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ABSTRACT Recent technological advancements in the area of the Internet of Things (IoT) and cloud
services, enable the generation of large amounts of raw data. However, the accurate prediction by using
this data is considered as challenging for machine learning methods. Deep Learning (DL) methods are
widely used to process large amounts of data because they need less preprocessing than traditional machine
learning methods. Various types of uncertainty associated with large amounts of raw data hinder the
prediction accuracy. Belief Rule-Based Expert Systems (BRBES) are widely used to handle uncertain data.
However, due to their incapability of integrating associative memory within the inference procedures, they
demonstrate poor accuracy of prediction when large amounts of data is considered. Therefore, we propose the
integration of an associative memory based DL method within the BRBES inference procedures, allowing to
discover accurate data patterns and hence, the improvement of prediction under uncertainty. To demonstrate
the applicability of the proposed method, which is named BRB-DL, it has been fine tuned against two
datasets, one in the area of air pollution and the other in the area of power generation. The reliability of
the proposed BRB-DL method, has also been compared with other DL methods such as Long-Short Term
Memory and Deep Neural Network, and BRBES by taking into account of the air quality dataset from
Beijing city and the power generation dataset of a combined cycle power plant. BRB-DL outperforms the
above-mentioned methods in terms of prediction accuracy. For example, the Mean Square Error value of
BRB-DL is 4.12 whereas for Long-Short Term Memory, Deep Neural Network, Fuzzy Deep Neural Network,
Adaptive Neuro Fuzzy Inference System and BRBES it is 18.66, 28.49, 17.05, 16.37 and 38.15 for combined

cycle power plant respectively, which are significantly higher.

INDEX TERMS Knowledge based systems, expert systems, multi-layer neural network, learning systems.

I. INTRODUCTION
The accurate prediction using real-world data is considered
as a challenging task for various machine learning methods.
It can be observed that nowadays, a large amount of data is
generated continuously in different scientific and industrial
fields around the world due to the Internet of Things (IoT)
and cloud services. These large amounts of data inevitably
contain various uncertainties like incompleteness, ignorance,
vagueness, imprecision, and ambiguity. These uncertainties
pose a significant challenge to the accurate prediction from
data.

To address the uncertainties mentioned above, fuzzy-based
learning approaches [1] have been widely used. These
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approaches are used in image processing [2], portfolio man-
agement [3], and motor control [4], where uncertainty is
a regular phenomenon. Fuzzy learning systems automati-
cally learn the fuzzy membership functions and consequently
derive fuzzy rules from a large amount of training data [5].
Using an inference mechanism, the fuzzy values are gener-
ated from the fuzzy rules. The fuzzy values are then converted
to crisp values using different defuzzification techniques like,
the centre of gravity (COG), mean of maximum (MOM), and
centre average methods. However, fuzzy learning systems
can address uncertainty due to imprecision, ambiguity, and
vagueness but not due to incompleteness and ignorance [6].
Belief Rule-Based Expert Systems (BRBESs) represent an
improved version of fuzzy learning systems. They facilitate
better representation of uncertain knowledge by incorporat-
ing a belief structure. Usually, an expert system has two main
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components, one is the knowledge base, and the other is the
inference engine. IF-THEN rules are used as a knowledge
representation schema in the traditional knowledge base, for
example “IF creatinine is present THEN renal failure is
definite”. The semantic of this rule is that “renal failure” is
100% certain because of the “creatinine is present’”’. How-
ever, the rule fails to capture the scenario when it is less than
100% certain that ‘“‘renal failure” is due to the “‘creatinine
is present”. Yang et al. [7] proposed a new knowledge rep-
resentation schema by incorporating distributed assessment
called belief structure in the consequent part of the rule, for
example “IF the amount of rainfall is Medium and duration of
rain is High THEN chance of flooding is (High 60%, Medium
30%, Low 10%)’’. Due to the new knowledge representation
schema with belief structure, the BRBES has been used in
different domains such as natural disaster prediction [8], [9],
different diseases assessment [10]-[12], and Forex trading
forecast [13] where the issue of uncertainty is dominant in
making decisions. In general, BRBES can be of two differ-
ent types. One is Conjunctive BRB, where each antecedent
attribute of the rule is connected using the AND logical
operator. Another one is Disjunctive, where the OR logical
operator is used in the antecedent part of the rule [14]. Con-
junctive BRB requires more computational time because it is
an example of a combinatorial explosive problem, resulting
from the connection of antecedent attributes of a rule by logi-
cal AND operator. Consequently, the rule base of conjunctive
BRB consists of large numbers of rules [15]. On the contrary,
Disjunctive BRB requires less computational time because it
uses the logical OR operator in the antecedent part of the rule
and hence, this constitutes less number of rules in the rule
base.

Recently, Deep Learning is becoming an effective method
for solving different pattern recognition and regression prob-
lems due to its ability to process raw data directly [16].
However, Deep Learning lacks the capability of addressing
different types of uncertainty, since it is based on neural
networks, inherently limited in addressing uncertainty [17].
On the other hand, BRBES is capable of addressing var-
ious types of uncertainty such as ignorance, incomplete-
ness, ambiguity, vagueness, and imprecision in an integrated
framework. However, BRBES lacks the capability of integrat-
ing associative memory in its inference procedure since most
of the operations are multiplicative, summation, and division
based. Since these operators do not have any memorizing
capability, they are unable to discover complete patterns
from partial information. For example, the use of matching
degrees, which will be discussed in Section III, in calculat-
ing activation weight of a rule by using multiplicative and
division operators are unable to generate accurate activation
values of each rule in the BRBES inference framework.
These incomplete values of rule activation weights will affect
the rule aggregation procedure, which is used to perform
the prediction. Therefore, in this study Deep learning-based
methods especially Deep Neural Network (DNN) has been
considered to calculate the weight of the rule activation by
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taking into account matching degrees allowing the calculation
of more accurate values of the activated rule. The reason for
using a DNN based Deep Learning method is that it is based
on Artificial Neural Networks (ANN). ANN are associative
memory systems and hence, the capability to recall complete
situations from partial information as well as the ability to
correlate input data with stored information [18]. Thus, our
proposed method is based on associative memory, allowing
the retrieving of the complete value of rule activation weight
by taking into account the matching degrees. This will play an
important role in BRBES’s inference framework to process
especially large amounts of data in a very accurate way.
Eventually, this would also contribute to the improvement of
the overall prediction accuracy of BRBES as will be demon-
strated in Section VII.

The determination of optimal values of the BRBES’s learn-
ing parameters such as rule weights, attribute weights, and
belief degrees also play an important role to increase the
prediction accuracy. These optimal values are achieved by
using a plethora of learning algorithms [19]-[21]. The inte-
gration of associative memory based Deep Learning method
with BRBES requires the inclusion of additional learning
parameters such as weights of neurons and bias, and they
should also be optimized. Hence, the framework of BRBES
learning should need to be improved, as will be discussed in
Section VI. Eventually, the additional parameters of associa-
tive memory would play a role to increase the accuracy of
prediction.

In this way, we will advance the BRBES’s present method-
ology as will be demonstrated by using two use cases. One of
the use cases is air quality prediction in Beijing city using
a dataset containing around 43,824 data points. The other
one is the prediction of the electrical energy output of a
combined cycle power plant using a dataset which contains
9,568 data points. In addition, the results were compared
with different Deep Learning methods such as Deep Neural
Network, Long-Short Term Memory (LSTM), and BRBES,
where the proposed method in this study named as BRB-DL
performed promisingly better than the other methods
mentioned.

The remainder of this article is structured as follows.
Section II surveys related work on integration of various
methods with Deep Learning, and incorporation of different
machine learning methods with BRBES. Section III provides
the brief overview of the BRBES, while Section IV discusses
about Deep Learning methods. Section V describes the Deep
Learning inspired BRBES named, BRB-DL. Subsequently,
Section VI presents the learning mechanism for BRB-DL,
followed by Section VII which presents results and analysis.
Lastly, Section VIII concludes the article.

