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ABSTRACT Recommender systems are information software that retrieves relevant items for users from
massive sources of data. The variational autoencoder (VAE) has proven to be a promising approach for
recommendation systems, as it can explore high-level user-item relations and extract contingencies from
the input effectively. However, the previous variants of VAE have so far seen limited application to
domain-specific recommendations that require additional side information. Hence, The Ensemble Varia-
tional Autoencoder framework for recommendations (EnsVAE) is proposed. This architecture specifies a
procedure to transform sub-recommenders’ predicted utility matrix into interest probabilities that allow the
VAE to represent the variation in their aggregation. To evaluate the performance of EnsVAE, an instance —
called the ‘‘Ensemblist GRU/GLOVE model’’ — is developed. It is based on two innovative recommender
systems: 1-) a new ‘‘GloVe content-based filtering recommender’’ (GloVe-CBF) that exploits the strengths
of embedding-based representations and stacking ensemble learning techniques to extract features from the
item-based side information. 2-) a variant of neural collaborative filtering recommender, named ‘‘Gate Recur-
rent Unit-based Matrix Factorization recommender’’ (GRU-MF). It models a high level of non-linearities
and exhibits interactions between users and items in latent embeddings, reducing user biases towards items
that are rated frequently by users. The developed instance speeds up the reconstruction of the utility matrix
with increased accuracy. Additionally, it can switch between one of its sub-recommenders according to the
context of their use. Our findings reveal that EnsVAE instances retain as much information as possible during
the reconstruction of the utility matrix. Furthermore, the trained VAE’s generative trait tackles the cold-start
problem by accurately estimating the interest probabilities of newly-introduced users and resources. The
empirical study on real-world datasets proves that EnsVAE significantly outperforms the state-of-the-art
methods in terms of recommendation performances.

INDEX TERMS Hybrid recommender systems, neural recommender models, collaborative filtering,
content-based filtering, variational autoencoders.

I. INTRODUCTION
Recommender systems are software tools conceived to assist
users in reaching the most relevant elements from a gigantic
collection of resources. They are widely used by websites
and content-intensive systems to improve their user expe-
rience. Given the different purposes of recommendations,
a plethora of recommender systems have been developed,
with the earliest solutions being based on Collaborative
Filtering (CF) models [1]–[5] and Content-based Filtering
models (CBF) [6], [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi .

Collaborative Filtering (CF) recommender systems extract
the list of recommendations based on items’ or users’ sim-
ilarities. It is drawn from the idea that if two users rate
a set of items similarly, it is most likely that they share
the same preferences. As for two resources that are rated
similarly by several users, they would probably be rated
likewise by the rest of the users. Hence, collaborative filtering
models attempt to learn similarities between users to impute
the missing values from the utility matrix accordingly. Col-
laborative filtering algorithms are divided into two groups:
Memory-Based Collaborative Filtering approaches predict
ratings based on their neighborhood and extract users/items
with a similar history of ratings (similar users to a target user
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or similar items to a target item). For example, the distances
between users are computed. Then, the similarity is calcu-
lated as that the lower the distance, the higher the chance
they are akin. An overabundance of similarity techniques has
been proposed in the literature [8], [9]. On the other hand,
Model-based CF algorithms [10], [11] use different machine
learning methods on the training set that find patterns in the
data and learn a model for predicting new ratings.

Content-based recommender systems use the descrip-
tive attributes of items — which are labeled with rat-
ings — as training data to create a user-specific classification
or regression modeling problem, representing his profile.
Mak et al. [12] designed a web-based movie recommender
that makes suggestions based on text categorization of movie
synopses. Semeraro et al. [13], [14] proposed a system that
provides items recommendations in specific domains. How-
ever, the increase of the multi-modal data requires analytical
cross-modal approaches that are vital for undertaking appro-
priate recommendations. Consequently, traditional recom-
mender systems cannot take advantage of joint representation
learning.

With the emergence of deep learning, many solutions were
proposed in the literature for enhancing recommendation
models. Neural-based recommender systems have the poten-
tial to learn better representations, and consequently pro-
duce accurate predictions than their counterparts, especially
when presented with a considerable amount of learning data.
He et al. [15] proposed a neural architecture to overcomes
the cold-start problem by coupling matrix factorization with
Multi-Layer Perceptron (MLP) to learn the user-item interac-
tion function.

Numerous studies applied neural networks to hybrid rec-
ommender systems. Burke [16] proposed a taxonomy for
classifying hybrid recommender systems. It divided them into
seven classes: weighted, switching, cascade, feature augmen-
tation, feature combination,meta-level, and mixed hybrids.
The combination of recommendation techniques proved to
be the most effective design pattern. For instance, winning
entries in the Netflix Prize contest were mostly ensemble
systems (‘‘Bellkor’s Pragmatic Chaos’’ [17]).

Several challenges plague the creation of recommender
systems such as cold start, gray sheep,.. etc. Ourmain focus in
this article is to develop a novel framework that overcomes the
difficulties posed by cold start. This problem occurs when a
new user is introduced to the system where the recommender
would has little to no information about him. A new item,
as well, suffers from a cold start issue in a similar fashion.
Indeed, the recommender system does not possess any prior
history of interactions with the said item. Therefore, it is
not able to precisely suggest it to people who might like it.
Moreover, in a system that lacks novelty and serendipity, this
item may never be recommended at all [18], [20], [44].

The flexibility of deep neural networks makes it possible
to combine several neural building blocks to complement
one another and form a more powerful hybrid model. The
Variational Autoencoder (VAE) has proven to be an effective

model that gives significant control over modeling the latent
distribution [21], [22]. In a previous work, Liang et al. [23]
developed a variant of VAE for collaborative filtering that
achieved a competitive performance. They model the collab-
orative information in the form of a multinomial distribution
to sample the likelihood of presenting certain items to certain
users. However, the main drawback of their proposal is that
it does not allow to model a rich semantic representation of
data. Therefore, it cannot incorporate additional side infor-
mation such as content, context, etc. Building on this work,
we propose a novel probabilistic framework for hybridiz-
ing several building blocks: the Ensemblist Variational
Autoencoder.

EnsVAE combines predictions from several sub-recomm-
enders to leverage precise recommendations. Moreover,
it transforms the their outputs to interest probabilities,
in order to be used as input for a variational autoencoder that
learns the distribution of preferences per user-item pair and
outputs the interest probabilty predictions per said pair. The
advantages of the EnsVAE framework are: a-) Aggregating
and transforming the sub-recommenders outputs in a distri-
bution. When sampled, this distribution produces accurate
interest probabilities due to the generative abilities of the var-
tiational autoencoder. b-) EnsVAE framework retains asmuch
information as possible from the distribution of preferences
per user-item pair depending on the sub-recommenders.
c-) The probabilistic nature of sub-recommenders’ outputs
alleviates many recommendation problems, including user
biases and the cold start problem. d-) EnsVAE ensures an
efficient prediction time because once the VAE model is
trained, it is used directly for online predictions. Furthermore,
it manages the introduction of new users/items without the
need to resort to the sub-recommenders.

