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ABSTRACT The estimation of the large and high-dimensional covariance matrix and precision matrix is
a fundamental problem in modern multivariate analysis. It has been widely applied in economics, finance,
biology, social networks and health sciences. However, the traditional sample estimators perform poorly for
large and high-dimensional data. There are many approaches to improve the covariance matrix estimation.
The large dynamic conditional correlation model based on the nonlinear shrinkage and its application in
portfolio selection attract increasing attention. In the estimation of the unconditional covariance matrix, the
graphical lasso is more robust than the nonlinear shrinkage model, and the leptokurtic and fat tail character-
istics of the asset returns are also more obvious. This article proposes improved large dynamic covariance
matrix estimation based on the graphical lasso models under the multivariate normal distribution (glasso) and
t distribution (tlasso), and the corresponding dynamic conditional correlation glasso and tlasso approaches
are developed. To verify the effectiveness and robustness of the proposed methods, we conduct simulations
and then apply the models to the classic Markowitz portfolio selection problem. Simulations and empirical
results show that the combined dynamic conditional correlation glasso and tlasso approaches outperform the
current dynamic covariance matrix estimators.

INDEX TERMS Covariance matrix estimation, dynamic conditional correlation, graphical lasso, Tlasso,
Markowitz portfolio selection.

I. INTRODUCTION
As an essential input tomany financialmodels, the covariance
matrix plays a vital role in asset allocation and risk man-
agement. For example, the hedging model must estimate the
covariance matrix of asset returns, and the hedging ratio must
be adjusted if it changes. The prices of rainbow options and
other structured products based on various basic asset designs
are sensitive to the covariance matrix of the underlying asset
returns [1]. The construction of a minimum variance portfolio
also requires an estimate of the covariance matrix of the asset
returns [2]. But financial data often has the characteristics of
large dimensionality, non-normality, and high positive corre-
lation, which bring significant challenges to the estimation of
the covariance matrix [3]. Classical estimation methods are
usually based on the assumption that the number of samples
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is much larger than the variable dimensions. Making use of
these approaches to estimate the large covariance matrices,
but the changes of the variance and covariance over time
are not considered, and they are affected by dimensional
disasters and large noise problems [1], [4]–[7]. To overcome
these challenges, there are many estimation methods for the
large-dimensional covariance matrices from the perspectives
of cross-section and time series.

From a cross-sectional perspective, the difficulties lie in
large dimensionality and non-normality. The solutions are
mainly in two categories: shrinking estimation methods with-
out prior structure information, and sparse estimation meth-
ods with prior structure information.

To be without prior structure information means that the
covariance matrix to be estimated does not need to sat-
isfy a specific prior structure. Stein [8] pointed out that
the sample covariance was overfitting when the dimen-
sionality of the variable was large. To obtain an effective
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estimator of the covariance matrix, the eigenvectors of the
sample covariance matrix should be retained, and the eigen-
values should be shrunk toward the mean of its cross-
section. Based on this, Ledoit and Wolf set the target matrix
as the single-index covariance matrix [9], the isocorrela-
tion coefficient matrix [10] and the identity matrix [3],
respectively. Then they proposed the corresponding linear
shrinkage methods. Zhang et al. [11] proposed the improved
linear shrinkage estimators of the covariance matrix as two
types of Toeplitz-structured target matrices are employed in
the shrinkage procedure. The essence of the linear shrink-
age methods is to use the weighted average of the target
matrix and the sample covariance matrix to solve the over-
fitting phenomenon of the sample covariance. However, the
linear shrinkage estimation assigns the same shrinkage den-
sity to all sample eigenvalues. Ledoit and Wolf [4] proposed
the classical nonlinear shrinkage estimation method based
on random matrix theory, and subsequently introduced a
non-random multivariate function, the quantized eigenvalues
sampling transform, to the nonlinear contraction to improve
the estimation of the large-dimensional covariance matrix
[12]. Simulation studies showed that this method is better
than previous estimation methods and has ideal finite sam-
ple properties. Ledoit and Wolf also conducted a series of
detailed studies. For example, they applied the nonlinear
shrinkage method to the construction of a minimum vari-
ance portfolio [13]. An optimal nonlinear shrinkage estima-
tion method for large-dimensional covariance matrix under
Stein’s loss is proposed [14]. Recently, they constructed a new
estimator for large covariance matrices by drawing a bridge
between the classic Stein estimator in finite samples and
recent progress under large dimensional asymptotics [15].

