
Received October 7, 2020, accepted October 10, 2020, date of publication October 15, 2020, date of current version October 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031472

Scheduling of Scientific Workflows in Multi-Fog
Environments Using Markov Models and
a Hybrid Salp Swarm Algorithm
OMED HASSAN AHMED1, (Member, IEEE), JOAN LU1,
ARAM MAHMOOD AHMED 2,3, (Member, IEEE), AMIR MASOUD RAHMANI4,
MEHDI HOSSEINZADEH 5,6, AND MOHAMMAD MASDARI7
1School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, U.K.
2Department of Information Technology, Sulaimani Polytechnic University, Sulaymaniyah 46001, Iraq
3International Academic Office, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah 46002, Iraq
4Department of Computer Science, Khazar University, Baku AZ1096, Azerbaijan
5Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
6Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran 14496-14535, Iran
7Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia 57169-63896, Iran

Corresponding author: Mehdi Hosseinzadeh (hosseinzadeh.m@iums.ac.ir)

ABSTRACT Security attacks are a nightmare to many computing environments such as fog computing,
and these attacks should be addressed. Fog computing environments are vulnerable to various kinds of
DDoS attacks, which can keep fog resources busy. Typically in such attacks, fog environments often have
less available resources, which can negatively impact the scheduling of Internet of Things (IoT) submitted
workflows. However, most of the existing scheduling schemes do not consider DDoS attacks’ effect in
the scheduling process, increasing the deadline missed workflows and offloaded tasks on the cloud. For
dealing with these issues, a hybrid optimization algorithm is proposed, comprising both Particle Swarm
Optimization (PSO) and Salp Swarm algorithm (SSA), to solve the workflow scheduling problem inmultiple
fog computing environments. Two discrete-time Markov chain models are proposed for each fog computing
environment to address DDoS attacks’ effects on them. Our first Markov model computes the average
available network bandwidth for each fog. The second Markov model finds the average number of available
virtual machines (VMs) for each fog; the models address different levels of DDoS attacks. Extensive
simulations show that by predicting the effects of DDoS attacks on fog environments, the proposed approach
can effectively mitigate the number of offloaded tasks on cloud data centers and can reduce the number of
the deadline missed workflows.

INDEX TERMS Fog computing, task, workflow, optimization, makespan, energy.

I. INTRODUCTION
The proliferation of wireless communication technologies
and mobile computing has contributed to IoT [1], [2].
However, IoT devices are resource-constrained. When an
application needs more resources than the device’s capability
for further processing of their data, the tasks need to be
offloaded to the resource-rich cloud computing data cen-
ters [3]. However, offloading to remote cloud data centers is
not always possible in delay-sensitive real-time applications
and when constraints such as response time and delay are

The associate editor coordinating the review of this manuscript and
approving it for publicationwasNavaniethaKrishnaraj Krishnaraj Rathinam.

essential [4]. To deal with these problems, ideas such
as fog computing [5], [6] and edge computing [7]
provide a virtualized layer between IoT devices and cloud
data centers [8]–[10].

Like other computing environments, fog computing is vul-
nerable to various security attacks, primarily to Distributed
Denial of Service (DDoS) attacks [11], [12], which try
to prevent fogs from providing their services to the IoT.
In [13], various DDoS attacks, which were designed and
launched against different cloud computing environments,
were investigated and classified. Although many security
solutions such as intrusion detection systems [14], [15], trust
management systems [16], [17], and cryptographic methods
such as blockchain [18] are provided to deal with the security

189404 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5640-0172
https://orcid.org/0000-0003-3040-1801


O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

attacks, the computer systems are still vulnerable to a variety
of attacks.

Typically, DDoS attacks try to disguise themselves by
mimicking themselves as some legal network traffic, flash
crowds, or some legal events in the victim’s environment.
They may also perform obfuscation, for example, by encrypt-
ing their transmitted messages. Generally, DDoS attacks ben-
efit from some vulnerabilities of some protocols and systems
to launch their attacks. In this context, reflection-based DDoS
attacks and amplification DDoS attacks are special cases of
the flooding attacks, putting heavy traffic on the victim’s
site and consuming its bandwidth. Thus, legal requests can-
not get a chance to reach the victim’s system, and the vic-
tim will be unavailable. Besides, many DDoS attacks such
as VM migration attacks, cloud-internal DoS attacks, VM
sprawling attacks, neighbor attacks, and VM escape attacks
are conducted on virtualization systems. Such attacks reduce
the number of available VMs and mitigate fog’s ability to
handle the IoT network’s incoming requests.

Considering the limited fog computing resources, effective
resource management in fogs under DDoS attacks is highly
essential. In this context, task and workflow schedulingmeth-
ods can be used to manage fog environments by properly
allocating the tasks to the best available VMs [19]. Efficient
task and workflow scheduling provide several advantages in
fog computing. For instance, scheduling methods can reduce
VMs and fogs’ power consumption, which leads to more
green computing solutions. Besides, reducing the amount
of allocated VMs, a cost reduction, and an increase in the
throughput and scalability can be achieved. Besides, proper
scheduling of tasks can reduce offloaded tasks on the cloud
and enable cloud data centers to focus on processing other
tasks. Generally, task and workflow scheduling are already
proven to be NP-hard problems in fog and cloud comput-
ing environments [20]. Several scheduling frameworks, such
as [21], have been investigated and introduced to schedule
IoT tasks on fog computing’s virtual resources. However,
only a few scheduling schemes are proposed for fog com-
puting environments that have considered security issues and
especially DDoS attacks. Thus, security is a critical issue that
has been neglected by fog scheduling schemes, and most of
them have considered factors such as performance, power
consumption, cost, makespan, and reliability.

Typically, the scheduling algorithms can be classified
based on their type of algorithm, namely heuristic and
meta-heuristic scheduling algorithms [22]. Specifically,
metaheuristic algorithms are successfully applied to solve
scheduling problems in various computing environments and
fog computing. In this context, the SSA or Salp Swarm Algo-
rithm [23] is an optimization algorithm designed to mimic the
salps’ behaviors. But, it suffers from problems such as local
optima and population diversity. For mitigating these prob-
lems, this study combines the SSAwith the PSO [24], and the
combination of two algorithms results in an algorithm with
fast convergence speed. The proposed hybrid optimization
algorithm is denoted as the SSPSO algorithm. It provides two

sub-populations from its main population and gives one sub-
population to SSA and PSO, respectively. Besides increas-
ing exploitation, each algorithm exchanges its best solution,
a random solution, or a probabilistically selected solution.
This algorithm can balance the exploration and exploitation
to avoid local optima problem, and in this study, it is used to
optimize workflow scheduling in multi-fog environments.