Il. RELATED WORK

This section presents a literature review on integration
between 1) Fuzzy and Deep Learning methods; 2) various
learning mechanisms with BRBES; and 3) machine learning
methods with BRBES.
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Deep Learning has been used to solve various problem
of prediction from data. However, different algorithms have
been used with Deep Learning to improve its accuracy of pre-
diction. Merentitis and Debes [22] have used random forest
with Deep Learning to improve classification tasks. In this
study, Deep Learning has been used to extract high-level
features and passed to the random forest algorithm for per-
forming the classification tasks.

Chen er al. [17] presented a novel Fuzzy Deep Learn-
ing approach, called Fuzzy Deep Convolutional Network
(FDCN), which was proposed for predicting the traffic flow
of a city. They combined Fuzzy theory and Deep Residual
Network to address the uncertainty. The FDCN contains
five modules, namely input, Deep Convolutional Network
(DCN), Fuzzy Network (FN), fusion module, and predictor.
In the beginning, the input data is passed to both FN and
DCN simultaneously. After processing the data, the output
is merged in the fusion module and sent to the predictor
module. The fusion module uses objective or loss functions
for training the parameters of the DCN and FN module.
During the training phase, the parameters of DCN and FN
are modified to minimize the value of the objective function.
After finishing the training phase, the predicted values can be
generated by feeding the data into the model. The DCN mod-
ule is used to capture the pattern of the data, while FN is used
to address the uncertainty. However, Fuzzy systems can not
address uncertainty due to incompleteness, and ignorance,
which will hinder the accuracy of prediction. Furthermore,
the traffic flow is complex data because it consists of spatio
and temporal information. Therefore, this data will cause
incompleteness due to missing information and ignorance
due to mismatch of data. Since such types of uncertainties
cannot be addressed by fuzzy systems, they will affect the
accuracy of FDCN’s prediction.

Deng et al. [23] proposed a hierarchical fused Fuzzy Deep
Neural Network (FDNN) for data classification. The data
is passed to the fuzzy system and DNN module simultane-
ously, and then the output of these two modules are fused
to transfer to the task-driven layer for generating the clas-
sification result. According to the authors, the fuzzification
of the fuzzy module helps in addressing uncertainty, and
Deep Learning reduces the noise of the data. The FDNN
has been evaluated using the classification of brain tissues
from MRI images as well as predicting stock prices, where it
showed promising results. However, FDNN suffers from the
inherent limitation of the fuzzy systems, which is the lack of
addressing uncertainty due to incompleteness, and ignorance.
According to Deng et al. [23], the data contains various kinds
of noise, which causes incompleteness and ignorance. Since
fuzzy systems can handle uncertainty due to imprecision,
ambiguity, and vagueness but not due to incompleteness
and ignorance, the accuracy of the classification of brain
tissues from the MRI images could not be improved by using
FDNN.

From the above discussion, it can be concluded that fuzzy
systems have been used as a separate box while integrating
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with Deep Learning to address the uncertainty. Fuzzy systems
can address uncertainty, due to imprecision, ambiguity, and
vagueness [8]. Therefore, the accuracy of these integrated
methods will be hindered in the cases where there is presence
of uncertainty due to ignorance and incompleteness.

Various learning algorithm such as Genetic Algo-
rithm (GA), Differential Evolution (DE), and Particle Swarm
Optimization (PSO) have been used to support learning
in BRBES. They have been used as a separate boxes with
BRBES. Yang et al. [24] proposed a learning algorithm for
BRBES to find the optimal values of the learning parameters
such as attribute weight, rule weight, and belief degrees
to improve the accuracy of prediction. Chang et al. [25]
proposed a joint optimisation method for BRBES by taking
into account of both structure and learning parameters. In this
method, the Akaike Information Criterion (AIC) was used as
an objective function to increase the accuracy of BRBES’
prediction. They used this method to predict pipeline leak
detection. Yang et al. [26] also proposed a joint parameter and
structure optimisation model to support learning in BRBES
but they have not use AIC as the objective function. However,
they used a heuristic algorithm for structure optimisation and
a Differential Evolution (DE) algorithm for parameter optimi-
sation. Islam et al. [27] proposed a joint optimisation method
using an enhanced Belief Rule-Based Adaptive Differential
Evolution (eBRBaDE) to improve the prediction accuracy of
BRBES. This method helps to optimise the parameters of
BRBES by using eBRBaDE. They have used this method
to predict Power Usage Effectiveness (PUE) of a datacentre,
where BRBES showed higher prediction accuracy compared
to other evolutionary algorithms, like PSO, GA and DE.
The aforementioned research helped BRBES to improve its
prediction accuracy.

Li et al. [28] proposed integration of Conditional Gen-
eralized Minimum Variance (CGMV) and BRBES for the
safety assessment of a complex system like WD615 model
diesel engine. In this integrative method, CGMV was used
for feature selection, while BRBES was used for safety
assessment. Both CGMV and BRBES were used as separate
boxes. However, they did not modify the BRBES inference
procedure, which would decrease the prediction accuracy for
large amounts of data.

Chang et al. [29] proposed an integrated Principal
Component Analysis (PCA) and BRBES method, named
PCA-BRB, for monitoring the health of the running gear of a
high speed train. They used PCA for feature selection and
BRBES for making decisions on health tasks of the high
speed train. In this integration the PCA and BRBES were
used as separate boxes and no changes were made in the
BRBES inference procedure. Furthermore, PCA-BRB does
not provide any features to handle large amounts of data,
which might hinder the accuracy of prediction.

Kabir et al. [30] proposed integration of a Deep Learning
method with BRBES to predict air pollution using outdoor
images of Beijing city. They have used Convolutional Neu-
ral Networks (CNN) to predict PM2.5 values from outdoor
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images. The predicted PM2.5 values from CNN and sensor
readings of PM2.5 values were used to predict air quality
level using BRBES. In their method of integration, CNN and
BRBES were used as separate boxes. This integration did not
make any modification of the BRBES inference procedure to
incorporate the associative memory. Therefore, the proposed
integration will suffer in processing large amounts of data
as BRBES does not have the capability to use associative
memory.

In summary, Fuzzy systems have been integrated with
Deep Learning methods in various ways to address the
uncertainty of large amounts of data [17], [23]. However,
these Fuzzy and Deep Learning integrations lack in pre-
diction accuracy as they are not able to address all types
of uncertainty due to limitations of the Fuzzy system. Dif-
ferent learning methodologies like fmincon [24], DE [26],
and eBRBaDE [27] have been used to improve the pre-
diction accuracy of BRBES. On the other hand, various
methods like CGMV [28], PCA [29], and CNN [30] have
been integrated as a separate box to improve the perfor-
mance of BRBES. However, there have been no attempts to
incorporate associative memory with the BRBES inference
procedure to improve the BRBES’s accuracy of prediction
for large amounts of data. Therefore, this study focuses
on integration of associative memory based Deep Learn-
ing method with BRBES inference procedure to improve
its accuracy for prediction. Therefore, in the following sec-
tions, BRBES and Deep Learning will be presented in
details. Afterwards, the integration of associative mem-
ory based Deep Learning methods with BRBES will be
presented.

Ill. BELIEF RULE-BASED EXPERT SYSTEM

A belief rule has two parts: one is antecedent or premise
part, which consists of antecedent attributes; while the other
is consequent or conclusion part which contains the con-
sequent attribute. The antecedent attributes use referential
values, and the belief degrees are associated with the con-
sequent attribute of the belief rule, which is shown in Eq. (1).
Each belief rule is assigned with a rule weight to show its
importance.

IF (A} is VF) AND / OR (4, is V¥) AND/OR
Ri: ... AND/OR (Ag is V{,) D
THEN (Cy, Bik), (C2, Bak)s - - - (Cn» Bik)

N
where B > 0, Z Bjk < 1 with rule weight 6, and attribute
=1
weights &1, 5k2]7 ke ke 1,00, L
where Ay, Az, ..., A7, are the antecedent attributes of the
k" rule. VG = 1,..., Tk, k = 1,..., L) is the referential
value of the i antecedent attribute. Cj is the j™ referential
value of the consequent attribute. Bx(G = 1,...,N,k =
1, ..., L)is the degree of belief for the consequent reference

190640

N

value C;. If Z Bjx =< 1, then the k™ rule is considered as
j=1

complete; otljlerwise, it is incomplete.