Inspired by the stacking ensemblemodel from theMachine
Learning literature, instances of the EnsVAE framework fol-
low the same best-practices in creating efficient and accurate
hybrids. For example, in a merchant website, a content-based
sub-recommender would be used to suggest items in the
‘‘Similar Items’’ section of the web-store. Whereas, a col-
laborative filtering sub-recommender is used to recommend
items in the ‘‘Users Like You Bought’’ section. Subsequently,
a ‘‘Just for You’’ is filled with the combined output of both
sub-recommenders for a more personalized user experience.

To evaluate a first instance of the EnsVAE framework, two
sub-recommender systems are developed: 1) Gated Recurrent
Unit based matrix factorisation (GRU-MF) and 2) stacking
Global Vectors based content filtering (GloVe-CBF).

The GRU-MF is a variant of Neural Collaborative Filtering
approach (NCF) [15]. It uses deep learning to perform matrix
factorization over the sparse, ground-truth rating matrix.
It models the pairwise correlations between the dimensions of
the embedding space for user-item interactions. The embed-
ding layers are chained with a GRU layer, helping these
embedded representations with memory-based reiterations
thanks to update and reset gates [24]. Basically, the update
gate determines how much of the past information needs to
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be passed along to the future. The reset gate, on the other
hand, controls thd amount of previous information that needs
to be dropped. Therefore, adding the GRU layers within the
GRU-MF recommender allows the retention of important
information indicating similar behavior between users/items.

The stacking content filtering system — based on Global
Vectors for Word Representation (GloVe) — combines dif-
ferent machine learning models in a manner that they col-
lectively cooperate to leverage an accurate prediction. GloVe
is an unsupervised algorithm aimed at getting vector repre-
sentations for words [25]. This recommender is composed
of a stack of ML models. Combining the predictive power
of the constituent models allows it to gain an accuracy edge.
Unlike previous works with stacked recommenders [26]–[28]
the proposed stacking GloVe-CBF considers the content for
recommendation to create a profile model for each user. Its
main advantage is the ability of the embedding representation
to integrate the side information in the EnsVAE framework.

Our contributions are summarized as follows:
• We developed the Ensemble Variational Autoencoder
(EnsVAE), an architecture for building probabilistic
framework. The EnsVAE framework is built based
on mapping the original data to higher-order features
interactions. This architecture is aimed at reducing the
user-item interactions bias and improving the effec-
tiveness of the collaborative systems. Furthermore,
the EnsVAE framework falls in both mixing and switch-
ing classes of Burke’s taxonomy, as it can switch
between one of its underlying sub-recommenders or use
a combination of them, all according to the context of
their use.

• The proposed EnsVAE framework is used to learn the
interest probability distribution on a per-item basis.
Therefore, allowing the variational autoencoder to cor-
rectly learn and represent the distribution pattern.
Moreover, sampling from the distribution generates the
complete rows of new users and the columns of new
resources even for minimal interaction.

• EnsVAE provides a flexible architecture that allows the
creation of various instances for different use cases.
However, the choice of recommender systems plays a
major part in the efficiency of the final recommender
systems both performance-wise and precision-wise.

• To evaluate EnsVAE, an instance called the ‘‘Ensem-
blist GRU/GLOVE Model’’ (EnsGG) is developed.
It is composed with two innovative sub-recommenders:
Glove-CBF and GRU-MF.

• The GRU-MF recommender models a high level of
non-linearities and exhibits interactions between users
and items in latent embeddings. Its Gated Recurrent
Units adjusts embeddings for better collaborative filter-
ing. Also, it reduces user biases towards items that are
rated frequently by users.

• The GloVe-CBF exploits the strengths of embedding
representations and the stacking ensemble learning for
modeling the content. Our motivation while suggesting

this recommender is to extract effective features from the
item- based side information, which would ameliorate
the analysis of user-item interactions and thus resulting
in more accurate predictions.

• EnsVAE framework is a very powerful design and can
be considered as a successful guideline for hybridiz-
ing various sub-recommenders. The empirical evalu-
ation demonstrates that the EnsGG instance signifi-
cantly outperforms state-of-the-art baselines on several
real-world datasets, including two recently proposed
neural-network approaches. It is worth mentioning that
GloVe-CBF on its own managed outperforms the state-
of-the-art recommendation methods, according to our
evaluations.

The rest of this article is structured as follows: Section 2
reviews related works. Section 3 introduces the proposed
EnsVAE framework for designing and building high-
performance hybrid recommender systems. We create an
experimental EnsVAE-compliant hybrid based on a two inno-
vative sub-recommenders: collaborative GRU-MFmodel and
an item-based content-based model. Section 4 is devoted to
data and method presentation. Section 5 reports the results of
the experimentations with EnsGG over real-world datasets.
Finally, conclusions are provided in Section 6.

II. RELATED WORKS
A. COLLABORATIVE FILTERING APPROACHES
In [29], the authors provided a recent comprehensive sur-
vey of collaborative filtering recommendation algorithms and
compared their performance in terms of different evaluation
metrics. Latent factor methods leverage pinpoint dimension-
ality reduction techniques that reduce, rotate, and impute
the missing values of an incomplete data matrix [30]. For
example, Matrix Factorization (MF) methods provide neat
mathematical approaches that estimate the entire data matrix
in one shot with high precision [31]–[33]. In [34], the authors
proposed a collaborative filtering approach based on the
users’ and locations’ points of view. They incorporate a
geographical model into the matrix factorization approach.
He et al. [35] used an outer product above the embedding
layer results to explicitly model the pairwise correlations
between the dimensions of the embedding space for user-item
interaction. Several works presented recommender systems
based on Recurrent Neural Networks (RNNs) to model the
temporal dynamics and sequential evolution of content infor-
mation [36]–[38]. Tang and Wang [39] proposed a sequential
recommendation that incorporates the Convolution Neural
Network (CNNs) to learn sequential features, and Latent
Factor Model (LFM) to learn user-specific features. A Graph
Neural Networks (GNNs) recommender has been proposed
to learn meaningful representations for graph data. The
main idea is how to iteratively aggregate feature information
from local graph neighborhoods using neural networks [40].
In addition to exploiting neural networks such as recur-
rent and convolutions models, autoencoders have also been
incorporated in recommender systems. Sedhain et al. [41]
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presented an autoencoder model for collaborative filtering.
The proposed model takes user vectors or item vectors as
input and reconstructs them in the output layer to enhance
recommendation performance. In [42], the authors proposed
a novel measurement, considering both similarity and trust
information to show the prediction reliability in the collab-
orative filtering approach. In [43], the authors proposed a
time-aware recommendation algorithm that is based on an
overlapping community structure between users. The algo-
rithm uses a time-weighted association rule to design effi-
cient recommendations. Ahmadian et al. [44] developed a
social recommender algorithm based on similarity values and
trust relations between the users. They propose a temporal
clustering approach exploiting the temporal information of
ratings provided by users on items and also the social infor-
mation among users.