In this scheme, the effects of DDoS attacks on the band-
width of fogs and cloud computing data centers are modeled
using a discrete-time Markov chain. Then, the model is used
in computing the average available bandwidth of fogs for
accurately estimating the makespan of the workflow. Also,
another discrete-time Markov model is presented for calcu-
lating the average number of the available VMs for each fog
environment which suffers from DDoS attacks. This model
is used in the population initialization of the SSPSO, with
consideration of the appropriate number of VMs as the max-
imum available VMs. Using the proposed Markov models,
the makespan of the workflow will be estimated more accu-
rately, and tasks will be allocated to the fogs regarding their
security situation. As a result, fewer tasks will be offloaded
from the fog environments to the cloud data centers because
of the lack of the required resource to run the IoT tasks. The
experiments conducted in the iFogSim simulator [25] indicate
the effectiveness of the SSPSO algorithm and the proposed
Markov models in terms of the number of offloaded tasks
on cloud data centers and the number of the deadline missed
scientific workflows.

This article’s remainder is structured as follows: Section 2
studies the existing scheduling frameworks; Section 3 intro-
duces the applied optimization algorithm. Section 4 presents
the proposed hybrid optimization algorithm; Section 5 intro-
duces the designed scheduling approach based on the pro-
posed hybrid optimization algorithm; Section 6 presents the
experiments carried out on scientific workflows. Finally,
section 7 provides the concluding issues and future studies
directions.

II. RELATED WORKS
Many task scheduling schemes, such as [16], [26]–[32], have
been proposed for fog computing; these schemes are pre-
sented briefly in this section.

In [33], the authors developed ROSA, an uncertainty-based
online scheduling method, to schedule multiple workflows
with deadline constraints. This scheduling approach can con-
trol the number of tasks waiting on each VM. The authors
provided five sets of experiments to compare their scheme
with five other algorithms. The comparison results reveal that
ROSA performs better than the five compared algorithms
concerning costs, deviation, resource utilization, and fairness.

In [34], the authors provided a scheduling algorithm for
minimizing the power consumption of IoT workflows on
fog’s heterogeneous resources. They modeled the problem
using integer linear programming to mitigate power con-
sumption. They also introduced EMS, a scheduling algo-
rithm to combine different policies and find near-optimum

VOLUME 8, 2020 189405



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

scheduling. They analyzed their ILP model and scheduling
algorithm and showed that EMS can achieve near-optimal
power consumption and can reduce the makespan.

The schedulingmethod provided in [35] introduces a cross-
layer analytical method to balance the service delay and
power consumption during dynamic task scheduling in fog
networks. The authors specifically combined their analysis
with the Lyapunov optimization method, provided a delay
and power-aware task scheduling method, and reported that
their scheme improves delay-energy performance in task
scheduling. As an advantage, they provided a complete sim-
ulation of their system and analyzed metrics such as energy
consumption, queue length, delay, delay jitter, service delay.
However, they have not considered the security factors in
scheduling and offloading processes.

In [36], a task-scheduling model was presented using con-
tainers to ensure that the tasks are completed on time and
considered the number of concurrent tasks for the fog node.
Furthermore, the authors proposed a reallocation mechanism
to reduce task delays. The results showed that this task-
scheduling algorithm could reduce task delays and improve
the concurrency number of fog nodes’ tasks.

The scheduling scheme provided in [37] introduces a
decentralized and scalable scheduling scheme denoted as
DATS, for minimizing service delay in heterogeneous fogs.
It uses the processing efficiency-based computing resources
competition and a QoE-based task scheduling. Based on
the conducted experiments, the authors exhibited that DATS
can balance computing resources and communication links
usage, aiming for reducing service delay. However, this
scheme only focused on delay minimization and neglected
security issues.

In [38], the authors demonstrated DOTS’s application,
which is a delay-aware task scheduling algorithm to optimize
delay in offloading. They indicated that DOTS could provide
the optimal set of helper nodes, subtask sizes, and the trans-
mission power to minimize the task processing delay by con-
ducting the required experiments. Moreover, compared with
the command-mode offloading, the voluntary-mode achieves
more balanced offloading and a higher fairness level among
the fog nodes. The authors have evaluated metrics such as
fairness index, energy consumption, delay, and the number
of nodes, but no evaluations regarding security issues have
been conducted.

In [39], Folo, which is a scheduling algorithm, was pro-
posed for optimizing the latency and quality of task allocation
in vehicular fogs. In this study, the authors formulated the
task allocation to fog nodes as a bi-objective problem and
considered quality loss and service latency. This scheme uses
linear programming-based optimization and binary PSO. The
study showed that their scheme could achieve higher perfor-
mance, mitigate the service latency, and reduce the quality
loss compared to random and naive node allocation in fog.
As an advantage, this scheme is evaluated using the SUMO
tool using real-world taxi traces, but again, no security-related
factor was incorporated in this scheme.

The authors in [40] proposed a heuristic for the dynamic
scheduling of multiple IoT workflows. It schedules com-
putational tasks in the cloud and the fog’s communication-
intensive tasks by considering the communication cost
from IoT devices to fog. The authors compared the per-
formance of this scheme with a cloud-unaware system
under different workloads. They indicated that their method
provides a lower deadline miss ratio at a higher mone-
tary cost. However, this scheme is simulated using C++,
while better simulator environments are available, and
also only the time factor is considered in the scheduling
process.

In [41], the authors introduced an efficient scheduling
approach by using the Max-Min ant system to handle the
workflow scheduling problem in multiprocessor environ-
ments, used as mini-servers in fog computing. This approach
manipulates the priority of tasks to achieve the most opti-
mal task-order. The authors used various random workflows
to evaluate the performance of their scheme. However, this
scheme is evaluated using the visual basic 6.0 programming
environment, and further evaluations on the special-purpose
fog simulators are necessary for it.

A fully decentralized hybrid of edge and fog commuting
denoted as Edge-Fog cloud was presented in [42]. In this
study, the authors provided the LPCF algorithm, which
assigns tasks to the Edge-Fog cloud’s available nodes. They
showed that LPCF achieves near-optimal networking costs in
polynomial time as opposed to exponential time complexity.
This scheme considers networking costs and processing time,
but it does not consider security-related factors.

A deadline-aware task scheduling method was presented
in [43], in which fog nodes collaborate and use cloud
resources to execute the tasks. The authors formulated the
task scheduling problem as a multiple dimensional 0-1 knap-
sack and proposed an ACO-based algorithm to solve it. Also,
they tried to increase the profit of fog computing while meet-
ing the tasks’ deadlines. However, this scheme only consid-
ers cost and deadline factors and do not consider security
issues.

Another task scheduling algorithm was proposed in [44],
which prioritizes tasks based on their delay tolerance levels,
to increase throughput while reducing the response time and
cost. This scheme assigns each incoming request on the
nearest fog resources, and in the proper priority queue. Then,
it processes all the requests in the three priority queues in a
fog server and reassigns some requests to other fog servers
when there are insufficient resources to handle the request
in its deadline. In the end, the request should be sent to
cloud data centers. As an advantage, this scheme is evalu-
ated using Cloudanalyst, which is a CloudSim-based simu-
lation tool. Table 1 provides a comparison of fog scheduling
schemes.