Usually, the collection of belief rules is called the Belief
Rule Base (BRB). The logical connectives of the antecedent
attributes in a belief rule can be either AND or OR. A belief
rule is considered as conjunctive if the antecedent attributes
are connected using AND. Similarly, if the antecedent
attributes of the belief rule are connected with OR, then it
is called a disjunctive rule. Based on the logical connectivity
of the BRB, a BRBES can be named as conjunctive or dis-
junctive BRBES.

After constructing the BRB, the inference procedure is
used to generate the output. The inference procedure con-
sists of various steps which are illustrated in Fig. 1. These
are input transformation, rule activation, weight calculation,
belief degree update, and rule aggregation using the evidential
reasoning approach. The input data is distributed over the ref-
erential values of the antecedent attributes, which is called the
matching degree, achieved through the inference process of
input transformation. Then the belief rules are called packet
antecedent. Subsequently, activation weights of the rules are
calculated using matching degrees.

The activation weight wy for the k™ rule for conjunctive
assumption is calculated by the following expression:

Tk
Ok H ocl]-{
i=1

wp = —— )

) Tk
N
=1 =l
Here, 6y is the rule weight and oy is the matching degree of
the k™ rule. As, in the conjunctive assumption all matching
degrees are multiplied to address the AND operation of the
belief rule.
However, for disjunctive assumption the activation weight
wy, for the k™ rule is calculated by the following expression:

Tk
Ok Z Oll]-C
wp = —= 3)

T L Tk
PO
I=1 i=1

Here, 6 is the rule weight and o is the matching degree of the
k™ rule. In the disjunctive assumption all matching degrees
are summed to address the behaviour of OR operator of the
belief rule. It is also necessary to mention why the complete
value of the rule activation weight is difficult to calculate
using multiplicative, summation and division operator and
why this is possible in associative memory.

However, Eqgs. (2) and (3) are multiplicative and summa-
tion in nature, which does not have component of storing
patterns like associative memory.

If any of the antecedent attributes are ignored, the belief
degree associated with each belief rule needs to be updated.
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FIGURE 1. Working process of BRBES.

The belief degree update is calculated using Eq. (4) [7].
Iy

Tk
D k)Y (o))

B = B =" o =l )

Z A, k)
t=1

where
1 if the ™ attribute is used in
defining rule Ry (k = 1, ..., Tk)

0 otherwise

Mt k) =

Here, Bjk represents the original belief degree, while the
updated belief degree is B of the k t rule. ay; represents the
degree to which the input value belongs to an attribute.
Afterwards, the rule aggregation is performed using the
recursive reasoning algorithm as shown in Eq. (5) [31]

L x X =TT (- o S Bl

= 5)
’ 1= [TTEC 1= ex]
where
N L N
w= [ [ B +1—x Y By — (N —1)
j=1 k=1 j=1

L N 1
< [Ja - ) ﬂjw}
k=1 j=1

Here, wy, is the activation weight of the k™ rule, while B;
denotes the belief degree related to one of the consequent
reference values.

The fuzzy output of the rule aggregation procedure is
converted to a crisp value using the utility values of the
consequent attribute, which is considered as the final result,
as shown in Eq. (6).

N
z= Y uO)p 6)

J=1
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where z; is the expected numerical value and u(0j) is the
utility score of each referential value.

In summary, the input data xi, x3, ..., x, is mapped to
the matching degree of the referential values Aj, Aa, ...,
Ay of the antecedent attributes as shown in Fig. 1. Firstly,
input transformation is performed, which generates match-
ing degrees. Using the matching degrees, activation weights
of the rules are calculated. Then, belief degrees associated
with rules are modified during the belief update step. Sub-
sequently, using the recursive reasoning algorithm in the
rule aggregation step, the fuzzy output is generated, which
is converted into a crispy value using the utility function.
The uncertainty due to vagueness, imprecision, ambiguity,
incompleteness, and ignorance are addressed by the belief
schema, belief degree update step, and evidential reasoning
inference procedure. By following the above-mentioned steps
BRBES addresses various types of uncertainty.

The BRBES is presented in terms pseudocode in Algo-
rithm 1, where X; ;(i = 1,...,N;j = 1,..., TR) denotes
input data, N denotes total number of data, r,, denotes
the qth referential value of pth attribute, BRB denotes the
belief rule base, and Y;(i = 1, ..., N) denotes the predicted
output. Lines 2 to 6 handles the input transformation step
for each data. The matching degree is computed using the
referential values of the antecedent attributes in the input
transformation step. Line 8 calculates the activation weight
using the matching degrees. Line 9 executes the calculation
of belief update. Line 10 shows the rule aggregation operation
using Eq. (5), which generates a fuzzy output value. Finally,
the fuzzy output value is converted to a crisp value using
Eq. (6) as shown in line 11. Lines 8 to 11 are invoked for
each input value of the dataset to calculate the output.

IV. DEEP LEARNING APPROACH

Deep Learning is a method, which automatically discovers
necessary representation from data to calculate prediction
or classification [16]. The simplest form of Deep Learning
consists of input, hidden, and output layers. Usually, the data
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Algorithm 1 BRBES Algorithm
Let X;;i = 1,...,N;j = 1,...,TR) denotes input
data, N denotes total number of data, TR denotes the total
number of attribute. 7, , denotes the g™ referential value of
pth attribute, BRB denotes the belief rule base, and Y;(i =
1, .., N) denotes the predicted output
Input Xi,ja r, BRB, N
Output Y;
: procedure BRBES(X; j, r; j, BRB, N)
for eachi € N do
for eachj € M do
X;; is transformed to matching degree,
md; x(k =1, ..., L) based on the referential value r
end for
end for
for eachi € N do
Calculate activation weight using Eq. (2) for con-
junctive BRB and Eq. (3) for disjunctive BRB
9: Calculate belief update using Eq. (4)
10: Calculate rule aggregation using Eq. (5)
11: Convert crisp value Y; from fuzzy value generated
from rule aggregation using Eq. (6)
12: end for
13: end procedure

Ea A

A

is fed to the input layer and passed to the hidden layer. The
hidden layer can contain multiple layers. The multiple hidden
layers signify the word "Deep’. Each layer has multiple num-
bers of neurons. Each neuron has an activation function which
creates a non-linear representation of data. The neuron helps
to capture features of the data. A neuron is mathematically
represented by Egs. (7) and (8).

[ [

2 =whxx! + bl )

Here, w is the weight, x is input, and b is the bias of i"neuron
of 1™ layer.

y =g 8

Here, g is the activation function.

There are several methods in Deep Learning such as Deep
Neural Networks (DNN) [32], Convolutional Neural Net-
works (CNN) [33], Long Short-Term Memory (LSTM) [34],
and Recurrent Neural Networks (RNN) [35]. To learn from
the data various optimization methods are used. The gradient
descent approach is used for neural networks. However, it is
not suitable for Deep Learning due to its long computational
time. The Stochastic Gradient Descent (SGD) approach is
used for training the Deep Learning method with back prop-
agation.

V. DEEP LEARNING INSPIRED BELIEF RULE-BASED
EXPERT SYSTEM (BRB-DL)

This section presents the integration of Deep Learning with
BRBES, named BRB-DL. The BRB-DL consists of a BRB
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and the inference procedure. Fig. 2 illustrates the workflow
of a Deep Learning integrated BRBES method. The initial
BRB can be created using experts’ opinion or based on the
method described in [36].

The BRB-DL inference procedure consists of four steps:
1) Input transformation; 2) Deep learning processing;
3) Belief update; and 4) Rule aggregation. A detailed descrip-
tion of these steps are provided below.

A. INPUT TRANSFORMATION

First, the input data is mapped to matching degrees of the
referential values of the antecedent attributes during input
transformation as described in [36]. Input transformation is
marked as ’a’ in Fig. 2.