B. AUTOENCODERS FOR HYBRID COLLABORATIVE
FILTERING
Autoencoders proved their effectiveness in representing
user-item interactions for easy and accurate collabora-
tive filtering. They harvested many research successes:
Strub et al. [45] proposed a collaborative filtering approach
using stacked denoising autoencoder, which injects side-
information to every layer input to mitigate both sparsity
and cold start influences. Wu et al. [46] designed a similar
collaborative model based on denoising autoencoders that
learn latent representations of corrupted user-item prefer-
ences. It allows the reconstruction of the rating matrix with
a smaller error margin. According to the reported experi-
ments, the proposed method outperformed standard baselines
in terms of the mean average precision. Liang et al. [23]
also proposed Variational Autoencoders for collaborative fil-
tering (MultVAE). The authors define a generative model
with multinomial likelihood representation and use Bayesian
inference for parameter estimation. Lee et al. [47] suggested
a hybrid recommender system based on auto-encoders, which
learns a content augmented rating matrix and recovers each
row of the ratingmatrix by a linear combination of the learned
basis. And the framework’s performance gain is significant
in the cold-start. Liu et al. [48] combined a stacked denois-
ing auto-encoders with neural collaborative filtering for
implicit feedback recommendations. The auto-encoder and
its variants, like the VAE, can effectively explore high-level
user-item relations and extract contingencies from input data.
However, there is little work applying VAE to hybrid recom-
mender systems. Nonetheless, VAE managed to prove itself
as a promising approach for recommendation systems.

C. HYBRID RECOMMENDATION MODELS
The recommendation problem literature suffers from no
shortage of hybrid approaches, all providing unique advan-
tages over individual algorithms. Zhao et al. [49] proposed a
cascading hybrid model that uses topic modeling in the first
step and matrix factorization in the second to compute the
expectations of users’ ratings on items. Romov et al. [50] won

the RecSys 2015 Challenge award with an ensemble learning
framework that deals with categorical features over implicit
feedback. This model goes through two phases: the first one
being a purchase detection predictor that infers whether a
given user would buy an item or not. The second phase,
on the other hand, consists of a purchased item detection
classifier, built upon the result of the preceding predictor and
the sessions with bought items to approximate items that are
most likely to be acquired next. Therefore, the architecture
is a feature augmentation hybrid built from two successive
learners. Frolov and Oseledets [51] proposed the renowned
HybridSVD that incorporates both user and item features
within the formula of the Singular Value Decomposition
(SVD) to leverage a more accurate recommender system.
The algorithm uses a different similarity metrics that con-
sider all pairwise distances while allowing the insertion of
side information. Otunba et al. [26] stacked an ensemble of
a Generalized Matrix Factorization (GMF) and MLP that
propagates the prediction from constituent models through
other constituent models to final output. The goal of stacked
ensemble recommenders is to combine the predictions of
several base estimators built with a given learning algorithm
to maximize the predictive performance.

III. THE ENSEMBLE AUTOENCODER FRAMEWORK
EnsVAE is an architectural framework for building proba-
bilistic, hybrid recommender systems that fall in both mixing
and switching classes of Burke’s taxonomy. It describes a
simple, yet effective way to regroup several recommender
systems in one entity that provides personalized recom-
mendations. Fig. 1 shows the general architecture of an
EnsVAE-compliant recommender system. The hybrid is com-
posed of a set of recommender systems (sub-recommenders),
with their rating matrices values adjusted to output interest
probabilities. Afterward, these matrices are combined using
a probabilistic aggregation function and passed to the vari-
ational autoencoder that learns the statistical distribution of
interests across possible user-item interaction patterns. More-
over, the trained variational autoencoder is not affected by
the few interactions of newly-introduced users or resources.
Therefore, it manages to collaboratively contrast their inter-
actions to the latent distribution and samples accurate interest
probabilities per each item for a given user.

Two simple guidelines should be followed for building an
EnsVAE-compliant hybrid recommender system.

1) Adjust the rating matrix of the sub-recommenders
to output interest probabilities: EnsVAE does not
impose a fixed number of sub-recommenders to use.
It implies, however, that their outputs are adjusted
to output continuous values that indicate the degree
in which a user is interested in a certain item. Such
scale transformation can be achieved using normal-
ization (Min/Max scaling), where the rating matrix
is rescaled to continuous values between 0 and 1,
depicting the interest probabilities of a user over
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FIGURE 1. Architecture of Ensemblist Variational Autoencoder (EnsVAE).

FIGURE 2. EnsGG: A hybrid recommender system based on EnsVAE.

different items. Alongside simplifying aggregation
and distribution learning, this transformation alleviates
many recommendation problems, including user bias,
shilling attacks, and gray-sheep users.

2) Combine the normalized outputs of sub-recommen-
ders using a probabilistic aggregation function:
After gathering, training, and normalizing the sub-
recommenders needed for the task at hand, an aggrega-
tion function is applied to merge their outputs into one.
Choosing the right aggregation function is very crucial
for the accuracy of the final hybrid. EnsVAE does
not assume nor impose any method. However, given
the probabilistic nature of sub-recommenders’ outputs,
it is strongly advisable to use aggregation functions of
probabilistic events, such as the (weighted) average,
intersection of events, or the Bayesian aggregation [52].

To evaluate the framework, an experimental instance based
on the EnsVAE architecture is proposed. It consists of two
sub-recommenders that focus on an explicit rating sce-
nario: A GRU-based collaborative filtering recommendation

system, and a stacking GloVe-based content filtering one.
In the following, we refer to this instance as the Ensemblist
GRU/GloVe, abbreviated ‘‘EnsGG’’.
The proposed model merges a GRU-based Matrix Factor-

ization Recommender System, a neural matrix factorization
algorithm reinforced with embeddings adjusted using Gated
Recurrent Units. It adjusts embeddings for more accuracy
reconstruction, with a stacking GloVe- Content-Based Fil-
tring Recommender system, which uses item descriptions
and pre-trained GloVe vectors [25] to learn embeddings for
each item. Afterwards, the variational autoencoder com-
ponent learns a high-order features interaction to provide
robust rating predictions.Ensemblist GRU/GloVe architecture
is depicted in Fig. 2.

A. NOTATIONS
The recommendation task is formulated as a prediction prob-
lem. The interaction between users and items are repre-
sented in the form of a utility matrix R. For each user u ∈
U , the recommender system attempts to predict all of the
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TABLE 1. Notations.

unspecified ratings r̂u. This formulation is more computation-
ally intensive than the ranking problem formulation, but it is
more accurate and diverse. Notwithstanding, this computa-
tion overload can be alleviated by, for instance, fulfilling the
learning phase offline in a cloud-based environment, and con-
ducting predictions on-demand whenever the user requests
them. In the rest of this article, we use the notations reported
in Table 1.