III. BACKGROUND KNOWLEDGE
This section mainly focuses on SSA and PSO optimization
algorithms that are used in this article.

189406 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

TABLE 1. Comparison of fog scheduling schemes.

FIGURE 1. Pseudo-code of the SSA algorithm.

A. SSA ALGORITHM
This algorithm is inspired by salps’ swarming behavior in
the deep oceans to form a chain known as the salp chain.
The SSA algorithm organizes its population into followers
and leaders in which the leader represents the chain front.
In contrast, the followers are other salps in the chain, and they
try to follow each other. Accordingly, Figure 1 indicates the
pseudo-code of the SSA algorithm.

B. PSO ALGORITHM
PSO is a stochastic and population-based optimization algo-
rithm introduced by Eberhart and Kennedy. This algorithm
is inspired by fish schooling or bird flocking, and at first,
it is initialized by several randomly generated solutions for
a specific problem, also called particles. Then, it searches
the problem space for optima by updating the particles
using the current best particle, the best position of each
particle, and the current position of the particle. The best
solution or particle has the lowest fitness value, which has
been achieved so far.

IV. THE PROPOSED HYBRID OPTIMIZATION ALGORITHM
As outlined before, SSA and PSO algorithms use different
methods for searching for the problem space and have differ-
ent capabilities. To take advantage of these algorithms, they
are combined to have a more compelling hybrid optimization
algorithm. Figure 2 depicts the flowchart of the proposed
hybrid optimization algorithm. As shown in this flowchart,
at first, a random solution is created. Then, the population
is divided between these two algorithms. However, each
population’s size is not fixed and can vary based on the
improvements achieved by each of them.

The population combination and division are made once
in every seven rounds, which can reduce the overheads of
population division. Then, each algorithm works on its sub-
population and searches the problem space using its solutions.
After each algorithm is executed for one round, the PSO
algorithm sends its best solution to the SSA. If this solution is
better than SSA’s best solution, it becomes the leader solution;
otherwise, it will be dropped. Also, SSA can send the best
solution, a randomly selected solution, or a chosen solution
using the Rolette wheel to the PSO algorithm. This exchange
of solutions helps the applied algorithms to benefit from the
results achieved by each other and improves the final result.
Also, to provide different populations for SSA and PSO,
a population dividing procedure is proposed, as shown in
Figure 3. In this regard, two low overhead dividing methods
are presented, whereby in the first one, population solutions
are divided randomly. In the second one, the solutions are
divided using the roulette wheel method. This procedure,
at first, assigns an equal number of solutions for SSA and
PSO algorithms. Then, in other rounds, some statistics about
the algorithm’s results are collected and used in dividing

VOLUME 8, 2020 189407



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 2. Flowchart of the SSPSO hybrid optimization algorithm.

the population according to each algorithm’s achievements.
Thus, the algorithm which can achieve better results gets
more solutions.

V. THE PROPOSED WORKFLOW
SCHEDULING APPROACH
This section presents this study’s proposed workflow
scheduling algorithm designed for multi-fog environments.
Accordingly, Figure 4 depicts the architecture of the proposed
scheme. On the left side of this figure, there are IoT networks
that consist of various home appliances and user devices.

Each of these IoT networks is aided by a broker node that
possesses fog computing environments’ resources informa-
tion. In this scheme, the presumption is that several fogs have
a data repository and a different set of virtual resources. The
IoT broker is responsible for scheduling the IoT submitted
workflows on the exiting fog environments. Besides, each
fog is responsible for executing the tasks delivered to it,
and when it does not have the required resources to run the
tasks, it submits them to cloud computing. The scheduling
scheme proposed in this study is mainly trying to achieve the
following objectives:

189408 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 3. Dividing the population between SSA and PSO algorithms.

• To optimize workflow scheduling in a multi-fog
environment.

• To reduce the number of tasks that should be offloaded
on cloud computing data centers by correctly estimating
the workflow makespan.

• To consider the impact of DDoS attacks on the network
bandwidth of fog and cloud environments.

• To consider the impact of DDoS attacks on the number
of available VMs in fog computing.

In this scheme, the proposed SSPSO optimization algorithm
is applied to optimize the workflow scheduling in a multi-fog
environment for achieving these objectives.

A. FORMULATING THE WORKFLOW SCHEDULING
This section provides a formal definition of the considered
workflow model. Table 2 specifies the abbreviations applied
in the rest of this section. In this scheme, the assumption is
that there are several fog computing environments denoted as,
Fog= {fog1, fog2, fog3, . . . } and each of these fogs contains a
set of virtual machines or VMs, denoted by VMi = {VMi1,
VMi2, VMi3, . . . }, in which VMi denotes the VMs of fogi.
Several brokers are used in this scheme, and brokers are
denoted as, Broker = {broker1, broker2, broker3, . . . }. Also,

TABLE 2. Abbreviations and Acronyms.

cloud computing environments considered in the scheme are
denoted as, Cloud = {cloud1, cloud2, cloud3, . . . }. Besides,
each workflow contains some tasks expressed as, Wi = {T1,
T2, T3, . . . }. Moreover, each workflow is considered as a
DAG, in which each node represents a task, and the edges

VOLUME 8, 2020 189409



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 4. Fog computing architecture.

specify the data or control dependencies between the tasks,
in which Eij defines the edge between the Ti and Tj, when
Ti 6= Tj. This indicates that child tasks can be executed after
all its parent tasks have been fully executed, and their output
data have been sent to it. Meanwhile, control dependencies
only transfer the configuration parameters needed to execute
the child task and transfer fewer data. However, the trans-
ferred data in the data dependencies are used as input data
to the child process.

B. RANKING WORKFLOW TASKS
This scheme benefits from the task prioritization method
proposed by HEFT algorithm for finding the ranks of tasks
in the scientific workflows execution process. HEFT is a
heuristic list scheduling algorithm that attempts to schedule
a set of inter-dependent tasks on a set of VMs by taking
the communication time into account. Equation 1 indicates
how the rank should be computed for each workflow task,
as follows:

Rank(Ti) = Ave (Exection_Time(Ti))

+{max(Com_Time(Ti,Tj)

+Rank(Ti))|Tj ∈ Successor(Ti)} (1)

where Ti is the ith task in the workflow and Ave(Exection_
Time(Ti)) is the average execution cost of the ith task. Also,
as outlined before, Successor(Ti) specifies the successor tasks
of the Ti and Com_Time(Ti,Tj) specifies the communication

cost between the Ti and Tj. After the priority of tasks is
determined, the tasks should be allocated to the VMs. In this
process, the highest priority task in which all its parent tasks
are executed should be scheduled on the VM that leads to the
earliest finish time. In this scheme, the set of all direct prede-
cessors of each workflow task can be computed, as follows:

Predecessor(T i) = {Tj|(Tj,Ti) ∈ E} (2)

Thus, their predecessor set should be empty regarding the
entry task or tasks, as follows: Predecessor(Tentry) = {}.
Furthermore, the set of all direct successors of each task can
be computed, as follows:

Successor(Ti) = Tj|(Ti,Tj) ∈ E (3)

Additionally, for the exit task or tasks, their successor set will
be empty, Successor(Texit ) = {}.