B. DEEP LEARNING PROCESSING

The second step is the deep learning processing, which is
marked as ’b’ in Fig. 2. In this step, various Deep Learning
methods like DNN, LSTM, and CNN can be used. In this
instance, we have used DNN. During this step, a deep learn-
ing multi-layer is constructed which has one input layer,
multiple hidden layers, and one output layer. The matching
degree from the input transformation step is passed to the
input layer. The number of neurons in the input layer is
usually equal to the total number of referential values. The
hidden layer can have n; layers, where each layer has ny
neurons in each layer. All the neurons are fully connected.
Egs. (9) and (10) represent each neuron. Eq. (10) is also
known as the activation function. The output layer contains
the same number of neurons as the number of belief rules.
The neurons of the output layer uses Egs. (9) and (11). The
output layer produces the activation weight for the belief rules
of the BRB, which activate the belief rules. The weights ¢
of neurons are initialized with random values and bias b of
neurons are initialized with zero [23].

zi=(ci*xa;)+b; 9

Here ¢; is the weight and «; is the matching degree, and b; is
the bias.

w; = max(0, z;) (10)
Here, w; is the activation weight.

o — exp(z;)
L (exp(z)
Here, w; is the activation weight.
The simplest associative memory can be presented using
Eq. (12). Here, a is the input pattern, b is the output pattern,
and M is the memory matrix [37].

b=fM,a) (12)

Y

Eq. (9) represents the associative memory part, where ; is the
input, z; is the output, and ¢; is the memory. Therefore, it can
be concluded that BRB-DL contains the associative memory
feature to calculate the activation weight. This helps BRB-DL
to discover various patterns more accurately from the data
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FIGURE 2. Working process of BRB-DL.

compared to the previous activation weight calculation using
Egs. (2) and (3). Eq. (2) calculates the activation weight using
multiplication and division operations between the matching
degree o; and the rule weight 6. Similarly, Eq. (3) uses
summation and division operations between the matching
degree «; and the rule weight 6. These equations do not
have any variables for memorizing like M in Eq. (12). Hence,
Egs. (2) and (3) are not able to memorize any pattern from the
data. Therefore, the new approach will be able to discover
different patterns and their corresponding activation weights,
which will help to produce more accurate prediction of the
output.

The memory in the DNN is an associative memory allow-
ing retrieving complete information from partial informa-
tion. Eq. (11) calculates the complete information by using
associate memory which can be derived by Eq. (9). There-
fore, it can be concluded that BRBES contains the associa-
tive memory to compute the accurate or complete activation
weight of a rule of the BRB. An integration of DNN with
BRBES will advance the capability of BRBES because of
the integration of associative memory. Hence, the inclusion
of DNN inside the inference process of BRBES will remove
more uncertainty when calculating the rule activation weight.
This will be demonstrated using in our case study where
BRB-DL will turn out to perform better than the BRBES,
which will be presented in Section VII.

C. BELIEF UPDATE

The third step is the belief update, which is calculated using
Eq. (4). The belief update helps to address uncertainty due
to ignorance which is caused due to the missing of the
antecedent attribute. This step is marked as ’c’ in Fig. 2.
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D. RULE AGGREGATION

The fourth step is the rule aggregation. This step is performed
using Eq. (6) which generates a fuzzy value. The fuzzy value
is later converted into a crisp value, which is the predicted
output. This step is marked as ’d’ in Fig. 2. The belief
schema, belief degree update, and evidential reasoning infer-
ence address the uncertainty due to vagueness, imprecision,
ambiguity, and incompleteness and ignorance.

The BRB-DL method is presented as pseudocode in Algo-
rithm 2, where X; ;(i = 1,...,N;j = 1,...,TR) denotes
input data, N denotes total number of data, TR denotes the
total number of attribute, ry ; denote the ! referential value
of s™ attribute, BRB denotes the belief rule base, Yii =
1, .., N) denotes the predicted output, NumOfHiddenLayers
denotes the number of hidden layers, and nh denotes the
number of neurons in each hidden layer. Lines 2 to 6 represent
the input transformation step where the matching degree
md is generated. Associative memory based deep learning
processing is performed in lines 8 to 14. Afterwards, belief
update and rule activation are performed in lines 16 and 17.
Finally, the fuzzy value generated from rule aggregation is
transformed to a crisp value in line 18. The main difference
between Algorithm 1 and 2 appears on line 8 of Algorithm 1
and lines 10 to 12 of Algorithm 2. The activation weight
calculation is replaced by the deep learning processing step
to incorporate the associate memory with BRBES.

In summary, the proposed BRB-DL method is able to han-
dle all types of uncertainty due to the input transformation,
belief update, and rule aggregation steps. The deep learning
processing helps to integrate the associative memory with
BRBES to discover accurate patterns from data. Therefore,
it can be concluded that the proposed integration of Deep
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Algorithm 2 BRB-DL Algorithm
Let X;;i = 1,...,N;j = 1,...,TR) denotes input
data, N denotes total number of data, TR denotes the total
number of attribute. 7, ; denotes the 1" referential value of s
attribute, BRB denotes the belief rule base, Y;(i = 1,..,N)
denotes the predicted output, NumOfHiddenLayers denotes
the number of layers in hidden layer, and nh denotes the
number of neuron in each layer of hidden layer
Input Xij, rij, BRB, nh, N
Output Y;
1: procedure BRB_DL(X; j, 7,
NumOfHiddenLayers, nh)

BRB, N,

2 for eachi € N do

3: for each j € M do

4: X;j is transformed to matching degree,
md; (k =1, ..., L) based on the referential value r

5: end for

6: end for

7: for eachi € N do

8: ni=total number of referential values

9: md; x(k = 1, ..., L) is used in input layer for ni
neurons using Egs. (9) and (10)

10: for each p € NumOfHiddenLayers do

11: apq(q =1, ..., nh)computed using Egs. (9)
and (10) for nh number of neurons

12: end for

13: nl= number of belief rules in BRB

14: Calculate ajq(q = 1,...,nl) using Eq. (9)
and (11) for nl neurons

15: wiq = aj g wWhere (g =1,...,nl)

16: Perform belief update using Eqgs. (4)

17: Perform rule aggregation using Eq. (5)

18: Convert crisp value Y; from fuzzy value generated
from rule aggregation using Eq. (6)

19: end for

20: end procedure

Learning and BRBES will help to improve the prediction
accuracy of BRB-DL due to the accurate pattern discov-
ery from data while addressing uncertainty. Furthermore,
the learning parameters of the BRB-DL need to be optimised
to improve the prediction accuracy. Learning for the BRB-DL
method will be described in the next section.

VI. LEARNING FOR BRB-DL

The learning procedure plays an important roles for the
BRB-DL to learn about the learning parameters from the
training dataset. These parameters are generally assigned
by domain experts, or randomly selected. For BRBES the
common learning parameters are attribute weights (6% ), rule
weights (§;), and belief degrees (Bx). Additional parameters
such as weights of neuron (c;) and bias (b;) are included as
required by the DNN method of the deep learning process.
The antecedent attributes and belief rules are prioritized using
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FIGURE 3. The learning process of the BRBDL.

the attribute weights and rule weights consecutively. Belief
degrees of the consequent attribute is used to present the
uncertainty of the output. Hence, the learning parameters
are essential for BRB-DL. Therefore, a suitable method is
needed to find the optimal values of the learning parameters.
By training the BRB-DL with data, the optimal values of the
learning parameters can be discovered [24].

The learning parameters need to be trained to determine the
optimal values by an objective function considering the linear
equality and inequality constraints. The output from BRB-DL
is considered as simulated output (z,,) and output from the
system is named observed output (z,,). The difference & (p)
between simulated and observed output needs to be mini-
mized by the optimization process, as shown in Fig. 3. The
training sample contains M data points, where the input for
BRB-DL is u,,, the observed output is z,,, and the simulated
output is z,, (im = 1, ..., M). The error &(p) is measured by
using Eq. (13).

M
1 -
Ep) =77 D_(em =) (13)
m=1
The optimisation of the learning parameters is defined as:

mgHE(P) P = P(u(0y), bk, 8k, Bjk. ci, bi) (14)

The objective function for training the BRB-DL consists of
Egs. (5) and (6). Furthermore, to ensure the completeness
of the belief rules, the summations of the belief degree
for each rule should be one. Additionally, the values of
attribute weights, rule weights, and belief degrees should
be between zero (0) and one (1). Henceforth, to enforce
the above-mentioned criteria the following constraints are
considered:

o Utility values of the consequent and antecedent

attributes w(O)G =1, ..., n):

w0 < p(O); i<
o Rule weights (k =1, ..., K):
1> 6 >0;
« Antecedent attribute weights 8, (k = 1, ..., K):
1> 6 =05

o Consequent belief degrees for the kth rule By,
G=1,....nk=1,... L)

1> B = 0;
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Y Bu=1
j=1

o Weights of the neurons c;(i =1, ..., N):
1>¢ >0

o Bias of the neurons b;(i =1, ...,N):
1> b; = 0;

We have used the finincon function, available in Matlab as
an optimal training procedure to determine optimal values of
learning parameters, weights of neurons, and bias values.

