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ABSTRACT Monitoring the state of health (SOH) for Li-ion batteries is crucial in the battery management
system (BMS), for their efficient and safe use. Due to time-varying battery parameters and insufficient
computation capability of the BMSs, computationally efficient online parameter identification is practically
required. So, a simple equivalent circuit model (ECM) based recursive least squares (RLS) parameter identi-
fication algorithm has been widely used. However, it has long been acknowledged that this algorithm suffers
from wind-up problem when the input current doesn’t provide sufficient excitation. It causes numerical
instability and then induces large sensitivity of identified parameter values to the noise or truncation error
of sensor data, leading to large parameter identification errors. In this work, a new reliable version of ECM
based RLS, called a condition number based recursive least squares (CNRLS) algorithm, is proposed to
avoid large errors due to insufficient excitation by monitoring the condition number of the error covariance
matrix If the condition number is greater than a certain prescribed value, currently identified parameters are
considered unreliable and hence the proposed algorithm uses stored internal variables previously computed
with sufficiently exciting input current, leading to small condition number of the error covariance matrix.
Accordingly, the forgetting factor is also adjusted to give a larger weight to such stored internal variables
in order to overcome the insufficient excitation of the input current. It is shown with a1-RC equivalent
circuit model that the proposed CNRLS algorithm is more noise-tolerant and accurate than two benchmarks
including the standard RLS and adaptive forgetting factor RLS (AFFRLS) in terms of mean absolute errors,
with almost the same computing cost.

INDEX TERMS Battery management system, condition number based recursive least squares, state of
health.

I. INTRODUCTION
Li-ion batteries have been used in many applications.
Accordingly, for efficient and safe battery usage, monitoring
their state of health (SOH) and state of charge (SOC) is
very important in the battery management system (BMS).
To accurately estimate SOH and SOC, the parameters of
the battery model under consideration must be accurately
identified. So far, several Li-ion battery models have been
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developed, with different accuracy and computation burden.
Tt is very important to choose a proper model requiring
moderate computational burden for parameter identification
in consideration of hardware limitations of BMS.

Two models have often been used to estimate SOH and
SOC of Li-ion batteries: electrochemical battery models and
equivalent circuit models (ECMs), and so the corresponding
parameter identification problems have also been investigated
in a variety of approaches.

Several studies have been conducted for parameter iden-
tification of the electrochemical battery models [1]–[8].
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Although an electrochemical model is very helpful for
observing physical phenomena inside a Li-ion battery, its
parameter identification essentially needs time-consuming
and computationally demanding techniques such as machine
learning or meta-heuristic algorithms because electrochem-
ical models consist of complicated nonlinear partial dif-
ferential equations with several boundary conditions. Such
sophisticated models make it difficult to identify battery
parameters using a simple and closed-form formula. There-
fore, considering the fact that time-varying battery parameters
have to be identified online with typically low computational
BMSs, electrochemical models are not suitable.

Conventionally, ECMs have been used for various func-
tions in BMSs due to their simple structure and the small
number of involved parameters. Despite of their simplic-
ity, because of their acceptably high capability to represent
battery’s physical phenomena, they have been successfully
applied to complicated problems such as optimal charging
strategies [9], [10] or internal short circuit detection algo-
rithms [11]. For online ECM-based parameter identification,
well-established Kalman filters (KFs) have long been used
[12]–[15], which are composed of two computational stages
of prediction and update in each iteration. Furthermore, KFs
can be more simplified for ECM based parameters identifi-
cation, resulting in recursive lease squares (RLS) algorithms
without the update step of the former and hence do not require
inversion of a matrix [16]. Such simplification works well
since battery model parameters are slowly varying, and hence
the ECM parameter identification performance of RLS has
very little difference from that of the KF.