To compute the average computation time of the Ti onVMj,
Equation 4 should be used:

Exection_Time(Ti,VMj) =
Task_len(Ti)

VMj
(4)

Accordingly, the average execution time of the task Ti on all
VMs, can be computed as follows:

Ave (Exection_Time(Ti))=
1

Nvm

Nvm∑
j=1

Exection_Time(Ti,VMj),

(5)

189410 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 5. Bandwidth Markov chain model.

In this scheme, the earliest start time of each task can be
computed by using Equation 6, as shown at the bottom of the
page. Here, avail(VMj) is when jth VM becomes available to
execute the requested task.

Also, in this scheme, the finish time of each task can
be computed as Equation 7, as shown at the bottom of
the page. Here, deadlinewi denotes the deadline of wi
workflow. Furthermore, the communication time of the
data transfer between Ti and Tj can be computed as in
Equation 8, as shown at the bottom of the page. Here,
Bandwidth(VM (Ti) ,VM

(
Tj
)
) is the bandwidth between two

VMs which should execute the Ti and Tj tasks, while
Data

(
Ti,Tj

)
denotes the amount of data which should be

transferred between these tasks. Typically a table is required
to store the maximum available bandwidth among different
VMs of the first fog computing environment. Also, a similar
data structure for storing the bandwidth of VMs in other fogs
is considered.

C. COMPUTING BANDWIDTH REGARDING DDOS ATTACKS
In this scheme, the maximum available bandwidth between
different fogs and brokers is stored in another table. In most
scheduling schemes, these tables only store the maximum
available bandwidth, which in practice, these values are much
less due to problems such as DDoS attacks.

However, to be more practical, various factors affect-
ing network bandwidth should be considered in comput-
ing the true average bandwidth. It is important to note
that not having the average bandwidth calculated may
increase the bandwidth’s reliance, leading to incorrect selec-
tion of proper virtual resources to run the workflow, which
results in SLA violations. In this scheduling approach,

the effects of DDoS attacks on the network bandwidth
are taken into account. A discrete Markov chain model
(Figure 5) for computing the average available band-
width of brokers, fogs, and clouds, is proposed. Using
this method, the overestimation of the available bandwidth
for brokers, fogs, and clouds, which can lead to a more
accurate estimation of the workflow makespan, can be
prevented.

Generally, n states are considered for this discrete Markov
chain model. The first state indicates the No bandwidth-
DDoS attack state, in which the maximum bandwidth is
available. Meanwhile, other states denote different levels of
DDoS attacks, whereby each of them suffers from some
degree of DDoS attacks. As a result, in the state of the DDoS
Level 1, the network bandwidth is a little bit reduced, and
in the DDoS Level 2, the network bandwidth is reduced
further, and this reduction of bandwidth increases in the other
states of the Markov model. In this scheme, we compute
the average available bandwidth between fogs and brokers
by using Equation 9, as shown at the bottom of the next
page. Here, Fog_ave_bandwidthi is the average bandwidth
of the ith fog and Broker_ave_bandwidthj is the average
bandwidth of the jth broker. For computing these average
bandwidth, the bandwidth Markov model for them should
be solved. By solving the bandwidth Markov model for each
fog, we can compute the average available bandwidth for a
fog environment by Equations 10 and 11, as shown at the
bottom of the next page. In which, bandwidthk indicates the
bandwidth of the kth state and is a portion of Fog_bandwidthi,
which denotes the maximum bandwidth of the ith fog. Also,
in this equation, Pk is the probability of the ith state of the
proposed Markov model.

ESTime(Ti,VMj) =

{
0 If T1 is an entry task
max{avail

(
VMj

)
,max

{
FT

(
Tj
)
+Com_Tim

(
Tj,Ti

)}
otherwise For each Tj ∈ Predecessor (Ti)

(6)

FT
(
Ti,VMj

)
=

{
deadline(wi) if Ti is an exit task
ESTime(Ti,VMj)+ Ave (Exection_Time(Ti)) otherwise

(7)

Com_Time(Ti,Tj) =


0 IF VM (Ti) = VM

(
Tj
)

Data
(
Ti,Tj

)
Bandwidth(VM (Ti) ,VM

(
Tj
)
)

otherwise
(8)

VOLUME 8, 2020 189411



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 6. VM Markov model for a fog computing environment.

By solving the bandwidth Markov model for each bro-
ker, we can compute the average available bandwidth for a
broker by Equations 12 and 13, as shown at the bottom of
the page. In these equations, bandwidthk denotes the band-
width of the kth state and is a portion of Broker_bandwidthi,
which denotes the maximum bandwidth of the ith broker
node. In this scheme, when a fog environment does not
possess the required resources to run the tasks, it will offload
them to cloud computing data centers. To compute the aver-
age available bandwidth between clouds and fogs, we use
Equations 14–16, as shown at the bottom of the page. Here,
Fog_ave_bandwidthi is the average bandwidth of the ith fog
and Cloud_ave_bandwidthj is the average bandwidth of the
jth cloud environment. Also, bandwidthk indicates the band-
width of kth state and Pk is the probability of the ith state in
steady state distribution.

D. INITIAL POPULATION AND ENCODING
For encoding the considered scheduling problem, a two-
dimensional array is used, in which each row indicates a
fog environment, and each column indicates a task of the
workflow. Each cell of this table specifies a VM that should
execute the workflow in the ith fog environment. One of
the main objectives of the scheduling algorithm performed

in this study is to minimize the number of VMs allocated
to execute each workflow in fog environments. Generally,
most of the existing scheduling schemes assume that all
VMs are available for fog computing scheduling. However,
the assumption is inaccurate, and the availability of VMs
can oscillate regarding problems such as DDoS attacks and
VM failures.

This scheme considers the effect of such problems by using
a discrete Markov chain model (Figure 6), in which each
state indicates the attacks faced by fog and the corresponding
number of the available VMs. In this Markov model, each
state indicates the severity of the attacks. For simplicity,
the same level of severity of all DDoS attacks is assumed.

For solving the proposedMarkov models, a transition table
is used for each of these models. This table indicates the
probability of transition from one state to another. Generally,
in the transition tables, the sum of each row should be 1. For
instance,

∑n
j=1 Pij = 1 indicates that the sum of ith row in

matrix P is 1, and in this equation, 0 ≤ Pij ≤ 1 and Pij
is the transition probability of transition from ith state to jth

state. The required data for building the transition table can
be achieved from fog computing servers’ security logs.