VII. RESULTS

In this section, the performance of the proposed new method
is evaluated in detail. Evaluation techniques play a signifi-
cant role in measuring the performance of a method. Mean
Square Error (MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE) are some of the standard techniques used for
comparing the performance among different methods [38].
Mean Square Error (MSE) has been used to evaluate the
performance of the proposed BRB-DL method and others,
which is very commonly used for performance measurement.
Our proposed BRB-DL method has been compared with var-
ious Deep Learning methods such as DNN [34], LSTM [34],
FDNN [23], Adaptive-network-based fuzzy inference sys-
tem (ANFIS) [39], BRBES with finincon [24], and eBR-
BaDE [27]. In this study, PM2.5 values from Beijing and
electrical energy output (EP) of a combined cycle power
plant (CCPP) have been used for comparison among different
methods.

A. USE CASE SCENARIO

We have used two datasets for measuring the accuracy of
the BRB-DL method. The first dataset was gathered from a
combined cycle power plant. The data was collected over six
years, from 2006 to 2011. The dataset contains 9,568 data
points, which comprises hourly average ambient variables
temperature (T), ambient pressure (AP), relative humidity
(RH), exhaust vacuum (V), and net hourly electrical energy
output (EP) of the plant [40]. The experiments were con-
ducted using a MacBook Pro with an Intel Core i7 processor
(2.2 GHz) and 16 GB RAM.

The second dataset contains air quality data from
Beijing [41]. The air quality data (PM2.5) were collected
from twelve air quality monitoring sites in Beijing. The mete-
orological data of the dataset were collected from the nearest
weather station of the China Meteorological Administration.
The dataset contains PM2.5 values, dew point, temperature,
pressure, combined wind direction, camulated wind speed,
cumulated hours of snow, and cumulated hours of rain. The
data was gathered over four years from 1 March 2013 to
28 February 2017 and contained 43,824 data points.
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FIGURE 4. BRB tree for EP prediction.

TABLE 1. Configuration of LSTM, DNN, FDNN, BRB-DL for EP prediction.

No of hidden layers | Neurons in each hidden layer
LSTM 3 100
DNN 2 400
FDNN 1 100
BRB-DL 3 100

B. PERFORMANCE OF BRB-DL FOR EP PREDICTION

The dataset of a combined cycle power plant has been divided
into a 80:20 ratio for training and test datasets. We have used
k-fold cross-validation for our experiments. Usually, 5 or
10 folds are commonly used for cross-validation [38]. Con-
sidering the execution time, fivefold cross-validation is used
in these experiments. The hourly average ambient variables
temperature (x2), exhaust vacuum (x3), ambient pressure
(x4), and relative humidity (x5) have been used as antecedent
attributes and electric power output (x1) as the consequent
attribute. The BRB tree is shown in Fig. 4, which illustrates
the antecedent (x2, x3, x4, and x5) and consequent (x1)
attributes for the initial rule base. Each attribute has three
referential values.

The DNN of BRB-DL contains five layers. The input layer
consists of twelve neurons, while three hidden layers each
have twelve neurons, and the output layer has three neu-
rons. For predicting EP, we have considered the disjunctive
BRB as it require less computational time. The interior-point
algorithm of the Matlab finincon tool has been used as the
learning mechanism for BRB-DL. Furthermore, for LSTM,
we have considered five layers, and four layers for DNN
based on the empirical analysis. Adam was used as learning
mechanism for LSTM and DNN. For FDNN we have used
one layer of DNN. ANFIS configured with four Gaussian
membership function. The detail of the LSTM, DNN, FDNN
and BRB-DL are presented in Table 1. The configurations
have been selected based on empirical analysis

The second, third, fourth, fifth, sixth, seventh, and
eighth columns of Table 2 presents the MSE values
of predicted EP of the five folds during the train-
ing of LSTM, DNN, FDNN, ANFIS, BRB-DL, and
BRBES with learning mechanisms eBRBaDE and fmin-
con respectively. The average MSE values of predicted
EP by LSTM, DNN, FDNN, ANFIS, BRB-DL, BRBES-
eBRBaDE, and BRBES-FMINCON have been illustrated
by Fig. 5. BRBES-eBRBaDE and BRBES-FMINCON pre-
dicted EP with average MSE of 27.17 and 28.65, which
shows that BRBES-eBRBaDE performs better than the
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TABLE 2. MSE values of EP prediction by LSTM, DNN, FDNN, ANFIS,
BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON of training dataset.

TABLE 3. MSE values of EP prediction by LSTM, DNN, FDNN, ANFIS,
BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON of the test dataset.

LSTM | DNN | FDNN | ANFIS | BRB-DL | BRBES-eBRBaDE | BRBES-FMINCON
Ist Fold 17.89 | 31.25 1523 16.65 16.29 32.87 29.79
2nd Fold 16.74 | 32.67 16.54 16.87 17.04 34.65 29.22
3rd Fold 16.74 | 23.34 16.34 16.01 15.62 22.77 28.09
4th Fold 1476 | 34.93 16.24 15.99 15.83 22.13 29.19
5th Fold 17.04 | 2221 16.19 16.20 15.60 23.43 26.95
Average 16.64 | 28.88 16.11 16.34 16.08 2717 28.65
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FIGURE 5. Comparison of MSE for LSTM, DNN, FDNN, ANFIS, BRB-DL,
BRBES-eBRBaDE, BRBES-FMINCON, ANFIS, and FDNN for training dataset.

BRBES-FMINCON during training due to the eBRBaDE
training procedure. LSTM and DNN predicted EP with aver-
age MSE of 16.64 and 28.88, whereas BRB-DL predicted EP
with average MSE of 16.08. FDNN and ANFIS predicted EP
with average MSE of 16.11 and 16.08 Therefore, BRB-DL
performed better than LSTM and DNN due to the associa-
tive memory based Deep Learning method and addressing
the uncertainty of data. Furthermore, BRB-DL has the low-
est MSE values among LSTM, DNN, BRB-DL, BRBES-
eBRBaDE, and BRBES-FMINCON, which is also visible
in Fig. 5.

Table 3 presents the MSE values of predicted EP of the
five folds during testing of LSTM, DNN, FDNN, ANFIS,
BRB-DL, and BRBES with learning mechanisms eBRBaDE
and fmincon respectively. The average MSE values of five
folds of LSTM, DNN, FDNN, ANFIS, BRB-DL, BRBES-
eBRBaDE, and BRBES-FMINCON are 18.66, 28.49, 17.05,
16.37, 4.12, 38.15, and 29.15 respectively. Therefore, it can
be concluded that BRB-DL is performing better than LSTM,
DNN, FDNN, ANFIS, BRBES-eBRBaDE, and BRBES-
FMINCON. Furthermore, LSTM is performing better than
DNN as LSTM can memorize the historical context of
the data. However, BRBES-FMINCON is doing better than
BRBES-eBRBaDE. Fig. 6 illustrates the average MSE val-
ues of LSTM, DNN, FDNN, ANFIS, BRB-DL, BRBES-
eBRBaDE, and BRBES-FMINCON, where it can also be
seen that BRB-DL is performing better than other methods
due to the incorporation of the association memory based
Deep Learning method.

Fig. 7 presents a comparison between actual EP values and
the predicated EP values by LSTM, FDNN, ANFIS, DNN,

190646

LSTM | DNN | FDNN | ANFIS | BRB-DL | BRBES-eBRBaDE | BRBES-FMINCON
1st Fold 16.74 | 28.93 17.23 15.13 3.86 46.77 22.16
2nd Fold 16.85 | 30.11 17.65 14.32 3.90 56.47 25.65
3rd Fold 19.35 | 24.20 16.91 17.69 4.27 38.58 29.15
4th Fold 21.13 | 36.63 17.51 17.77 4.38 24.38 32.65
5Sth Fold 19.23 | 22.60 15.97 16.92 4.21 24.57 36.14
Average 18.66 | 28.49 17.05 16.37 4.12 38.15 29.15
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FIGURE 6. Comparison of MSE for LSTM, DNN, FDNN, ANFIS, BRB-DL,
BRBES-eBRBaDE, BRBES-FMINCON, ANFIS, and FDNN for the test dataset.

BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON of
the test dataset. For better visualization of predicted output
of BRB-DL, a comparison of actual EP values and predicted
EP values by BRB-DL is illustrated in Fig. 8.

From the results of training and testing, it can be observed
that MSE values of predicted EP by BRB-DL are better
than the LSTM, DNN, FDNN, ANFIS, BRBES with learning
mechanism eBRBaDE and BRBES with fimincon respec-
tively. It can also be observed that BRB-DL is performing
better than the BRBES with eBRBaDE and BRBES with
fmincon respectively. The incorporation of the associative
memory with BRBES helped BRB-DL to predict EP with
higher accuracy than BRBES as there is no associative mem-
ory in BRBES. Besides, BRB-DL due to its capability of
addressing uncertainty of data helped to predict EP with
higher accuracy than LSTM, DNN. As fuzzy system do not
address all type of uncertainty, FDNN and ANFIS is perform-
ing worst than BRB-DL. Therefore, it can be summarized
that the incorporation of the associative memory based deep
learning processing step with BRBES helped BRB-DL to
discover accurate patterns from data with their associated
uncertainty.

C. PERFORMANCE OF BRB-DL FOR PM 2.5 PREDICTION

To further evaluate the performance of our proposed BRB-DL
method, a dataset with air quality data from Beijing has been
used. The dataset was divided into a 80:20 ratio for training
and test datasets. We have used five-fold cross-validation for
evaluating the performance. The dew (x2), wind direction
(x3), and wind speed (x4) have been used as antecedent
attributes and PM2.5 (x1) as the consequent attribute.
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FIGURE 7. Comparison of actual EP values and predicted EP values by actual EP, LSTM, DNN, FDNN,
ANFIS, BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON for the test dataset.
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FIGURE 8. Comparison of actual EP values and predicted EP values by
BRB-DL for the test dataset.

FIGURE 9. BRB tree for PM2.5 prediction.

x1=PM2.5

x2 = Dew

x3 = Wind Direction
x4 = Wind Speed

The BRB tree is shown in Fig. 9, which illustrates the
antecedent and consequent attributes for the initial rule base,
where each attribute has three referential values.

The BRB-DL has five Deep Learning layers. These are one
input layer, three hidden layers, and one output layer. The
input, hidden, and output layers have nine, twelve, and three
neurons, respectively. For predicting PM2.5 values, we have
considered the disjunctive BRB due to its less computational
time. The interior-point algorithm of the Matlab fmincon
tool has been used. The configuration of the deep learning
layers has been decided based on empirical studies. Further-
more, for LSTM and DNN we have considered five layers
based on the empirical analysis. Adam was used as learning
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TABLE 4. Configuration of LSTM, DNN, FDNN, BRB-DL for PM
2.5 prediction.

No of hidden layers | Neurons in each hidden layer
LSTM 5 100
DNN 5 400
FDNN 1 100
BRB-DL 3 100

mechanism for LSTM and DNN based on empirical anal-
ysis. For FDNN we have used one layer of DNN. ANFIS
configured with four Gaussian membership functions. The
detail of the LSTM, DNN, FDNN and BRB-DL are presented
in Table 1. The configurations have been selected based on
empirical analysis.

Table 5 presents the MSE values of PM2.5 of the five
folds during the training of LSTM, DNN, FDNN, ANFIS,
BRB-DL, and BRBES with learning mechanisms eBR-
BaDe and fmincon on second, third, forth, fifth, sixth, sev-
enth, and eighth columns respectively. The average MSE
values of five folds of LSTM, DNN, FDNN, ANFIS,
BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON are
0.00337, 0.00537, 0.00367, 0.00701, 0.00317, 0.00479, and
0.00757 respectively, which shows that BRB-DL is per-
forming better than other methods. Furthermore, it can be
observed from Table 5 that average MSE value for LSTM
is 0.00337 and DNN is 0.00537, which shows that LSTM
is performing better than DNN. From Table 5, it can also
be concluded that BRBES-eBRBaDE is performing better
than BRBES-FMINCON since the average MSE values for
BRBES-eBRBaDE and BRBES-FMINCON are 0.00479 and
0.00757 respectively. The average MSE values of LSTM,
DNN, FDNN, ANFIS, BRB-DL, BRBES-eBRBaDE, and
BRBES-FMINCON are shown in Fig. 10. From Fig. 10,
it can be concluded that BRB-DL is predicting PM2.5 with
the lowest average MSE values among LSTM, DNN, FDNN,
ANFIS, BRBES-eBRBaDE, and BRBES-FMINCON.
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TABLE 5. MSE values of PM2.5 prediction by LSTM, DNN, FDNN, ANFIS,
BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON of the training dataset.

LST™M DNN FDNN ANFIS BRB-DL | BRBES-eBRBaDE | BRBES-FMINCON
1st Fold 0.00451 | 0.00651 0.0039" | 0.00696477 0.0039 0.0056 0.00810
2nd Fold | 0.00145 | 0.00345 | 0.00287 | 0.00694875 | 0.00187 0.00317 0.00784
3rd Fold | 0.00224 | 0.00424 | 0.00351 | 0.00738465 | 0.00288 0.00424 0.00767
4th Fold 0.0022 0.0042 0.00376 0.00683483 0.00286 0.00461 0.00711
5th Fold 0.00644 | 0.00844 0.00429 | 0.0069574 0.00435 0.00635 0.00714
Average | 0.00337 | 0.00537 | 0.003666 | 0.00701808 | 0.00317 0.00479 0.00757
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FIGURE 10. Comparison of MSE for LSTM, DNN, FDNN, ANFIS, BRB-DL,
BRBES-eBRBaDE, and BRBES-FMINCON for the training dataset.

TABLE 6. MSE values of PM2.5 prediction by LSTM, DNN, FDNN, ANFIS,
BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON for the test dataset.

LSTM DNN FDNN ANFIS | BRB-DL | BRBES-eBRBaDE | BRBES-FMINCON
IstFold | 0.00645 | 0.00655 | 0.00351 | 0.00724 | 0.00371 0.00375 0.00366
2nd Fold | 0.00272 | 0.00282 | 0.00263 | 0.00724 | 0.00173 0.00143 0.00450
3rd Fold | 0.00238 | 0.00248 | 0.00245 | 0.00556 | 0.00275 0.00358 0.00484
4th Fold | 0.00184 | 0.00194 | 0.00267 | 0.00776 | 0.00177 0.00384 0.00522
5thFold | 0.00076 | 0.00086 | 0.00231 | 0.00730 | 0.00280 0.00276 0.00453
Average | 0.00283 | 0.00293 | 0.00271 | 0.00702 | 0.00255 0.00307 0.00455

The second, third, forth, fifth, sixth seventh, and
eighth columns of Table 6 presents the MSE val-
ues of predicted PM2.5 of the five folds during test-
ing of LSTM, DNN, FDNN, ANFIS, BRB-DL, and
BRBES with learning mechanisms eBRBaDE and fmin-
con respectively. From Table 6, it can be observed that
BRBES-eBRBaDE and BRBES-FMINCON have aver-
age MSE values of 0.00307 and 0.00455, which shows
that BRBES-eBRBaDE is performing better in predicting
PM2.5 than BRBES-FMINCON for the test dataset. Accord-
ing to Table 6, LSTM and DNN have average MSE val-
ues of 0.00283 and 0.00293 respectively. This shows that
LSTM is performing better than DNN for the test dataset.
Furthermore, from Table 6, it can be observed that BRB-DL
is performing better than all the methods as the average
MSE value of BRB-DL is 0.0025. The average MSE values
of five folds of LSTM, DNN, FDNN, ANFIS, BRB-DL,
BRBES-eBRBaDE, and BRBES-FMINCON are shown in
Fig. 11.