B. NORMALIZING SUB-RECOMMENDERS
Normalizating the output of sub-recommenders is a crucial
step for building EnsVAE-compliant hybrids. For a given
predicted rating matrix R̂, normalization is done on a user-
basis: For each user u ∈ U , the minimal rating min =
min (rs(u)), and the maximal rating max = max (rs(u)) are
extracted. Then, the min/max scaling function is applied to R̂
as follows:

minmax(x) =
x − min
max − min

∀x ∈ r̂(u) (1)

The normalization step can be performed before, dur-
ing, or after the generation of the rating matrix. Moreover,
neural-based sub-recommenders are adjusted easily for this
purpose by using sigmoid as the activation function for the
output layer, ultimately skipping the use of the Min/Max
scaler.

C. GRU-BASED MATRIX FACTORIZATION RECOMMENDER
SYSTEM
The matrix factorization (MF) (Latent factor model) charac-
terizes items and users using vectors of factors inferred from

item rating patterns. High correspondence between item and
user factors leads to a recommendation. The MF performs
remarkably well on the dyadic data prediction task. However,
it fails to capture the heterogeneous nature of objects and
their interactions. It also falls short in modeling the context
in which a rating is given. In fact, the latent factor models
are inherently linear, which limits their modeling capacity for
recommendation [31], [53], [54]. Recently, a growing body
of work adding crafted non-linear features into the linear
latent factor models have been introduced. Powered by neu-
ral networks, these models aim at boosting recommendation
performance [41], [55]. Inspired by these works, a collabora-
tive filtering recommender ‘‘GRU-MF’’ introducing context
dependence for rating prediction is proposed.

FIGURE 3. Architecture of the GRU-based Matrix Factorization.

GRU-MF is a Collaborative Matrix Factorization (CMF)
recommender that model a high level of non-linearities and
exhibit interactions between users and items in latent embed-
dings. Fig. 3 illustrates its architecture.

The matrix factorization algorithm decomposes a matrix
M(n×m) into two matrices P(n×k) ∈ RN×K and Q(m×k) ∈

RM×K . A user’s interaction on an item is modelled as the
inner product (interaction function) of their latent vectors. Let
Rui be the ground truth rating assigned by the user u on the
item i. The estimate interaction is defined as:

R̂iu = PTQ =
K∑
k=1

pukqki (2)

where K denotes the dimension of the latent space.
The list of users U and the list of items I are fed to two

different embedding layers: eu and ei respectively. Each of
these embedding layers is chained with a Gated Recurrent
Unit layer (GRU). GRUs are used to enhance these embedded
representations using their Update gate 0u and the Reset
gate 0r . The outputs of these two GRUs are concatenated
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and fed into a fully connected multi-layer perceptron. The
predicted score of interaction is R̂ui. The predictive model can
be formulated as follows:

R̂ui = f (PT eUu ,Q
T eIi |P,Q,2f ) (3)

2 denotes the model parameters, while f denotes the function
that maps the model parameters to the predicted score. Note
that the output layer is a single neuron with the activation
function sigmoid . During the training phase, a grid-search
method is used to learn the model’s hyperparameters. The
cost function employed is the mean absolute error (MAE)
as defined below:

L(Rui, R̂ui) =
1
|C|

∑
(u,i)∈C

(Rui − R̂ui) (4)

The model predicts interest probabilities for each possible
combination of the prediction set ℘. The GRU-MF training
procedure is summarized in Algorithm 1.

Algorithm 1: GRU-MF Recommender System
Input : U : list of user ids: size n

I : list of item ids: size m
R: list of groundtruth ratings per couple (u,

i): size s ≤ n× m
2f : the model parameters of the interaction

function.
Output: R̂: predicted utility matrix: size (n× m)
begin

// Preparing data to be passed
to the network

foreach u ∈ U do Ri = minmax(Ri) ;
C = U × I ; /* cartesian product */
D = ∅ ; /* training set */
foreach (u, i) ∈ D do D← (u, i,Rui) if
Rui 6= null else (u, i, 0) ;
grumf = BuildModel(usersize=|U |,
itemsize=|I |, 2) ;
grumf .trainModel(D) ; // grumf is
saved
return grumf .predict(℘)

end

D. GloVe CONTENT-BASED FILTERING RECOMMENDER
SYSTEM
The second sub-recommender in EnsGG orients the hybrid
to learn the personal preferences of each user concerning
resources’ traits, including but not limited to their type, genre,
and content. First, the recommender extracts ‘‘tags’’ from
items’ descriptions or reviews and uses them to calculate
each item’s embedding vector with the help of Stanford’s
pre-trained GloVe vectors [25]. Afterward, for each user,
the recommender employs the stacking ensemble learning
technique to learn his profile [56]. The goal of ensemble

learning is to gain a predictive accuracy edge by combining
the power of the constituent models.

Let L = {L1,L2, . . . ,Ll} be different regression models,
and xtrain be the training dataset. U and emb are independent
variables, R is the dependent variable. Our base regression
models’ hyperparameters are ∀l ∈ L θl . The number and
the type of regression algorithms is tunable.

Each l ∈ L is trained separately with the same training
dataset. Each model provides predictions for the outcomes
(R) which are then cast into a meta-learner (blender). In other
words, the L predictions of each regressor become features
for the blender. The latter can be any model such as linear
regression, SVR, Decision Tree, etc. . . , as expressed in (5).

ffeatures(x) = fSTK (L1(x),L2(x), . . . ,Ll(x)) (5)

A blender model can then be defined and tuned with its
hyperparameters θblender . It is then trained on the outputs of
the stack L. It learns the mapping between the outcome of
the stacked predictors and the final ground-truth ratings. The
final prediction is expressed as follows:

ˆRBL = φ(fblender (x), fSTK (L1(x),L2(x), . . . ,Ll(x))) (6)

A user profile in an ML content-based recommender sys-
tem is a trained model. Thus, GloVe-CB generates a user
profile for each user u in the form of a learned model. The
training procedure of this second sub-recommender is sum-
marized in Algorithm 2.