To solve this Markov chain model, we can simply compute
the P matrix’s powers until it converges, in which all row will

Fog_Broker_BW ij = min(Fog_ave_bandwidthi,Broker_ave_bandwidthj) (9)

Fog_ave_bandwidthi =
∑Sn

k=1
bandwidthk ∗ Pk where

∑Sn

k=1
Pk = 1 (10)

bandwidthk = ki ∗ Fog_bandwidthi (11)

0 < ki ≤ 1
∑
i=1

ki = 1

Broker_ave_bandwidthj =
∑Sn

k=1
bandwidthk ∗ Pk where

∑Sn

k=1
Pk = 1 (12)

bandwidthk = ki ∗ Broker_bandwidthi (13)

0 < ki ≤ 1
∑

i=1
ki = 1

Fog_Cloud_BW ij = min(Fog_ave_bandwidthi,Cloud_ave_bandwidthj) (14)

Cloud_ave_bandwidthi =
∑Sn

k=1
bandwidthk ∗ Pk where

∑Sn

k=1
Pk = 1 (15)

bandwidthk = ki ∗ Cloud_bandwidthi
0 < ki ≤ 1

∑
i=1

ki = 1 (16)

189412 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 7. Encoding initialization.

be the same. By solving this Markov model, we can achieve
the steady-state of the Markov model. Then, we can compute
ave_VMi or the average available VMs in the ith fog by using
Equation 17:

ave_VMi =
Sn∑
j=1

Nvmj ∗ Pj (17)

In which, Nvmi indicates the number of available VMs in ith

state and Pi is the probability of ith state, achieved from the
steady-state distribution.

To provide effective workflow scheduling, we use the
result of solving the Markov model in the encoding of the
solutions (Figure 7). For this purpose, first, the VMs Markov
model for each fog should be solved, and then the average
number of VMs achieved by these Markov models should be
used as the upper bound of each dimension of the solutions.

E. FITNESS FUNCTION
Equation 18, as shown at the bottom of the next page,
indicates the fitness function applied in this fog schedul-
ing scheme, in which α and β coefficients determine the
importance of each objective, and their sum should be 1.
Moreover, the makespan of wi workflow can be computed by
Equation 19, as shown at the bottom of the next page. Here,
Nleveli is the number of levels of the ith workflow submitted
to the broker, and inputdelayj determines the delay of sending
the input data of the jth level of the workflow from the broker
to the designated fog. Also, processingdelayj is the process-
ing delay of the jth level’s tasks, and outputdelayj is the delay
of sending the output of the jth level’s tasks to the broker.
Also, inputdelayj can be computed by Equations 20–24, as
shown at the bottom of the next page. Here, Ntasklevelj is
the number of tasks in the jth level of wi workflow while
inputdelayjk is the input delay of the kth task of the jth level.
In which, Ntasklocalj indicates the number of tasks executed
locally on the fog and Ntaskcloudj exhibits the number of
tasks offloaded to a remote cloud datacenter, in the jth level
of the workflow. Also, Nvmlevelj is the number of the VMs

FIGURE 8. Workflow scheduling using SSPSO algorithm in broker nodes.

FIGURE 9. Execution of tasks in each fog.

needed in the jth level, and Nleveli is the number of levels in
the ith workflow. Also, outputdelayjk is the output of the kth

task in the ith level of the wi workflow.
The pseudo-code of the proposed SSPSO algorithm is

shown in Figure 8.

VOLUME 8, 2020 189413



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 10. Scientific workflows: (a) LIGO, (b) CyberShake.

Figure 9 exhibits the execution of tasks in different fogs.
As shown in this figure, when a fog receives the input
tasks and their required data, it checks the availability of
the required number of VMs, specified by the broker. Then,
when the needed resources by the tasks become available, fog
should run the tasks; otherwise, when it cannot allocate the
required number of VMs, it offloads the tasks and their data
to the cloud computing data center. Then, the tasks assigned
to fog are executed, and their results should be forwarded to
the broker node, which should further process them and send
them to other fogs to run other tasks.

VI. EXPERIMENTAL RESULTS
This section presents the results of extensive simula-
tions conducted on the proposed workflow scheduling

approach. We simulated our proposed scientific workflow
scheduling scheme in the IFogSim simulator and com-
pared it with other workflow scheduling schemes such as
MOWO [45] and Hybrid-EDF [40], which are designed for
fog computing environments, regarding metrics such as the
percentage of the average number of tasks offloaded to cloud
data centers and the percentage of the average number of
workflows which have missed their deadline.

A. EXPERIMENTS
In this section, two sets of experiments are presented in two
different scenarios. The first set of scenarios is defined on
LIGO and CyberShake workflows, depicted in Figure 10.
In these scenarios, two sets of workflows with 100 and 1000
tasks are considered. Also, in these experiments, four fog

Fitness =

 1 if makespan(wi) > deadline(wi)

α ∗
makespan(wi)
deadline(wi)

+ β ∗
Nneededvm(wi)

NVM
if makespan(wi) < deadline(wi)

α + β = 1 (18)

makespan(wi) =
Nleveli∑
j=1

(inputdelayj + processingdelayj + outputdelayj) (19)

inputdelayj =


0 if j = 0
Ntasklevelj∑

k=1
inputdelayjk if j 6= 0

 (20)

processingdelayj =
Ntasklocalj∑

k=1

processingdelayjk +
Ntaskcloudi∑

j=1

(cinputdelayj + cprocessingdelayj + coutputdelayj) (21)

Ntasklevelj = Ntasklocalj + Ntaskcloudj (22)

outputdelayj =


0 if j = 0
Ntasklevelj∑

k=1
outputdelayjk if j 6= 0

 (23)

Nneededvm(wi) =
Nleveli∑
j=1

Nvmlevel j (24)

189414 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 11. The impact of the DDOS attacks on the fogs’ VMs.

computing environments are considered in two scenarios.
In the first scenario, 300 VMs are considered for execut-
ing workflows with 1000 tasks, and in the second scenario,
30 VMs are used for running workflows with 100 tasks.

In this study, the effects of DDoS attacks on each fog
have been considered, and the number of VMs available
to run the workflows in 15 seconds simulation time period
was depicted. As shown in Figure 11, the impacts of DDoS
attacks are dynamic and temporal, and these attacks cause an
oscillation in the number of available VMs. Consequently,
when fogs are under security attacks, they may have fewer
VMs than their maximum number. Typically, this issue can
negatively impact the execution of the workflows, whereby
some tasks may be offloaded to cloud computing environ-
ments, while others maymiss their deadlines. Figures 12 indi-
cates the percentage of the offloaded tasks on the cloud in
four considered fogs, in which the results of the proposed
scheme are compared against those of MOWO and Hybrid-
EDF workflow scheduling schemes. In this scenario, LIGO
workflows with 100 and 1000 tasks are executed. As shown
in this figure, the proposed method offloads fewer tasks on
the cloud and is more effective than the other two work-
flow scheduling schemes. This improvement results from the
applied Markov models used for considering the impacts of
DDoS attacks onVMs of fog environments. As outlined in the
previous section, this study computes the average number of
VMs for each fog, and therefore, the scheme proposed in this

study suffers less from DDoS attacks. Also, the availability
of fewer VMs in fogs makes the makespan much longer, and
finally, the deadline of workflows may be missed.