Our proposed BRB-DL method has predicted PM2.5 val-
ues with less error than BRBES with learning mechanism
eBRBaDE and fmincon for training and testing. BRB-DL,
with its additional capability of associative memory-based
DL method, can discover more accurate patterns form data
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FIGURE 11. Comparison of MSE for LSTM, DNN, FDNN, ANFIS, BRB-DL,
BRBES-eBRBaDE, and BRBES-FMINCON for the test dataset.

than BRBES since BRBES does not have any associative
memory. It can also be observed that BRBES with eBRBaDE
performed better than BRBES with fmincon due to eBR-
BaDE’s capability of optimal exploration and exploitation of
the search space. From training and testing, it can be observed
that LSTM is predicting PM2.5 values with lower MSE than
DNN due to LSTM’s capability of keeping a historical con-
text of the input data. BRB-DL has predicted PM2.5 values
with lower MSE than LSTM and DNN during training and
testing. Due to the associative memory-based DL method,
BRB-DL was able to discover patterns of the data and address
uncertainty of data using the ER based inference mechanism.

Fig. 12 presents a comparison between actual PM2.5 val-
ues and the predicated PM2.5 values by LSTM, DNN,
FDNN, ANFIS, BRB-DL, BRBES-eBRBaDE, and BRBES-
FMINCON of the test dataset. For better visualization
of predicted output of BRB-DL, a comparison of actual
PM2.5 values and predicted PM2.5 values by BRB-DL is
illustrated in Fig. 13.

In summary, it can be observed that our proposed BRB-DL
method is able to better predict with higher accuracy for
two different datasets than other Deep Learning methods
such as LSTM, DNN, and BRBES with learning mechanism
eBRBaDE and fimincon. Deep Learning methods like DNN
and LSTM are not able to address uncertainty of data as it is
based on Neural Networks, inherently limited in addressing
uncertainty. BRBES is able to address uncertainty due to its
ER based inference mechanism and incorporation of belief
structure with the rule base. However, BRBES lacks a mech-
anism for discovering patterns of data. The incorporation of
the DL method with BRBES enables BRB-DL to discover
accurate patterns of data due to the associative memory. The
BRB-DL method is able to address uncertainty due to the
inherent capability of BRBES. For the aforementioned fea-
tures, BRB-DL predicted values with the lowest MSE com-
pared to other DL methods such as LSTM, DNN, and BRBES
with learning mechanism eBRBaDE and fmincon respec-
tively. Furthermore, BRB-DL has been compared with fuzzy
based systems like FDNN and ANFIS. As fuzzy systems are
not able to address all types of uncertainty, their prediction
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FIGURE 12. Comparison of actual PM2.5 values and predicted PM2.5 values by LSTM,
DNN, FDNN, ANFIS, BRB-DL, BRBES-eBRBaDE, and BRBES-FMINCON for the test dataset.
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FIGURE 13. Comparison of actual PM2.5 values and predicted PM2.5 values for the

test dataset by BRB-DL.

accuracy was not better than BRB-DL. Therefore, it can be
argued the integration of Deep Learning with BRBES helps
improving the prediction accuracy by BRB-DL.

VIil. CONCLUSION

In our proposed BRB-DL method, a deep processing layer has
been added replacing the activation weight calculation step
of BRBES. DNN, which is a multi-layered neural network,
is used as the Deep Learning method. The deep processing
layer of BRB-DL contains the associative memory. The acti-
vation weight calculation step of BRBES uses multiplication,
summation, and division operators using matching degrees
and rule weights as shown in Eq. (2) and (3). Therefore, this
step lacks any component of associative memory, resulting in
incomplete calculation of rule activation weights. However,
the deep processing layer of BRB-DL enables the calculation
of complete values of the rule activation weights as described
in Section V. Therefore, BRB-DL with the integration of
associative memory based Deep Learning method within
BRBES inference procedures allows more accurate predic-
tion under uncertainty. Furthermore, during the learning pro-
cess of BRB-DL, the inclusion of additional parameters such
as weights and bias of neurons played an important role
to increase prediction accuracy as discussed in Section VI.
In this way, the present BRBES inference framework has been
advanced due to the inclusion of DNN. This novel BRB-DL
method has been applied to predict electric energy output of
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a combined cycle power plant and air quality (PM2.5) values
in Beijing city. The results of BRB-DL have been compared
with other Deep Learning methods including LSTM, DNN
ans fuzzy based systems like FDNN and ANFIS as well as
with BRBES. In case of LSTM and DNN, the Adam learn-
ing mechanism was used, while for BRBES, eBRBaDE and
fmincon learning mechanism were used. However, in case of
BRB-DL, finincon was used in the light of the learning mech-
anism as described in Section VI, where additional learning
parameters such as weight and bias of neurons are consid-
ered. The MSE values of LSTM and DNN with the Adam
learning mechanism were 18.66 and 28.49 respectively. The
MSE values of FDNN and ANFIS were 17.05 and 16.37
respectively. The MSE value of BRBES with finincon was
29.15, while it was 38.15 for eBRBaDE. However, the MSE
value of BRB-DL was found to be 4.12, which is better than
the other methods. The reason for this is that the inclusion
of DNN within the BRBES inference framework played an
important role to increase the accuracy of prediction. From
these results, it can be argued that a significant advancement
of the accurate prediction capability has been achieved with
the novel method proposed in this study. For the air qual-
ity (PM2.5) prediction in Beijing city, the MSE values of
BRB-DL, LSTM, DNN, FDNN, ANFIS and BRBES with
learning mechanism eBRBaDE and fimincon are 0.00317,
0.00337, 0.00367, 0.00701, 0.00537, 0.00479, and 0.00757
respectively. The results show that BRB-DL performs
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better than Deep learning methods such as LSTM, DNN,
and BRBES with learning mechanism eBRBaDE and fmin-
con respectively. However, the performance of the BRB-DL
needs to be evaluated with datasets from diverse domains to
ensure its efficiency and robustness further. The proposed
BRB-DL method has been evaluated using numerical data
mostly. Therefore, BRB-DL might have limitation for visual
and acoustic data like, images and audio. BRB-DL have
been presented for solving regression problem which might
not be suitable for classification and cluster-based methods.
Furthermore, BRB-DL can be used for addressing supervised
learning.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C.-T.Linand C. S. G. Lee, “Neural-network-based fuzzy logic control and
decision system,” IEEE Trans. Comput., vol. 40, no. 12, pp. 1320-1336,
Dec. 1991.

H. Keung Kwan and Y. Cai, ““A fuzzy neural network and its application to
pattern recognition,” IEEE Trans. Fuzzy Syst., vol. 2, no. 3, pp. 185-193,
Aug. 1994.

M. K. Mehlawat and P. Gupta, “Fuzzy chance-constrained multiobjec-
tive portfolio selection model,” IEEE Trans. Fuzzy Syst., vol. 22, no. 3,
pp. 653-671, Jun. 2014.

F.-J. Lin, C.-H. Lin, and P.-H. Shen, ““Self-constructing fuzzy neural net-
work speed controller for permanent-magnet synchronous motor drive,”
IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 751-759, Oct. 2001.

C.-F. Juang and C.-T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12-32, 1998.

R. UlIslam, M. S. Hossain, and K. Andersson, ““‘A novel anomaly detection
algorithm for sensor data under uncertainty,” Soft Comput., vol. 22, no. 5,
pp. 1623-1639, Mar. 2018.

J.-B. Yang, J. Liu, J. Wang, H.-S. Sii, and H.-W. Wang, “Belief rule-
base inference methodology using the evidential reasoning approach-
RIMER,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 36, no. 2,
pp. 266-285, Mar. 2006.

R. Ul Islam, K. Andersson, and M. S. Hossain, “A Web based belief rule
based expert system to predict flood,” in Proc. 17th Int. Conf. Inf. Integr.
Web Appl. Services (iiWAS), 2015, pp. 19-26.

M. R. Sabbir Hridoy, M. S. Hossain, R. U. Islam, and K. Andersson,
“A Web based belief rule based expert system for assessing flood risk,”
in Proc. 19th Int. Conf. Inf. Integr. Web Appl. Services (iiWAS), 2017,
pp. 434-440.

M. S. Hossain, I. B. Habib, and K. Andersson, ““A belief rule based expert
system to diagnose dengue fever under uncertainty,” in Proc. Comput.
Conf., Jul. 2017, pp. 17-23.