For practical implementation, the RLS-based algorithms
have beenwidely used in the battery parameter identifications
[17]–[21]. However, it has long been known that RLS-based
algorithms suffer from a numerical instability problem called
a wind-up problem. That is, when the system considered is
less excited and hence the resulting parameter identification
error covariance matrix becomes very large, the identified
parameters tend to be very sensitive to the numerical trun-
cation errors and the sensor noises [22]. In other words,
the wind-up problem may provide very large parameter iden-
tification errors due to inevitable numerical and sensing
errors. To address the wind-up problem, some research has
been carried out, which aims to improve the standard RLS
by changing the forgetting factors according to the parameter
identification errors [21]–[23] or the trace of the covariance
matrix [24]. However, such works have not directly measured
such numerical instability of wind-up problem in a quanti-
tative way, and thus have not alleviated it effectively. Some
works have directly reduced the effect of the sensing noise
on the parameter identification error [25]–[28], but the noise
statistics has to be known before the parameter identification
[26], which is often not the real-world case; or the noise
statistics has to be estimated during the parameter identi-
fication [25], [27], [28], which requires large computation
burden.

In this paper, a new reliable version of RLS, called a
condition number based recursive least squares (CNRLS)
algorithm, is developed for low computational and real-time
ECM parameter identification without knowing any prior
knowledge about the noise statistics. To overcome the
wind-up problem, the proposed CNRLS algorithm adaptively
updates the internal variables according to the condition num-
ber of the parameter identification error covariance matrix,
which is a direct and accurate measurement of numerical sta-
bility. More specifically, the key strategy is that the CNRLS
stores in memory the identified parameter values and their
error covariance matrix when the condition number is small
and then uses them when the condition number becomes
large. In addition, the proposed CNRLS can avoid a matrix
inversion operation required for computing the condition
number of a parameter error covariance matrix, by exploit-
ing the recursion of inverse matrices arising from RLS.
The advantages of the proposed CNRLS is summarized as
follows:
• Low computational burden

– Simple ECM, no matrix inversion operation,
no computation for estimating noise statistics

• High accurate of parameter identification
– Direct quantification of the numerical stability

(sensitivity of parameter identification error to the
noise and truncation error) with matrix condition
number and its efficient remedy without any prior
information of noise statistics.

The proposed CNRLS is validated by comparing its
performance with two benchmarks, including standard RLS
and adaptive forgetting factor RLS (AFFRLS) [21]. AFFRLS
is chosen as a benchmark in this work because it has been
proven to have high parameter identification accuracy and
low computational burden, which is suitable for use in real
BMS hardware. To reflect a real BMS environment, Gaussian
noise is added to the data used in the validation. The proposed
CNRLS turns out to be superior to the two benchmarks in
terms of relative mean absolute errors at almost the same
computing cost.

The remainder of the paper is organized as follows:
Section II and III introduce the condition number of a
matrix and the RLS algorithm, respectively. In Section IV,
the CNRLS is proposed for 1-RC ECM parameter identi-
fication. Section V shows the validation with the simula-
tion results and provides its discussion. In Section VI, the
conclusion is drawn.

II. MATRIX CONDITION NUMBER
The matrix conditon number of a square matrix A ∈ Rn×n is
defined as follows:

κ(A) = ‖A‖
∥∥∥A−1∥∥∥ (1)

where ‖A‖ means any submultiplicative matrix norm of A.
If x is a solution of a linear equation

Ax = b (2)

VOLUME 8, 2020 189107



M. Kim et al.: Reliable Online Parameter Identification of Li-Ion Batteries in BMSs Using the Condition Number

FIGURE 1. 1-RC equivalent circuit model (ECM).

FIGURE 2. Experimental SOC-OCV relationship.

where b ∈ Rn×1, and x+1x is a solution to a linear equation
(A+1A)(x +1x) = (b+1b), (3)

The following inequality holds under some assumptions
[29]:

‖1x‖
‖x‖

‖1b‖
‖b‖ +

‖1A‖
‖A‖

≤ κ(A) (4)

which means that κ(A) is an upper bound on how much the
solution to the linear equation Ax = b can change according
to the perturbation of A and b ∈ Rn×1. The proof of (4) is
presented in [29]. It is noted that if the condition number κ(A)
in the inequality (4) is large, even small errors of A and b are
likely to cause large errors of the solution x.