The prior information of the sparse estimation method is
that many elements of the true covariance matrix are zero or
close to zero [16], [17]. The core idea of sparse estimation
methods is that when the true covariance matrix is unknown,
it is much easier to decide whether to estimate a certain
element than to accurately estimate it [18]. Sparse estimation
methods can be divided into two categories: 1) to directly
estimate the sparse covariance matrix; and 2) to estimate the
sparse precision matrix. The threshold method proposed by
Bickel and Levina is one of the most convenient methods
to estimate the sparse covariance matrix [19]. This method
directly sets the smaller elements in the estimation result to
zero. In view of the high positive correlation of financial data,
scholars have proposed a large class of robust sparse estima-
tion methods, that is, factor-based methods [20]–[22]. The
precision matrix captures the conditional correlation between
variables [23], which is closely related to the undirected
graph in Gaussian graphical models (GGMs). Friedman et al.
[24] introduced the penalty terms L1 to the estimation of the
precision matrix. The proposed glasso algorithm effectively
estimates the precision matrix, and significantly improves
the speed of the operation. Because the returns of financial
assets often have the characteristics of fat tails, Finegold
and Drton [25] replaced the multivariate normal distribu-

tion hypothesis in the glasso algorithm with the multivari-
ate t distribution hypothesis, from which they derived the
tlasso algorithm. The glasso method based on a multivariate
t distribution solves the problems of large dimensionality
and non-normality at the same time. Goto and Xu [26] and
Torri et al. [27] applied the glasso approaches to the con-
struction of minimum variance portfolios. Numerical results
showed that portfolios constructed by the glasso method can
significantly reduce the risk of out-of-samples compared to
the nonlinear shrinkage estimation.

From a time-series perspective, financial data is suscep-
tible to heterogeneity due to policies and financial crises.
The ARCH model proposed by Engle [28] and the GARCH
model of Bollerslev [29] solve the univariate heteroscedas-
ticity problem. However, due to the influence of dimen-
sionality, these models encounter many challenges when
extended from univariate to multivariate. Many breakthrough
contributions, including the BEKK model [30], the dynamic
conditional correlation (DCC) model [1], and the composite
likelihood estimation [31], effectively solve the problem of
heteroscedasticity in multivariate situations. The most classic
method is theDCCmodel inmultivariate GARCH.Hassanein
and Elgohari [32] used the DCC model to effectively analyze
the linkage between stock and inter-bank bond markets in
China.

Recent research tends to combine methods from two per-
spectives. For example, Hafner and Reznikova [33] com-
bined the linear shrinkage estimation with the DCC model.
Liu et al. [34] applied principal components and threshold
methods to the estimation of the DCC model. It is easy
to find that in these studies, the maximum cross-sectional
dimension is less than 200, and the length of the time
series is still greater than the number of assets, which does
not reach true high dimension. Engle et al. [35] combined
the nonlinear shrinkage estimation and the DCC model to
develop the well-known DCC-NL model, which still per-
forms well when the number of assets is greater than or equal
to 1,000.

Considering that the glasso method in [26] and [27] is
significantly better than the nonlinear shrinkage in estimating
the unconditional covariance matrix, and that asset returns
do not obey the normal distribution [5], [11], we apply the
glasso and tlasso sparse estimation methods to estimate the
unconditional covariancematrix Q̄ in the DCCmodel.We use
Monte Carlo simulation to compare dynamic covariance
matrix estimators, and find that the loss of the DCC-glasso
and the DCC-tlasso is smaller than other combined DCC
types. Empirical results show that both the DCC-glasso and
the DCC-tlasso models have smaller standard deviation and
higher Sharpe ratio than other combined DCC types.

The rest of this article is organized as follows.
Section II introduces five well-known unconditional covari-
ance matrix estimation methods, focusing on the glasso
and tlasso approaches. Section III describes the tradi-
tional and the improved DCC models based on the glasso
and tlasso methods. Section IV discusses our simulations
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and empirical studies. Some conclusions are drawn in
section V.