E. VARIATONAL AUTOENCODER AND
SUB-RECOMMENDERS
In the final step, the output of the sub-recommenders is
aggregated into a single utility matrix. EnsGG uses the simple
unweighted average aggregation function. VAE’s architecture
is similar to other autoencoder categories, as it is composed
of two MLPs: the encoding and decoding layer, with a layer
in the middle that represents the data in another form [21].
The user input xu is encoded to learn the mean µ, and the
standard deviation σ of the K-dimensional latent represen-
tation through the encoder function gφ(x) (Eq 7). The latent
vector for each user, zu, is sampled randomly from a Gaussian
distribution with µ and σ . The decoder function dθ (Eq 8) is
then used to decode the latent vector from K-dimensions
to a probability distribution πu in the original N-dimension.
The variational autoencoder replaces individual variational
parameters with an inference model parameterized by φ. The
output is a probability distribution over the K items.

gφ(xu) = µu, σu zu ∼ N (0, Ik ) (7)

dθ (zu) = πu (8)

Variational autoencoders employ two loss functions. The
first is the usual reconstruction loss that pushes the autoen-
coder to reproduce its input, such as the cross-entropy or the
mean squared error. The second is the latent KL (Kullback-
Leibler) divergence between the target distribution and the
actual distribution of the coding. It pushes the autoencoder
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Algorithm 2: GloVe-CBF Recommender System
Input : u: current user

I : list of item descriptions: size m
R: list of groundtruth ratings per couple

(u, i): size s ≤ n× m
θreg: regressors hyperparameters
θblender : blender hyperparameters

Output: ˆRBL : predicted utility matrix: size
(n× m)

begin
// Preparing data to be passed

to the stack
foreach u ∈ U do Ri = minmax(Ri) ;
// Calculating embeddings for

each item
foreach i ∈ I do

tags(i)←
nlp.extractKeywords(i) ;
emb(i)← glove(tags(i))

end
// Generating user profiles
profiles = ∅ ;
foreach u ∈ U do

regressors = initRegressors (θreg) ;
blender = initBlender (θblender )
// Training the stack
features = ∅
foreach r ∈ regressors do features←
r .trainAndPredict (U, emb, R) ;
blender.train(U, features, R) ;
user_profile = profile(regressors,
blender) ;
profiles← user_profile ;
/* Profiles can be
persisted in hard memory
and loaded whenever needed

*/
end
// Constructing predicted

utility matrix
ˆRBL = [] ;

foreach profile ∈ profiles do ˆRBL ←
profile.predict () ;

return ˆRBL ;
end

to have coding that look as though they were sampled from
a simple Gaussian noise. The formula for calculating the KL
divergence is as follows [22]:

L = −
1
2

K∑
i=1

1+ log(σ 2
i )− σ

2
i − µ

2
i (9)

In practice, VAE’s architecture is slightly tweaked by mak-
ing the encoder output the log of the variance γ rather than the

standard deviation σ , i.e. γ = log(σ 2). Consequently, Eq 9 is
reformulated as shown in Eq 10. This approach is numerically
more stable, which speeds up training [57].

L = −
1
2

K∑
i=1

1+ γi − exp(γi)− µ2
i (10)

The variational autoencoder takes the aggregated utility
matrix as input and attempts to learn the latent representation
of user-item interests as a statistical distribution. Algorithm 3
defines the step to aggregate outputs, and pass them to the
variational autoencoder for learning the representation. Once
the VAEmodel is trained, it is used directly for online predic-
tions (with the introduction of new users/items) without the
need to resort to the sub-recommenders.

Algorithm 3: The Variational Autoencoder
Input : CFR: GRU-MF predicted Utility

Matrix: size (n× m)
CBR: GloVe-CB predicted Utility

Matrix: size (n× m)
R: groudtruth ratings: size

s ≤ n× m
b: is the amount of batches
d2:non-linear function that produce

a probability distribution over I items
φ, θ : Learned parameters

Output: R̂: predicted utility matrix: size
(n× m)

begin
// Aggregating the utility

matrices of
sub-recommenders

X = aggregation(CFR,CBR);
while not converged do

for i in 0 to b do
Estimating µ, σ ;
Compute dθ (zu) = πu ( where
zu ∼ N (0, Ik )) ;
Compute the objective function.

end
Update φ and θ

end
R̂ = vae.predict ();
return R̂

end

In practice, generating the final predicted utility matrix is
optional. The system can generate a single vector of interest
probabilities per user. Furthermore, the user is only interested
in the top-k items he might like. Hence, the vector can be
sorted, potentially cached server-side, and the top-k elements
are served to the user on-demand. This reduces the compu-
tational overload from the server and enables fast delivery of
recommendations.
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IV. EXPERIMENTAL SETTINGS
A. DATASETS
Two datasets from real-world applications are used to evalu-
ate EnsGG: MovieLens and Amazon Review.

MovieLens are user-movie ratings collected from a movie
recommendation service [58]. It is the most popular Movie-
Lens Dataset version that is widely used for benchmarking
recommender systems. It contains 1 million ratings from
6000 users over 4000 movies.

Amazon Review is a set of interactions and reviews col-
lected from millions of items provided by Amazon. It con-
tains real information about interactions between users and a
colossal number of products of different types and categories.
Initially mined by Jianmo Ni et al. in 2014, it is updated
constantly [59]. The last version was released in 2018. The
whole Amazon review dataset includes around 233.1 mil-
lion ratings/reviews. Therefore, using the entire dataset for
research is virtually impossible. Consequently, smaller ver-
sions of the dataset (divided by the category of items) are
made available for researchers and developers. The electron-
ics split, alongside their metadata, is used in the experiments.
Table 2 summarizes the basic statistics of the two datasets.

TABLE 2. Datasets statistics.

B. VALIDATION PROTOCOL
First, EnsGG is composed of two sub-recommenders:
A a GRU-Based Matrix Factorization recommender system,
which is a deep neural network, and a GloVe-content based
filtering recommender system (GloVe-CBF), that is essen-
tially based on a stacking ensemble of traditional machine
learning models (namely a linear regression, an RBF-kernel
SVM, a poly-kernel SVM, and an ARD regression as meta
learner). The (aggregated) output of these two recommenders
is passed to a variational autoencoder, which is also a deep
neural network. The dataset is subdivided into two subsets:
75% for training, and 25% for testing in a stratified manner
(i.e. the same proportion of appearance of each user is kept
the same in training and test sets as they are in the whole
dataset). Let us note the training set and the test set as Tr,
Ts respectively. Therefore, GloVe-CBF is trained using Tr,
and its performance is evaluated using the test set Ts that it
has never seen. On the other hand, GRU-MF and the VAE
are both trained with early-stopping, which is a technique
that stops training the neural network when the objective
function’s score is not getting any better after a patience
threshold. This ensures obtaining the best model possible

with significantly shorter learning time. Therefore, to imple-
ment this strategy while keeping the test set Ts unseen (hence
ensuring the integrity of evaluations). The training set Tr
is further subdivided into 80% pure training set PTr , and
20% validation set V . The former is used for training the
neural networks, whereas the latter is used for evaluating the
current performance of the network per epoch. It is also to
note that this division of Tr is done randomly and per epoch,
meaning that Ptr and V are different during each epoch. This
trades some bias in favor of the variance. Fig.4 illustrates this
division.

FIGURE 4. Dataset Splitting for training and validation. GloVe-CBF is
trained using the Training set Tr, and its performance is evaluated using
the test set Ts. Tr is further subdivided into 80% pure training set PTr, and
20% validation set V. The former is used for training the neural networks,
whereas the latter is used for evaluating the current performance of the
network per epoch.