III. RECURSIVE LEAST SQUARES
Recursive least squares (RLS) is an recursive algorithm
for solving the least squares (LS) problem of finding the
parameters θ ∈ Rn×1 of a linear regression model

dt = θTϕt (5)

where dt ∈ R1×1 is an output and ϕt ∈ Rn×1 is an
input of the linear model. From given time series data
[ϕ0, d0], [ϕ1, d1], [ϕ2, d2], . . . , [ϕt , dt ], . . ., RLS tries to find
θ so that the following cost function is minimized:

e(t) =
t∑

k=0

λt−k (dk − θTϕk )2 (6)

where the so called forgetting factor λ is a real number
between 0 and 1. λ assigns bigger weights to the present
data compared to the past data when computing the output
error. The small λ indicates that RLS can effectively deal
with time-varying θt since large amounts of the past data are
forgotten to find the optimal θ . It can be easily shown that
the optimal solution θt minimizing e(t) is obtained from the
following algebraic equation:

8tθt = 9t (7)

FIGURE 3. Flow chart of the proposed CNRLS. (c is the condition number
of the covariance matrix P or κ(P)).

where

8t =

t∑
k=0

λt−kϕkϕ
T
k (8)

9t =

t∑
k=0

λt−kϕkdk (9)
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FIGURE 4. Overall view of the proposed CNRLS and its key strategy. (c = κ(P) is the condition number of the error
covariance matrix P of θ).

Applying the matrix inversion formula yields the following
RLS:

kt ←
Pt−1ϕt

λ+ ϕTt Pt−1ϕt
(10)

αt ← dt − ϕTt θt−1 (11)

Pt ←
Pt−1 − ktϕTt Pt−1

λ
(12)

θt ← θt−1 + ktαt (13)

where Pt = [8t ]−1 is the error covariance matrix [16].
The recurrence relation of the inverse of the error covariance
matrix, 8t = [P]−1 can be written as:

8t = ϕtϕ
T
t + λ8t−1 (14)

IV. CONDITION NUMBER BASED RECURSIVE LEAST
SQUARES FOR THE PARAMETER IDENTIFICATION
OF THE LI-ION BATTERIES
A. EQUIVALENT CIRCUIT MODEL OF THE LI-ION
BATTERIES
In this paper, as one of widely-used equivalent circuit models
(ECMs), 1-RC model is employed as shown in Figure 1.
Specifically, I , V , and VOCV denote the current, the volt-
age, and the open circuit voltage (OCV), respectively. OCV
is generally assumed to be a function of SOC. The ECM
parameters are assumed to be dependent on only SOH not
SOC, which still provides an accurate ECM [30]–[34]. In this
paper, the SOC-OCV relation is obtained from slow charge
or discharge operations (Fig. 2). Setting x =

[
V1
]
as a state,

u =
[
I
]
as an input and y =

[
V − VOCV

]
a state-space

model for this ECM can be expressed as follows:
d
dt
x = Ax + Bu (15)

y = Cx + Du (16)

where

A =
[
−

1
R1C1

]
,B =

[
1
C1

]
,C =

[
1
]
,D =

[
R0
]
,

The continuous-time state-space model in (15)-(16) can be
discretized as follows:

x[t + 1] = Adx[t]+ Bdu[t] (17)

y[t] = Cdx[t]+ Ddu[t] (18)

where
Ad = e1tA =

[
exp

(
−

1t
R1C1

) ]
,

Bd =
(∫ 1t

0
eAtdt

)
B =

[
R1
(
1− exp

(
−

1t
R1C1

)) ]
,

Cd = C =
[
1
]
,

Dd = D =
[
R0
]
,

y[t] = D =
[
V [t]− VOCV[t]

]
,

u[t] = D =
[
I [t]

]
,

x[t] = D =
[
V1[t]

]
,

and 1t is a time step. Applying z-transform to the
discrete-time state-space model equations in (17)-(18) yields

Y (z)
U (z)

= Cd (zI − Ad )−1Bd + Dd

=
a2 + a3z−1

1− a1z−1
(19)

whereV (z) and I (z) are the z-transforms of Vt and It ,
respectively, and

a1 = exp
(
−
1t
R1C1

)
,

a2 = R0,

a3 = R1

(
1− exp

(
−
1t
R1C1

))
− R0 exp

(
−
1t
R1C1

)
,

The scalar expression in (19) can be rewritten in a vector and
matrix form as follows:

V [t] =

 a1a2
a3

TV [t − 1]
I [t]

I [t − 1]

 (20)
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FIGURE 5. Performance comparison of the proposed CNRLS with the RLS and AFFRLS.

where V [t], [a1, a2, a3]T, and [V [t − 1], I [t], I [t − 1]]T cor-
respond to dt , θ , and ϕt in (5), respectively.