Figure 13 exhibits how the proposed scheme computes
the percentage of the average number of deadline missed
workflows. Meanwhile, Figure 14 indicates the percentage
of the average number of the deadline missed workflows
in the experiments conducted with LIGO workflows on the
four considered fog environments. As shown, the scheme
proposed in this study computes the average number of
available VMs. As such, the scheme can better tolerate the
negative impact of DDoS attacks, and as a result, fewer work-
flows missed their deadlines. However, since other workflow
scheduling schemes rely on the maximum number of the
available VMs, they cannot tolerate the impact of DDoS
attacks on fog’s VMs. Finally, some of their workflows
missed their deadline. In addition to the LIGO workflow,
CyberShake workflow was analyzed with the settings spec-
ified to evaluate LIGO workflows’ scheduling. For this pur-
pose, the impact of DDoS attacks on fogs was considered as
well.

Table 3 determines the percentage of the average number of
offloaded tasks in cloud data centers. As shown in this figure,
the scheme proposed in this study provides better results than
other scheduling approaches and mitigates the number of
tasks that should be offloaded to the cloud. By comparing
the results of the scheduling of CyberShake workflows with

VOLUME 8, 2020 189415



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 12. The impact of the DDOS attacks on the fogs’ VMs in the LIGO workflows.

FIGURE 13. Computing the percentage of deadline missed workflows.

LIGOworkflows, it can be seen that since CyberShake work-
flows need fewer VMs in each level, the workflows suffered
less from DDoS attacks.

Table 4 indicates the percentage of the average number of
the deadline missed workflows. As shown in this table, fewer
workflows have missed their deadline by using the proposed
workflows scheduling approach.

In the second set of experiments, the required evaluations
on Epigenomics and Montage scientific workflows were per-
formed. Accordingly, Figure 15 exhibits the architecture of
these workflows.

Also, Figure 16 indicates the availability of VMs for the
four considered fog environments. It is worth noting that
higher severity of DDoS attacks is considered in this set of
experiments, and as a result, fewer VMs are available for
scheduling.

In this part of the paper, the impact of DDoS attacks
on Epigenomics workflows is evaluated. Table 5 accord-
ingly determines the percentage of the average number of
offloaded tasks of Epigenomics workflows on cloud data cen-
ters. As shown in this table, the proposed scheduling approach
provides better results than other scheduling approaches and
reduces the tasks offloaded on cloud computing. Table 6 indi-
cates the percentage of the average number of the deadline
missed workflows. As shown in this table, fewer workflows
have missed their deadline by using the proposed workflows
scheduling approach.

189416 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 14. The percentage of the average number of the deadline missed LIGO workflows.

TABLE 3. Percentage of the average number of offloaded tasks on cloud computing in CyberShake workflows.

TABLE 4. Percentage of the average number of the deadline missed CyberShake workflows.

Figure 17 shows the percentage of the average number of
offloaded Montage workflows tasks with 100 tasks and with

997 tasks on cloud computing. Since montage workflow has
not symmetric structure, it needs more VMs in the first two

VOLUME 8, 2020 189417



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 15. Scientific workflows: (a) Epigenomics, (b) Montage.

FIGURE 16. The impact of the DDOS attacks on the Fogs’ VMs.

levels, causing more tasks to be offloaded on cloud com-
puting. The proposed scheduling scheme uses the proposed
SSPSO algorithm to find the minimum number of available
VMs to run the workflows while keeping the makespan as
low as possible.

Figure 18 exhibits the percentage of the average number of
Montage workflows that have missed their deadlines. These
results are achieved by running the proposed scheduling
scheme, MOWO, and the Hybrid-EDF with VMs; their avail-
ability is shown in Figure 16.

189418 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 17. The percentage of the average number of offloaded tasks of Montage workflows on cloud computing.

TABLE 5. Percentage of the average number of offloaded tasks of the Epigenomics workflows on the cloud.

TABLE 6. Percentage of the average number of deadline missed workflows.

As shown in this figure, the proposed scheme suffers less
from the deadline miss problem; however, in comparison
to the Epigenomics workflow results, more workflows have
missed their deadlines. The main reason for this issue is
the asymmetric structure of the Montage workflow, which
needs more VMs in the first two levels. Nonetheless, the pro-
posed scheme’s results are far better than MOWO, and the
Hybrid-EDF, even for the Montage workflow.

B. DISCUSSION
From the results of different experiments, it can be concluded
that in comparison to MOWO and Hybrid-EDF, the proposed

scheme can effectively mitigate the number of deadline-
missed workflows and the number of offloaded tasks on cloud
computing data centers. These results were achieved because
of the following two reasons:

• Two proposed Markov models for computing the aver-
age number of VMs and average bandwidth of fogs.

• SSPSO algorithm.

As outlined before, using the proposed Markov models,
the proposed scheme can compute the average number
of VMs available for each fog. However, since the com-
pared methods have no such capabilities, they cause some

VOLUME 8, 2020 189419



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

FIGURE 18. The percentage of the average number of deadline missed Montage workflows.

problems, and as a result, some workflows may miss their
deadlines. They also suffer from more offloaded tasks, which
incurs more network traffic and increases the load of cloud
data centers.

VII. CONCLUSION
Fog computing is an interesting architecture designed to
support the Internet of Things (IoT)’s increasing demand
for more resources and processing power. Fog computing
resources should be located near the IoT networks to min-
imize communication delays and reduce the cloud comput-
ing infrastructure’s processing load. Furthermore, to provide
practical support for the IoT, fog’s virtual resources should
be appropriately managed by effective scheduling of IoT
offloaded tasks.

This paper proposes a new hybrid optimization algorithm
by combining two existing state-of-the-art optimization algo-
rithms: PSO and SSA. In our proposed algorithm, each of the
incorporated optimization algorithms operates on almost half
of the population. Afterward, when an algorithm finds better
results, our proposed algorithm assigns more population to it
to achieve better results. For providing equal opportunities for
each algorithm to search the problem space and work on dif-
ferent solutions, every seven-round, the two sub-populations

are combined and divided again. Besides, in each round, both
algorithms stochastically exchange one of these solutions: the
best solution, a random solution, or a solution achieved by the
roulette wheel.