R. Karim, K. Andersson, M. S. Hossain, M. J. Uddin, and M. P. Meah,
“A belief rule based expert system to assess clinical bronchopneumonia
suspicion,” in Proc. Future Technol. Conf. (FTC), Dec. 2016, pp. 655-660.
M. S. Hossain, F. Ahmed, Fatema-Tuj-Johora, and K. Andersson, ““A belief
rule based expert system to assess tuberculosis under uncertainty,” J. Med.
Syst., vol. 41, no. 3, p. 43, Mar. 2017.

L. Dymova, P. Sevastjanov, and K. Kaczmarek, “A forex trading expert
system based on a new approach to the rule-base evidential reasoning,”
Expert Syst. Appl., vol. 51, pp. 1-13, Jun. 2016.

L. Chang, X. Ma, L. Wang, and X. Ling, ““Comparative analysis on the
conjunctive and disjunctive assumptions for the belief rule base,” in Proc.
Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discovery (CyberC),
Oct. 2016, pp. 153-156.

L. Chang, Z. Zhou, Y. You, L. Yang, and Z. Zhou, ““Belief rule based expert
system for classification problems with new rule activation and weight
calculation procedures,” Inf. Sci., vol. 336, pp. 75-91, Apr. 2016.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, May 2015.

W. Chen, J. An,R. Li, L. Fu, G. Xie, M. Z. A. Bhuiyan, and K. Li, ““A novel
fuzzy deep-learning approach to traffic flow prediction with uncertain
spatial-temporal data features,” Future Gener. Comput. Syst., vol. 89,
pp. 78-88, Dec. 2018.

190650

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]
(39]

[40]

[41]

M. P. Singh and V. K. Saraswat, “Multilayer feed forward neural networks
for non-linear continuous bidirectional associative memory,” Appl. Soft
Comput., vol. 61, pp. 700-713, Dec. 2017.

Z.-J. Zhou, G.-Y. Hu, C.-H. Hu, C.-L. Wen, and L.-L. Chang, “A survey
of belief rule-base expert system,” IEEE Trans. Syst., Man, Cybern., Syst.,
early access, Nov. 7, 2019, doi: 10.1109/TSMC.2019.2944893.

Y.-W. Chen, J.-B. Yang, D.-L. Xu, Z.-J. Zhou, and D.-W. Tang, “Inference
analysis and adaptive training for belief rule based systems,” Expert Syst.
Appl., vol. 38, no. 10, pp. 12845-12860, Sep. 2011.

B. Qian, Q.-Q. Wang, R. Hu, Z.-J. Zhou, C.-Q. Yu, and Z.-G. Zhou,
“An effective soft computing technology based on belief-rule-base and
particle swarm optimization for tipping paper permeability measurement,”
J. Ambient Intell. Humanized Comput., vol. 10, no. 3, pp. 841-850,
Mar. 2019.

A. Merentitis and C. Debes, “Automatic fusion and classification using
random forests and features extracted with deep learning,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015, pp. 2943-2946.

Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, ““A hierarchical fused fuzzy
deep neural network for data classification,” IEEE Trans. Fuzzy Syst.,
vol. 25, no. 4, pp. 1006-1012, Aug. 2017.

J.-B. Yang, J. Liu, D.-L. Xu, J. Wang, and H. Wang, “‘Optimization models
for training belief-rule-based systems,” IEEE Trans. Syst., Man, Cybern. A,
Syst. Humans, vol. 37, no. 4, pp. 569-585, Jul. 2007.

L.-L. Chang, Z.-J. Zhou, Y.-W. Chen, T.-J. Liao, Y. Hu, and L.-H. Yang,
“Belief rule base structure and parameter joint optimization under disjunc-
tive assumption for nonlinear complex system modeling,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 48, no. 9, pp. 1542-1554, Sep. 2018.
L.-H. Yang, Y.-M. Wang, J. Liu, and L. Martinez, ““A joint optimization
method on parameter and structure for belief-rule-based systems,” Knowl.-
Based Syst., vol. 142, pp. 220-240, Feb. 2018.

R. U. Islam, M. S. Hossain, and K. Andersson, ‘A learning mechanism for
BRBES using enhanced belief rule-based adaptive differential evolution,”
in Proc. 9th Int. Conf. Inform., Electron. Vis. (ICIEV), Aug. 2020, pp. 1-10.
G. Li, Z. Zhou, C. Hu, L. Chang, Z. Zhou, and F. Zhao, “A new safety
assessment model for complex system based on the conditional generalized
minimum variance and the belief rule base,” Saf. Sci., vol. 93, pp. 108—120,
Mar. 2017.

C. Cheng, X. Qiao, W. Teng, M. Gao, B. Zhang, X. Yin, and H. Luo,
“Principal component analysis and belief-rule-base aided health monitor-
ing method for running gears of high-speed train,” Inf. Sci., vol. 63, pp.
199202-1-199202-3, 2020.

S. Kabir, R. U. Islam, M. S. Hossain, and K. Andersson, “An integrated
approach of belief rule base and deep learning to predict air pollution,”
Sensors, vol. 20, no. 7, p. 1956, Mar. 2020.

M. S. Hossain, S. Rahaman, A.-L. Kor, K. Andersson, and C. Pattinson,
“A belief rule based expert system for datacenter PUE prediction under
uncertainty,” IEEE Trans. Sustain. Comput., vol. 2, no. 2, pp. 140-153,
Apr. 2017.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85-117, Jan. 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

N. Ketkar, Deep Learning With Python: A Hands-on Introduction, vol. 1.
Berkeley, CA, USA: Apress, 2017.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533-536, Oct. 1986.

M. S. Hossain, M. A. Hasan, M. Uddin, M. M. Islam, and R. Mustafa,
“A belief rule based expert system to assess lung cancer under uncer-
tainty,” in Proc. 18th Int. Conf. Comput. Inf. Technol. (ICCIT), Dec. 2015,
pp. 413-418.

J. Liu, M. Gong, and H. He, “Deep associative neural network for asso-
ciative memory based on unsupervised representation learning,” Neural
Netw., vol. 113, pp. 41-53, May 2019.

M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY,
USA: Springer, 2016.

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, Jun. 1993.
P. Tiifekei, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,”
Int. J. Electr. Power Energy Syst., vol. 60, pp. 126-140, Sep. 2014.

S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen, ‘“‘Cautionary
tales on air-quality improvement in Beijing,” in Proc. Roy. Soc. A, Math.,
Phys. Eng. Sci., vol. 473, no. 2205, pp. 1-14, 2017.

VOLUME 8, 2020


http://dx.doi.org/10.1109/TSMC.2019.2944893

R. U. Islam et al.: DL Inspired Belief Rule-Based Expert System

IEEE Access

RAIHAN UL ISLAM received the M.Sc. degree
in mobile systems and the Ph.D. degree in
pervasive and mobile computing from the Luled
University of Technology, Sweden. He was a Soft-
ware Engineer with the NEC Laboratories Europe,
Context-Aware Services (CAS) and Smart Envi-
ronments Technologies Group. His main research
interests include expert systems, machine learning,
smart cities, M2M communication, mobile sys-
tems, and pervasive and ubiquitous computing.

MOHAMMAD SHAHADAT HOSSAIN (Senior
Member, IEEE) received the M.Phil. and Ph.D.
degrees in computation from the University of
Manchester Institute of Science and Technology
(UMIST), UK., in 1999 and 2002, respectively.
He is currently a Professor of computer science
and engineering with the University of Chittagong
(CU), Bangladesh. His current research interests
include e-government, modeling of risks, uncer-
tainties using evolutionary computing techniques,

investigation of pragmatic software development tools, and methods for
information systems in general and expert systems in particular.

VOLUME 8, 2020

KARL ANDERSSON (Senior Member, IEEE)
received the M.Sc. degree in computer science and
technology from the Royal Institute of Technol-
ogy, Stockholm, Sweden, and the Ph.D. degree
in mobile systems from the Lulea University
of Technology, Sweden. He was with the Inter-
net Real-time Laboratory, Columbia University,
New York, NY, USA, and the National Institute
of Information and Communications Technology,
Tokyo, Japan. He is currently an Associate Pro-

fessor of pervasive and mobile computing with the Luled University of
Technology. His research interests include green and mobile computing,
the Internet of Things, cloud technologies, and information security.

190651