B. PARAMETER IDENTIFICATION USING CONDITION
NUMBER BASED RECURSIVE LEAST SQUARES
The strategy of the newly proposed parameter identification
algorithm, called a condition number based recursive least
squares(CNRLS) in this paper, is simple to implement. The
proposed CNRLS stores in memory the identified parameters
and their convariance matrices calculated from RLS when it
operates with high numerical robustness, and then it reuses
the stored ones when it operates with low numerical robust-
ness. Such a numerical robustness-seeking strategy provides
reliable identified parameters at all times. As mentioned in

the section II, for a given linear equation Ax = b, small con-
dition number of A means that its solution is highly reliable.
As in such a linear equation, the condition number of the
covariancematrixPt in (7) is important for howmuch reliable
the solution θt is. Therefore, the proposed CNRLS stores in
memory the RLS variables (Pt , θt ) when κ(Pt ) is small, and
reuses them when κ(Pt ) is large, to obtain the reliable θt at
all times. The flow chart for the key idea behind CNRLS is
drawn in Fig. 4.

The involved design parameters of the CNRLS are as
follows:
• c∗:8,P, and θ in (7), (12), and (13) are stored inmemory
the moment when c = κ(P) have just exceeded or just
become smaller than c∗. More specifically, the values of
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FIGURE 6. Performance comparison of the proposed CNRLS with the RLS and AFFRLS.

c right before and right after that moment are compared
to each other and then only 8, P, and θ corresponding
to the smaller c value are stored for better numerical
robustness as shown in Fig. 3.

• cupper: 8mem, Pmem, and θmem stored in memory, are
reused when c = κ(Pt ) becomes greater than cupper.

• λ: This is the forgetting factor used in the parameter θ
update by RLS.

• λfor: This is set to be smaller than 1. It has the same role
as forgetting factor in the original RLS. Generally, λ has
a value of λfor at most of iterations.

• λrem: This is set to be greater than 1. λ has a value of λrem
to put much weight on the stored8mem, Pmem, and θmem

computed earlier with high numerical robustness, which
occurs when they are used to obtain a reliable solution θt .
At the first iteration after that, λ has a value of λfor/λrem
to give bigger weight back to the current data. After that,
λfor is used as λ until c = κ(P) becomes greater than
cupper as shown in Fig. 3.

The values of c∗ and cupper must be carefully chosen by
considering their effects on parameter-tracking performance
and numerical stability. Generally, c∗ is set to be small enough
so that the CNRLS can identify the battery prameters with
high numerical robustness. However, too small c∗ leads to
the bad parameter-tracking performance while c is larger
than c∗, since 8mem, Pmem, and θmem are rarely updated.
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With small cupper, the solution θt tends to be computed with
high numerical robustness because of the frequent use of
8mem, Pmem, and θmem, but too small cupper causes the bad
parameter-tracking performance since the past data is pre-
ferred over the recent one. Too large cupper leads to the poor
numerical stability, since 8mem, Pmem, and θmem are rarely
reused.

One of very practical features of the proposed CNRLS
is that the condition number computation does not require
the matrix inversion with highly computational complexity.
As seen in the following condition number:

κ(P) = ‖P‖
∥∥∥P−1∥∥∥ = ‖P‖ ‖8‖ (21)

the condition number κ(P) is easily computed without inver-
sion operation, from P and 8 that are recursively computed
from the previous ones. The recursion for 8 is given in (14).
In (21), the∞-norm is employed for calculating the condition
number. It can be said that the proposed CNRLS is very suit-
able for use in the BMS with low computational resources.
The detailed work flow diagram of the CNRLS is illustrated
in Fig. 3.