The proposed optimization algorithm is used to schedule
IoT-submitted workflows on several fog computing envi-
ronments that support the IoT network and minimize the
workflow makespan and number of VMs applied in fogs.
Generally, the performance of fog computing environments
may be affected by DDoS attacks. In this scheme, two dis-
crete Markov chain models have been proposed to compute
the average number of VMs available for each fog environ-
ment to deal with this issue. Using these Markov models,
a decent number of resources can be allocated to run the
workflow, without over-estimating the number of VMs on fog
computing environments. The experiments conducted on the
iFogSim simulator show that the proposed workflow schedul-
ing approach could effectively mitigate the makespan of the
workflow while minimizing the number of offloaded tasks
to cloud data centers and the number of deadlines missed
workflows.

Since the task and workflow scheduling research in fog
computing is not mature enough, further studies in this con-
text seem to be necessary. For this purpose, in future studies,

189420 VOLUME 8, 2020



O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

the proposed algorithm’s multi-objective version needs to
be explored, and the best possible Pareto front needs to be
extracted. Also, other stochastic models can be useful in
dealing with dynamic fog environments.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’

Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
[2] M. Masdari, S. M. Bazarchi, and M. Bidaki, ‘‘Analysis of secure LEACH-

based clustering protocols in wireless sensor networks,’’ J. Netw. Comput.
Appl., vol. 36, no. 4, pp. 1243–1260, Jul. 2013.

[3] S. Li, L. Da Xu, and S. Zhao, ‘‘The Internet of Things: A survey,’’ Inf. Syst.
Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[4] M.Masdari andM. Zangakani, ‘‘Efficient task and workflow scheduling in
inter-cloud environments: Challenges and opportunities,’’ J. Supercomput.,
vol. 76, no. 1, pp. 499–535, Jan. 2020.

[5] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, ‘‘Fog computing: Survey of trends, archi-
tectures, requirements, and research directions,’’ IEEE Access, vol. 6,
pp. 47980–48009, 2018.

[6] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[7] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[8] M. Masdari and M. Zangakani, ‘‘Green cloud computing using proactive
virtual machine placement: Challenges and issues,’’ J. Grid Comput.,
pp. 1–33, Aug. 2019.

[9] M.Masdari, S. S. Nabavi, andV. Ahmadi, ‘‘An overview of virtual machine
placement schemes in cloud computing,’’ J. Netw. Comput. Appl., vol. 66,
pp. 106–127, May 2016.

[10] M. Aazam, S. Zeadally, and K. A. Harras, ‘‘Offloading in fog comput-
ing for IoT: Review, enabling technologies, and research opportunities,’’
Future Gener. Comput. Syst., vol. 87, pp. 278–289, Oct. 2018.

[11] B. B. Gupta and O. P. Badve, ‘‘Taxonomy of DoS and DDoS attacks and
desirable defense mechanism in a cloud computing environment,’’ Neural
Comput. Appl., vol. 28, no. 12, pp. 3655–3682, Dec. 2017.

[12] A. Shameli-Sendi, M. Pourzandi, M. Fekih-Ahmed, andM. Cheriet, ‘‘Tax-
onomy of distributed denial of service mitigation approaches for cloud
computing,’’ J. Netw. Comput. Appl., vol. 58, pp. 165–179, Dec. 2015.

[13] M. Masdari and M. Jalali, ‘‘A survey and taxonomy of DoS attacks in
cloud computing,’’ Secur. Commun. Netw., vol. 9, no. 16, pp. 3724–3751,
Nov. 2016.

[14] M.Masdari andH. Khezri, ‘‘A survey and taxonomy of the fuzzy signature-
based intrusion detection systems,’’ Appl. Soft Comput., vol. 92, Jul. 2020,
Art. no. 106301.

[15] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan,
‘‘A survey of intrusion detection techniques in cloud,’’ J. Netw. Comput.
Appl., vol. 36, no. 1, pp. 42–57, Jan. 2013.

[16] S. Huang, A. Liu, S. Zhang, T. Wang, and N. Xiong, ‘‘BD-VTE: A novel
baseline data based verifiable trust evaluation scheme for smart network
systems,’’ IEEE Trans. Netw. Sci. Eng., early access, Aug. 7, 2020, doi:
10.1109/TNSE.2020.3014455.

[17] J.-H. Cho, A. Swami, and R. Chen, ‘‘A survey on trust management for
mobile ad hoc networks,’’ IEEE Commun. Surveys Tuts., vol. 13, no. 4,
pp. 562–583, 4th Quart., 2011.

[18] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the security of
blockchain systems,’’ Future Gener. Comput. Syst., vol. 107, pp. 841–853,
Jun. 2020.

[19] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, ‘‘Towards workflow
scheduling in cloud computing: A comprehensive analysis,’’ J. Netw. Com-
put. Appl., vol. 66, pp. 64–82, May 2016.

[20] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, ‘‘Deadline-
constrained workflow scheduling algorithms for infrastructure as a ser-
vice clouds,’’ Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169,
Jan. 2013.

[21] P. Varshney and Y. Simmhan, ‘‘Characterizing application scheduling on
edge, fog, and cloud computing resources,’’ Softw. Pract. Exper., vol. 50,
no. 5, pp. 558–595, May 2020.

[22] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, ‘‘A survey of PSO-
based scheduling algorithms in cloud computing,’’ J. Netw. Syst. Manage.,
vol. 25, no. 1, pp. 122–158, Jan. 2017.

[23] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017.

[24] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), 1995, pp. 1942–1948.

[25] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim:
A toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,’’ Softw.
Pract. Exper., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[26] D. P. Abreu, K. Velasquez, M. R. Miranda Assis, L. F. Bittencourt,
M. Curado, E. Monteiro, and E. Madeira, ‘‘A rank scheduling mechanism
for fog environments,’’ in Proc. IEEE 6th Int. Conf. Future Internet Things
Cloud (FiCloud), Aug. 2018, pp. 363–369.

[27] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, ‘‘On QoS-aware
scheduling of data stream applications over fog computing infrastruc-
tures,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2015,
pp. 271–276.

[28] Y.-C. Chen, Y.-C. Chang, C.-H. Chen, Y.-S. Lin, J.-L. Chen, and
Y.-Y. Chang, ‘‘Cloud-fog computing for information-centric Internet-of-
Things applications,’’ in Proc. Int. Conf. Appl. Syst. Innov. (ICASI),
May 2017, pp. 637–640.

[29] S. Kabirzadeh, D. Rahbari, and M. Nickray, ‘‘A hyper heuristic algorithm
for scheduling of fog networks,’’ in Proc. 21st Conf. Open Innov. Assoc.
(FRUCT), 2017, pp. 148–155.

[30] J. Wang and D. Li, ‘‘Task scheduling based on a hybrid heuristic algorithm
for smart production line with fog computing,’’ Sensors, vol. 19, no. 5,
p. 1023, Feb. 2019.

[31] J. Ge, B. Liu, T. Wang, Q. Yang, A. Liu, and A. Li, ‘‘Q-learning based
flexible task scheduling in a global view for the Internet of Things,’’ Trans.
Emerg. Telecommun. Technol., p. e4111, Sep. 2020.