C. METRICS
Two widely-used metrics for recommender systems evalua-
tion are used to assess the effectiveness of EnsGG (TheMean
Average Precision and the Normalized Discounted Cumula-
tive Gain).

1) MEAN AVERAGE PRECISION
The mean average precision (MAP) is a popular metric used
to measure the accuracy of information retrieval and object
detection systems [60]. For a set of queriesQ, MAP calculates
the mean of the average precision scores for each query q ∈ Q
as follows:

Pr =
TP

TP+ FP

MAP =

∑Q
q=1 avg(Prq)

Q

where TP stands for True Positives: positive items that are
detected by the system as positive. FP denote False Positives:
negative items that are detected by the system as positive. Prq:
the precision value considering only q-first items.

The result is always a value between 0 and 1. The bigger
the score, the better the accuracy. In recommender systems,
the results are usually truncated to return the top-k elements,
where 1 < k ≤ q, and it is variable depending on use:
a system may show the top 3 trending items or the best
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10 items that match the taste of the current user. Therefore,
a more truncated variant ofMAP is used:

MAP@k =

∑k
q=1 avg(Prq)

Q

2) NORMALIZED DISCOUNTED CUMULATIVE GAIN
The rank in which recommendations are shown is an impor-
tant factor in determining recommender systems’ perfor-
mance. The normalized discounted cumulative gain (NDCG)
is a ranking quality evaluation metric that is also used for
information retrieval systems [61]. NDCG measures the nor-
malized usefulness of items based on their positions in the
resulting list by calculation the ratio between discounted
cumulative gain (DCG) of the recommended items, over the
DCG of their ideal ranking:

nDCG =
DCG
iDCG

DCG =
Q∑
q=1

2Pos(q)−1

log2(i+ 1)

iDCG =
Q∑
q=1

2iPos(q)−1

log2(i+ 1)

whereDCG is the discounted cumulative gain of the predicted
item set, as ranked by the recommender system. iDCG is the
discounted cumulative gain of the ideal ranking of predicted
items. Pos(q) is the position of q, as predicted by the recom-
mender system. iPos(q) is the ideal position of q.

The result ∈ [0−1] indicates the gain of the recommender.
The higher this value, the better.

Similarly to the mean average precision,NDCG@k is used
to evaluate the ranking quality of the top-k recommended
items. The calculation is the samewith the set of items limited
to the first k .

D. BASELINES
To ensure the integrity of comparisons, baselines are exe-
cuted in the same evaluation environment as EnsGG. Fur-
thermore, the NeuRec library, which implements 33 neural
recommender systems using TensorFlow is used. It is created
by a research team led by Bin Wu and released on Github
as open-source software under MIT licensing [62]. EnsGG is
compared with the following recommendation methods:
• GRU-based Matrix Factorization: It is the first com-
ponent of EnsGG hybrid (section. III-C). It is a novel,
state of the art collaborative filtering recommender sys-
tem, based on the neural matrix factorization technique.
It takes its power from the GRU units that adjust the
embeddings while learning user and item biases thanks
to their Update and Reset gates.

• GloVe-content-based filtering Recommender: It is
the second component of EnsGG hybrid (section. III-D).
This content-based recommender system uses the
pre-trained GloVe vectors and item descriptions to rep-
resent the latter in the form of embeddings, which are

used afterward in a stacking ensemble model to create a
profile model for each user.

• Neural Collaborative Filtering (NCF): [15] This rec-
ommender system applies the multi-layer perceptron to
learn the user-item interaction function. The number of
parameters for NCF grows linearly with the number of
users and items, and thus training it on a large dataset
would be problematic.

• Neural Attentive Item Similarity Model (NAIS) [63]:
Developed by the same research team that created NCF,
this item-based CF method implements an attention
network to distinguish which historical items in a user
profile are more important for a prediction.

• Variational Autoencoders for Collaborative Filter-
ing: [23] This technique extends variational autoen-
coders (VAEs) to collaborative filtering for implicit
feedback. The idea is to model the collaborative infor-
mation in the form of a multinomial distribution to sam-
ple prediction for items that are not seen.

As the proposed method aims to model the relationship
between users and items, comparison focusesmainly on user–
item models. More particularly with MultiVAE which is a
valid related work as it employs the VAE in recommendations
but for a different end (collaborative filtering).

E. IMPLEMENTATION DETAILS OF EnsGG
The proposed method implementation is based on Keras [64].
Additionally, the latter runs over Tensorflow [65], which
ensures the ability to reproduce the same results by repli-
cating the same developing and evaluating environment. The
machine used throughout the whole development and evalu-
ation phases is a custom Lenovo Z40, 2015 edition. It has an
Intel R© Core

TM
i7-4500UCPU, with 4 cores running at a clock

speed of 1.8GHz each.It is overclockable to up to 2.6 GHz
during heavy calculations. It has 8Gb of DDR4 RAM with
a transfer rate of 3415MT/s. Although Lenovo Z40 has an
an NVIDIA R© GeForce

TM
820M GPU, it has a restricted

CUDA R© support.

V. RESULTS AND DISCUSSION
Results of the experiments are performed to answer the fol-
lowing research questions:

• RQ1:What are the key hyper-parameters for EnsGG and
how do they impact the performance of EnsGG?

• RQ2:How do EnsGG performs compared with state-of-
the-art recommendation methods?

• RQ3: Is the proposed Ensemblist architecture helpful
for providing more accurate recommendations?

A. HYPER-PARAMETER STUDY (RQ1)
This section depicts the hyperparameters analysis step to
answer (RQ1). It is performed separately on each sub-
recommender and the assembling variation autoencoder.
Results are evaluated usingMAP@k and NDCG@k .
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TABLE 3. Top 5 GloVe-CBF stacks.

FIGURE 5. Hyperparameter searching GloVe- Content-Based Filtering Recommendation
System.

The GloVe-CBF recommender is a stack-based ensemble
learner, composed of a set of regression models and a meta-
learner. The idea behind stacking is to enhance weak learners
with a strong learner. Therefore, tweaking the meta-learner’s
hyperparameters would be sufficient [57]. The analysis is
performed on 3-1 stacks. It focuses on the learning algorithms
used by each learner alongside the meta-learner’s hyperpa-
rameters.

The first step is to find the combination of regres-
sion models that compose the best stack. A grid search
is performed over five algorithms (polynomial-kernel sup-
port vector machines (SVMpoly), RBF-kernel support vector
machines (SVMrbf), decision trees (DT), automatic relevance
detection regression (ARD) and linear regression (LR)).
Table 3 reports the results of the top 5 stacks for k ∈
10, 30, 50 averaged over MovieLens and Amazon datasets.
The structure of each stack is as follows

• Stack 1: DT - LR - SVMrbf | ARD
• Stack 2: LR - DT - ARD | SVMpoly
• Stack 3: SVRpoly - DT - DT | ARD
• Stack 4: DT - ARD - SVRpoly | SVRrbf
• Stack 5: LR - SVRpoly - SVRrbf | ARD

Stack 5 exhibits a higher score as compared to other stacks.
Thus, it is selected for further tweaking.

