorithm obtained by
introducing the voltage increment, mean absolute percent-
age error and relative error are selected for evaluation. The
mean absolute percentage error (MAPE), an evaluation of
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FIGURE 5. SOC estimation when charging by the MEA-BP algorithm
based on voltage increment.

FIGURE 6. SOC estimation when discharging by the MEA-BP algorithm
based on voltage increment.

FIGURE 7. SOC estimation and real SOC in the charging process.

prediction results, is defined as:

MAPE =
1
N

N∑
l=1

|
yi − yi
yi
| × 100% (10)

FIGURE 8. SOC estimation and real SOC in the discharging process.

TABLE 2. Mean absolute percentage error of SOC estimation based on
MEA-BP with voltage increment and without voltage increment.

FIGURE 9. SOC relative error of the MEA-BP algorithm during 0.2C
charging.

The definition of relative error (RE) is:

RE =

∣∣∣∣yi − yiyi

∣∣∣∣× 100% (11)

According to equations (10) and (11), the mean square
error (see TABLE 2) and the relative error graph (as shown
below) for the voltage increment-based MEA-BP algorithm
and the non-increment-based MEA-BP algorithm are shown
in Fig. 9-12.
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FIGURE 10. SOC relative error of the MEA-BP algorithm during 0.3C
charging.

FIGURE 11. SOC relative error of the MEA-BP algorithm during 0.2C
discharging.

FIGURE 12. SOC relative error of the MEA-BP algorithm during 0.3C
discharging.

It can be seen from the relative error graph that the incre-
mental voltage not only reduces the relative error but also
reduces the absolute error, that is, it improves the accuracy

of battery SOC estimation. In addition, using the incremental
voltage can maintain the relative error less than 5%, and the
mean absolute percentage error is less than 1%. This result
represents substantial progress in the estimation of SOC.

V. CONCLUSION
In this paper, a voltage increment-based neural network algo-
rithm is proposed to estimate the SOC of lithium-ion batteries
in real time. This method takes the port voltage, current and
voltage increment as inputs and the current SOC as output to
train the neural network. The benefit of this method is that
it not only has the simple input and output characteristics of
the neural network algorithm but also takes into account the
internal structure of the battery as the voltage increment is
used as the input.

To verify the effectiveness of the method, data from 0.2C
and 0.3C charging and discharging experiments are selected.
A total of four groups of data and the MEA-BP neural net-
work are used for simulation experiments. The experimental
results show that compared with the MEA-BP algorithm,
using the voltage increment as input results in better perfor-
mance and a smaller estimation error.

In the future, wewill do research about time-varying charg-
ing and discharging current to improve the universality and
applicability.
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