[32] X. Liu, H. Song, and A. Liu, ‘‘Intelligent UAVs trajectory optimization
from space-time for data collection in social networks,’’ IEEE Trans. Netw.
Sci. Eng., early access, Aug. 19, 2020, doi: 10.1109/TNSE.2020.3017556.

[33] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, ‘‘Uncertainty-aware online
scheduling for real-time workflows in cloud service environment,’’
IEEE Trans. Services Comput., early access, Aug. 21, 2019, doi:
10.1109/TSC.2018.2866421.

[34] H.-Y. Wu and C.-R. Lee, ‘‘Energy efficient scheduling for heterogeneous
fog computing architectures,’’ in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), Jul. 2018, pp. 555–560.

[35] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, ‘‘DEBTS:
Delay energy balanced task scheduling in homogeneous fog networks,’’
IEEE Internet Things J., vol. 5, no. 3, pp. 2094–2106, Jun. 2018.

[36] L. Yin, J. Luo, and H. Luo, ‘‘Tasks scheduling and resource allocation in
fog computing based on containers for smart manufacturing,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 10, pp. 4712–4721, Oct. 2018.

[37] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, ‘‘DATS: Dispersive stable
task scheduling in heterogeneous fog networks,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 3423–3436, Apr. 2019.

[38] G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, and Y. Yang, ‘‘DOTS: Delay-
optimal task scheduling among voluntary nodes in fog networks,’’ IEEE
Internet Things J., vol. 6, no. 2, pp. 3533–3544, Apr. 2019.

[39] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä-
Jääski, ‘‘Folo: Latency and quality optimized task allocation in vehicular
fog computing,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4150–4161,
Jun. 2019.

[40] G. L. Stavrinides and H. D. Karatza, ‘‘A hybrid approach to scheduling
real-time IoTworkflows in fog and cloud environments,’’Multimedia Tools
Appl., vol. 78, no. 17, pp. 24639–24655, Sep. 2019.

[41] H. R. Boveiri, R. Khayami, M. Elhoseny, and M. Gunasekaran, ‘‘An
efficient swarm-intelligence approach for task scheduling in cloud-based
Internet of Things applications,’’ J. Ambient Intell. Humanized Comput.,
vol. 10, no. 9, pp. 3469–3479, Sep. 2019.

[42] N. Mohan and J. Kangasharju, ‘‘Edge-fog cloud: A distributed cloud for
Internet of Things computations,’’ in Proc. Cloudification Internet Things
(CIoT), Nov. 2016, pp. 1–6.

[43] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, ‘‘Deadline-aware
task scheduling in a tiered IoT infrastructure,’’ in Proc. GLOBECOM IEEE
Global Commun. Conf., Dec. 2017, pp. 1–7.

VOLUME 8, 2020 189421

http://dx.doi.org/10.1109/TNSE.2020.3014455
http://dx.doi.org/10.1109/TNSE.2020.3017556
http://dx.doi.org/10.1109/TSC.2018.2866421


O. H. Ahmed et al.: Scheduling of Scientific Workflows in Multi-Fog Environments

[44] T. Choudhari, M. Moh, and T.-S. Moh, ‘‘Prioritized task scheduling in fog
computing,’’ in Proc. ACMSE Conf., 2018, pp. 1–8.

[45] V. De Maio and D. Kimovski, ‘‘Multi-objective scheduling of extreme
data scientific workflows in fog,’’ Future Gener. Comput. Syst., vol. 106,
pp. 171–184, May 2020.

OMED HASSAN AHMED (Member, IEEE)
received the B.Sc. degree in information technol-
ogy from Teesside University, U.K., the Higher
National Diploma (HND) degree in information
technology from Teesside University, and the
M.Sc. degree in computer science from Newcas-
tle University, U.K. He is currently the Head of
the Information Technology Department, College
of Science and Technology, University of Human
Development in Northern Iraq, where he has been

a Faculty Member, since 2013. He is currently a Ph.D. Researcher with
Huddersfield University, U.K.

JOAN LU is currently with the Department of
Computer Science and is the Research Group
Leader of Information and System Engineering
(ISE) with the Centre of High Intelligent Com-
puting (CHIC), having previously been the Team
Leader with the IT Department of Charlesworth
Group publishing company. She has successfully
led and completed two research projects in the area
of XML database systems and document process-
ing in collaboration with Beijing University. Both

systems were deployed as a part of the company’s commercial productions.
She has published seven academic books and more than 200 peer-reviewed
academic articles. Her research publications have 1388 reads and 185 cita-
tions by international colleagues, according to incomplete statistics from the
research gate.

ARAM MAHMOOD AHMED (Member, IEEE)
received the M.Sc. degree in computer network
technology from Northumbria University, U.K.
He is currently pursuing the Ph.D. degree in
swarm intelligence with KISSR. He is also work-
ing with KISSR. He is interested in modeling
biological and natural systems into computational
techniques.

AMIR MASOUD RAHMANI received the B.S.
degree in computer engineering from Amir Kabir
University, Tehran, in 1996, the M.S. degree in
computer engineering from the Sharif University
of Technology, Tehran, in 1998, and the Ph.D.
degree in computer engineering from IAU Univer-
sity, Tehran, in 2005. He is currently a Professor
with the Department of Computer Engineering,
IAU University. He is the author/coauthor of more
than 200 publications in technical journals and

conferences. His research interests are in the areas of distributed systems,
the Internet of Things, and evolutionary computing.

MEHDI HOSSEINZADEH received the B.S.
degree in computer hardware engineering from
Islamic Azad University, Dezfol Branch, Iran,
in 2003, and the M.Sc. and Ph.D. degrees in
computer system architecture from the Science
and Research Branch, Islamic Azad University,
Tehran, Iran, in 2005 and 2008, respectively. He
is currently an Associate Professor with the Iran
University of Medical Sciences (IUMS), Tehran.
He is the author/coauthor of more than 120 publi-

cations in technical journals and conferences. His research interests include
SDN, information technology, data mining, big data analytics, E-commerce,
E-marketing, and social networks.

MOHAMMAD MASDARI received the B.Tech.
degree in computer software engineering from
Islamic Azad University, Qazvin Branch, Iran,
in 2001, the M.Tech. degree in computer soft-
ware engineering from Islamic Azad University,
South Tehran Branch, Tehran, Iran, in 2003, and
the Ph.D. degree in computer software engineer-
ing from Islamic Azad University, Science and
Research Branch, Tehran, in 2014. Since 2003, he
has been working as a Faculty Member of Islamic

Azad University, Urmia Branch, Iran. He is currently an Assistant Professor
with the Department of Computer Engineering, Islamic Azad University,
Urmia Branch. His research interests include distributed systems and net-
work security.

189422 VOLUME 8, 2020