The second step is to fine-tune the stack’s learners and
the meta-learner’s hyperparameters. The meta-learner is an
ARD regression model. Therefore, grid search over its hyper-
parameters, namely α1, α2, λ1 and λ2, is performed. The
evaluation metric used is the normalized discounted cumu-
lative gain (NDCG) at k = 20. Fig. 5 shows the changes in
NDCG scores while tweaking these hyperparameters. For the
GloVe-CBF recommendation system benchmark. The best
nDGC scores are NDCG@30=0.75 and MAP@30=0.77. α1
and λ1 does not affect the accuracy of the recommendation.
On the other hand, changes in α2 and λ2 impacts its per-
formance. The final hyperparameters for GloVe-CBF are as
follows:
• α1 = 0.5 (arbitrary)
• α2 = 0.74
• λ1 = 0.5 (arbitrary)
• λ2 = 1.4
GRU-MF is an alternative version of neural matrix fac-

torization. It that drops the need for separate layers for
users/items biases thanks to GRUs (see Fig. 3). Analyzing
GRU-MF’s hyperparameters leads to tweaking the:
• Dimensions of the embedding α.
• Number of units per GRU layer θ .
• Number of dense layers after the concatenation τ
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FIGURE 6. Top-4 Hyperparameters for GRU-MF.

• Number of neurons per dense layer φ.
• Activation function used in the dense layers σ .
• Optimizer γ .
First, the best hyperparameters are searched and

extracted. Furthermore, using the bandit-based Hyper-
band approach [66], a range of values is explored for
each hyperparameter. They are: α ∈ [20, 160], θ ∈

[20, 200], τ ∈ [2, 16], σ ∈ {selu, elu, relu}, and λ ∈
{sgd, rmsprop, adam, adagrad}
Figure 6 shows the performance of the top 4 GRU-MF

networks, based on 4 different hyperparameter settings,
as extracted by the optimization approach. The four different
hyperparameter settings are defined in Table 4.

TABLE 4. The top hyperparameter settings using the bandit-based
Hyperband approach.

Notably, Adam is consistently recorded as the best neural
network optimization function along with the top 4 hyper-
parameter settings. Hence, it is safe to assume that the lat-
ter marginally outperforms its counterparts. However, slight
variations in the other hyperparameters cause clear shifts in
the overall performance of GRU-MF as shown in Figure 6.
Therefore, a further test is conducted to determine the degree
of impact of each hyperparameter. This is done by a system-
atic change-one-fix-rest approach; First, a neural network is
build based on the best hyperparameter setting, as obtained by

the Hyperband approach. The value of one hyperparameter is
modified while fixing others to their best values. Then, the
resulting neural network is trained and evaluated. The process
is repeated for each hyperparameter.

FIGURE 7. Hyperparameter Searching GRU-based Matrix Factorization
Recsys.

The resulting neural networks are trained and tested over
bothMovieLens andAmazonReviewData. Evaluation is per-
formed using the average MAP obtained from both datasets.
As shown in Fig. 7, the embedding size α, GRU size θ , and
the number of hidden layers after concatenation τ all play

188346 VOLUME 8, 2020



A. Drif et al.: EnsVAEs for Recommendations

FIGURE 8. Hyperparameter Searching the Variational Autoencoder.

their part in tuning the performance of the recommender sys-
tem. Also, the relu activation function dramatically decreases
the performance. Therefore, it is not recorded in any on of
the top-4 hyperparameter settings (see Fig. 7.d). The influ-
ence of the embedding sizes and the hidden unit size in
GRU is shown in Fig. 7.a and b. The performance of the
GRU-MF improves at the beginning and reaches a maximum
at α = 75, GRU size θ = 80 with an increase of α and
θ . Then the performance starts to deteriorate. In terms of
the dimensionality of the latent factors, it indicates that low
dimension vectors have a limitation of modeling complex
interactions while the high dimension vector may affect the
generalization of the recommender and increase the number
of parameters. Besides, as presented in Fig. 7.c, increasing
the number of hidden layers improves the performance of
the models at the beginning. However, their performance
decreases if the number of hidden layers keeps increasing,
because of overfitting. Hence, the best performance values of
the GRU-Based Matrix Factorization recommender system
are MAP = 0.78 and NDCG = 0.73. It is obtained for the
set of parameters: k = 30, embedding size α = 75, GRU size
θ = 80, and τ = 8.
The final component that needs analysis is the variational

autoencoder that hybridizes the previous recommenders and
represents them in a latent distribution: The output of this
VAE is the final output of EnsGG. Since it is initially a neural
network, the same analysis method used for GRU-MF is also
applied here. Hence, analyzing the VAE leads to tweaking the
following hyperparameters in the following ranges:
• Dimensions of latent factors (mean layer/ log of variance
layer) α ∈ [30− 100].

• Number of dense layers per autoencoder component
(encoding/decoding) τ ∈ [3− 9].

• Number of neurons at the extreme layer of each autoen-
coder component 8 ∈ [400− 3600].

• Number of neurons at the innermost layer of each
autoencoder component φ ∈ [50− 350].

• Activation function σ ∈ {relu, selu, elu, softplus}.
• Optimizer γ ∈ {sgd,Nadam, rmsprop}.
Fig. 8 shows the impact of each hyperparameter on the

performance of the final recommender system. Results are
evaluated based on MAP and NDCG metrics. It is clear
that α, alongside the size of both the mean (µu) and the
log of variance (log(σ 2)), layers play a major role in the
final performance of the hybrid, as seen in the upper leftmost
plot. For slight changes in α, MAP oscillates in wide ranges,
changing from 0.62 at 10 neurons to up to 0.84 at 80 neurons.
On the contrary, the activation function has a small impact on
MAP, as shown at the bottom rightmost plot.

Subsequently, the top hyperparameter setting is extracted
by Hyperband approach. Their values are as follows: α = 80,
τ = 5, 8 = 1600, φ = 200, σ = softplus, λ = Nadam. The
best performance values associated are MAP@30 = 0.82,
and NDCG@30 = 0.70.

B. PERFORMANCE COMPARISON WITH THE BASELINES
(RQ2)
In this section, results of extensive comparisons are reported
between various baselines and the EnsGG, GRU-MF, and
Glove-CBF methods. Table 5 and Table 6 present the recom-
mendation performance of all methods on theMovieLens and
Amazon Electronics datasets (RQ2). EnsGG outperforms all
baselines on both datasets according to the mean average
precision. The most likely reason is that the ensemblist model
is based on learning biased and unbiased rating patterns of
each user. A list of recommended items is obtained for k =
10, 30 and 50 on both datasets.
Fig. 9.a) and Fig. 10.a) present the MAP@k performance

versus k-top items. It appears that EnsGG can recall the
relevant items for the user better than the other models
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TABLE 5. Recommendation accuracy scores (%) of compared methods conducted on MovieLens 1M dataset. We generate Top-10, 30 and 50 items for
each user. The best performance of MAP@k and NDCG@k are highlighted as bold font.