V. RESULTS AND DISCUSSIONS
It is assumed that CNRLS is used with a SOC estimation
algorithm (Fig. 4). The validation of CNRLS is carried out
with random pulse current profiles with four different ECM
parameter sets (Fig. 5 and 6). To provide more insight about
application of the proposed CNRLS to real BMS, the perfor-
mance of the proposed CNRLS is compared with that of two
RLS-based parameter identification methods including the
standard RLS and adaptive forgetting factor RLS (AFFRLS)
[21] which has been judged to be successfully applicable
to real BMS hardware. The parameter sets are chosen by
sampling from Gaussian distributions whose means are refer-
ence ECM parameter values in [35]. To reflect the real-world
sensing noise and SOC estimation error, zero-mean Gaussian
noise is added to the true values of current, voltage and SOC
(σcurrent = 0.5 [mA], σvoltage = 0.5 [mV], σSOC = 0.5 [%]).

Table 1 represents the relative mean absolute error
(RMAE) of each ECM parameters identified by using RLS,
AFFRLS and CNRLS in the validation (Fig. 5 and 6). RMAE
is defined as:

RMAE(%) =
1∑4
i=1 Ti

4∑
i=1

Ti∑
t=1

∣∣∣βECM,i − β̂ECM,i,t ∣∣∣
βECM,i

× 100(%) (22)

where βECM,i is the true value of a ECM parameter (βECM ∈
{ R0,R1C1,R1,C1} ) of the i-th ECM parameter set, β̂ECM,i,t
is its identified value and Ti is the number of time steps
of each algorithm in the validation step. Average RMAE of
parameters and the computing cost of each algorithm are
summarized in Fig. 7. The computing cost is characterized
by the time it takes to execute each algorithm for 3 × 104

[sec] time-series data by using 3.60 [GHz] CPU and 48 [GB]
DRAMs (Fig. 5 and 6).

TABLE 1. Relative mean absolute error of ECM parameters in the
validation (Fig. 5 and 6).

FIGURE 7. Average relative mean absoloute error of ECM parameters and
the CPU time to execute each algorithm.

In the validation results, the CNRLS has the smaller param-
eter identification error than the two benchmarks.When there
is the insufficient excitation of input data, both benchmarks
show wind-up problem [22], which leads to high sensitivity
of the parameter identification error to the data noise and,
finally, to the large parameter identification error. Further-
more, such a problem makes the two benchmark algorithms
identify ECM parameters as negative values, which is physi-
cally infeasible (Fig. 5 and 6). However, the proposedCNRLS
identifies the ECM parameters with low errors because of its
ability to maintain the high numerical stability. Such ability
makes the CNRLS more robust to the noise than the two
benchmarks. Additionally, the CNRLS has almost the same
computing cost as the two benchmarks (Table 7), which
means that the CNRLS can be practically applied to the
commercial BMS hardware with low computation power like
the two benchmarks [21]. Considering the fact that AFFRLS
has been judged as a successful parameter identification algo-
rithm for the use in real BMSs [21] and noisy data is used
in the simulation validation of this work, it is believed that
the proposed CNRLS can be successfully applied to the real
BMS environment. There is high variation of errors among
parameters (Table 1), which is believed to be caused by the
different identifiability among parameters.

VI. CONCLUSION
A new reinforced version of recursive least squares (RLS)
with enhanced reliability, called a condition number based
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RLS (CNRLS) throughout this paper, is proposed to effec-
tively identify the equivalent circuit model parameters of a
Li-ion battery even when excitation of the input current is
insufficient. The proposed CNRLS algorithm is shown to
havemore reliable performancewith less computation burden
since it employs a simple ECM and it captures the reliability
of the obtained results from the condition number of the iden-
tification error covariance matrix. Such a practical CNRLS
algorithm is expected to be successfully applied to many real
BMSs that have low computing power and hence require low
computational complexity. To provide more comprehensive
information on the Li-ion batteries such as parameter identi-
fiability, aging modes, and faults, the parameter identification
method will be improved by adopting a data-driven approach
for more elaborate battery models such as electrochemical
models, as the future work.
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