TABLE 6. Recommendation accuracy scores (%) of compared methods conducted on Amazon Electronics dataset. Top-10, 30 and 50 items are generated
for each user. The best performance of MAP@k and NDCG@k are highlighted using a bold font.

FIGURE 9. Results of the comparison on MovieLens dataset. Evaluation of the performance of Top-K recommended lists,
in terms of MAP and NDCG. The ranking position K ranges from 1 to 50.

with a significant margin. Furthermore, both Glove-CBF
and GRU-MF produce competitive empirical results on both
datasets. For example, on theMovieLens dataset, GloVe-CBF
and GRU-MF achieve respectively MAP@10=0.80 and
MAP@10=0.78 which is higher than the baselines.

The Glove-CBF recommender acquires the item similar-
ities and creates a user personalized task recommendation
justifying its high recorded scores. The GRU-MF recom-
mender as a variant of neural matrix factorization discovers
the user-item interactions with a non-linear function and the
gated recurrent units produce a noticeable improvement.

Based on the results shown in Fig. 9.b) and Fig. 10.b),
one can observe that the GloVe-CBF recommender obtains
a high NDCG score on Amazon Electronics dataset and
GRU-MF records a high NDCG score on the MovieLens
dataset. It means that the order in which an item appears
in the top-k recommendation list is close to its order in
the ground-truth list. Also, the EnsGG recommender and

NAIS method still exhibit good NDCG scores. Similar to
the GloVe-CBF recommender, NAIS method characterizes a
user with his historically interacted items and recommends
items similar to the user’s profile. The sparsity rate difference
between the two datasets produces slight differences with
the score of GRU-MF and the score of GloVe-CBF. Indeed,
the prediction of the GloVe-CBF recommender depends on
the similarities of items the user has interacted with in the
past.

Although EnsGG scored high in normalized discounted
cumulative gain (NDCG), its performance is a bit weaker
compared to its sub-recommenders. This is mainly due to
the use of average aggregation on sub-recommenders, which
reduces the interest probabilities of some items. Given that
NDCG is a ranking metric, this reduction may cause items
to be misplaced on the query, reducing the NDCG score.
Nevertheless, the high values of MAP indicate that the top-k
items are still relevant to the user, albeit misplaced.
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FIGURE 10. Results of the comparison on Amazon Electronics dataset. Evaluation of the performance of Top-K
recommended lists, in terms of MAP and NDCG. The ranking position K ranges from 1 to 50.

C. IS ENSEMBLIST GRU/GLOVE FRAMEWORK HELPFUL
(RQ3)?
We further evaluate the performance of Top-K recommended
lists where the ranking position K ranges from 10 to 50, for
the EnsGG and its two sub-recommenders to see whether
using a hybrid architecture is beneficial to the recommen-
dation task (RQ3). Towards this end, Fig. 9 and Fig. 10
report detailed evaluation results for each recommender sys-
tem using the MAP and NDCG metric, respectively, over
both datasets. EnsGG records the best performance according
to the mean average precision metric (MAP). As discussed
in section B, this is because EnsGG tears its recommenda-
tions from combining the GRU-MF and GloVe-CBF. The
GRU-MF recommender discovers and exploits the similar-
ity patterns across users and items. The GloVe-CBF recom-
mender learns each user profile as a model.

Overall, the proposed Glove-CBF recommender is effec-
tive to obtain the user’s overall interest built by the stack’s
learners. This sub-recommender (Glove-CB) captures the
side-information to create a profile model for each user
while optimizing the stack’s learners’ objective function.
Moreover, the GRU-MF recommender greatly enhances the
modeling of user-item interaction due to GRU units that
adjust the user-item biases. Indeed, leveraging a combi-
nation of recommendation techniques, namely Glove-CBF
and GRU-MF, significantly boosts the recommendation sys-
tem performance. Hence, the EnsGG framework outper-
forms other baselines with a significant margin in terms
of the mean average precision. This proves that the varia-
tional autoencoder successfully represents the combination
of sub-recommenders in a distribution that, when sampled,
produces accurate interest probabilities.

The GloVe-CBF recommender deal with the cold start
by incorporating the item- based side information into
the GRU-MF collaborative filtering recommender. Besides,
using neural network approaches to incorporate content infor-
mation into collaborative filtering methods have shown suc-
cess in many specific-domain recommendation [67], [68].
The aggregated outputs (R̂, R̂BL) reduces the user biases

towards items that are rated frequently by users. Moreover,
the EnsVAE architecture transforms the sub-recommender
outputs to interest probabilities, to use them as input for a
variational autoencoder. The variational autoencoder learns
the interest probabilities and takes random samples from
the latent representation of user-item interests as a statistical
distribution. These random samples can then be decoded
using the decoder network to generate features that alleviate
the cold start problem item-wise. An interesting observation
that can be made through experiments is that the VAEs can
generate the complete rows of new users and the columns of
new resources even with minimal interactions. This is due to
the fact that the VAE is an effective model for control of the
generation of new data.

VI. CONCLUSION
In this article, an Ensemblist Variational Autoencoder frame-
work is developed for recommender systems (EnsVAE). The
key idea is combining sub-recommenders outputs using VAE
to ensure the transformation of user-item interactions to inter-
est probabilities and gain predictive accuracy. This ensemblist
framework boost the representation capacity, which strongly
supports that the EnsVAE is more robust to all kinds of
user-item interactions.

An instance called EnsGG following the EnsVAE frame-
work is presented and evaluated. It is composed of two
innovative sub-recommenders; the GRU-MF collaborative
filtering recommender and a stacking GloVe-content based
filtering one. EnsGG confirms the effectiveness of the
Ensemblist VAE framework. Indeed, it scores very high on
benchmarks compared to current, state-of-the-art methods.
Furthermore, despite using a simple aggregation function,
EnsGG manages to produce accurate predictions without
major penalties to the recommender’s overall performance.
Empirical evaluations show that both EnsGG and GRU-MF/
GloVe-CBF provide competitive performance with EnsGG
significantly outperforming the state-of-the-art baselines on
influential real-world datasets.
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Future work aims to explore more deeply the aggre-
gation function on sub-recommenders comparing various
functions, such as the Bayesian approach, to gain further
improvements on the recommendation accuracy. Technically
speaking, another interesting direction worth exploring is to
integrate context-awareness which generates items relevant
to the users according to a specific context. Indeed, the pro-
posed framework is a highly flexible approach allowing to
incorporate high dimensional context information.
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