The following notation is used throughout the paper. r
represents a data matrix of dimension N × T , where N is
the number of assets and T is the period. c = N/T is
the concentration ratio. µ is the mean vector of r. 6 and
6̂ are respectively the true covariance matrix and its esti-
mated value. U and λi (i = 1, 2, . . . ,N ) are the eigenvector
matrix and the eigenvalues of the sample covariance matrix
S, respectively. Tr(·) denotes the trace of a matrix. diag(·)
represents a diagonal matrix with the elements of the vector
on the main diagonal.

II. UNCONDITIONAL COVARIANCE MATRIX ESTIMATION
METHODS
A. SAMPLE COVARIANCE MATRIX
The sample covariance matrix,

S =
1

T − 1

T∑
t=1

(rt − µ)(rt − µ)′, (1)

is the best-known method to estimate the true covariance
matrix in traditional multivariate statistical analysis [36].

However, it has some disadvantages. On the one hand, it
does not consider changes in variance and covariance over
time. On the other hand, it can encounter dimensional dis-
asters. The parameters of the sample covariance matrices is
N × (N − 1)/2, and the dimension of the data is N × T .
When N tends to T , the quantities of the two formulas are
similar-sized. It is impossible to estimate O(N 2) parameters
with O(N 2) data. Using the sample covariance to construct a
minimum variance portfolio will also encounter the problem
of large noise.

B. LINEAR SHRINKAGE MODEL
The linear shrinkage model is essentially a weighted average
of the sample covariance matrix and the shrinkage target
matrix. A tradeoff is made between the setting error of the
model and the estimation error, limiting both to a reasonable
range. Ledoit and Wolf [3] were the first to propose a shrink-
age method based on the identity matrix, which is the most
simple and effective. Following is a brief introduction to its
basic ideas, the details can be found in [3].

Let the weights given to the identity matrix I and sample
covariance matrix S be ρ1 and ρ2, respectively. Construct a
quadratic loss function as follows

L(ρ1, ρ2) = ‖ρ1I+ ρ2S−6‖2. (2)

The optimal estimates of weights ρ1 and ρ2 can be obtained
by solving the following optimization problem:

min
ρ1,ρ2

E (L (ρ1, ρ2)) . (3)

Let ρ1 = ρv and ρ2 = 1 − ρ. Then the optimal solutions v
and ρ are given by

v̂ = µ̂, (4)

ρ̂ =

min
{

1
T 2

T∑
t=1

∥∥rtr′t − S
∥∥2, ∥∥S− µ̂I∥∥2}∥∥S− µ̂I∥∥2 , (5)

where µ̂ = 1
N

N∑
i=1
λi. It follows that ρ̂1 = v̂ρ̂ and ρ̂2 = 1− ρ̂.

Finally, the covariance matrix estimate obtained by the linear
shrinkage of the identity matrix is

6̂ = ρ̂1I+ ρ̂2S. (6)

Other target matrices include the covariance matrix
obtained by the Sharpe single index model, and the isocor-
relation coefficient matrix. For details, refer to [9], [10].

C. NONLINEAR SHRINKAGE MODEL
It is well-known that the linear shrinkage estimation method
gives the same shrinkage density to all sample eigenvalues,
while the nonlinear shrinkage estimation assigns the different
shrinkage densities. Motivated by the oracle estimator, Ledoit
and Wolf [4] extended their linear shrinkage model by apply-
ing a nonlinear transformation to the sample eigenvalues.
Here is a brief introduction to its basic ideas, the details can
be found in [4].

First of all, by shrinking the eigenvalues of the sample
covariance matrix while keeping the eigenvectors unchanged,
a set of estimators that are ‘‘rotationally equivalent’’
to the sample covariance matrix are constructed. Every
rotation-equivariant estimator has the form

U1U′, (7)

where 1 = diag(d1, . . . , dn).
Then, the best estimation of 6̂ can be obtained by mini-

mizing the following loss function:

min
1

∥∥U1U′ −6
∥∥ . (8)

Finally, the nonlinear shrinkage estimate of the covariance
matrix is given by

6̂ = U1orU′, (9)

where 1or
= diag(dor1 , . . . , d

or
n ), with dori =

λi
|1−c−cλim̆F (λi)|2

and m̆F (λi) = 1−c
cλi
−

1
c

1
vλi

.

The essence of the nonlinear shrinkage estimation is to
enlarge the small eigenvalues and shrink the large ones, so
that we can compress the range of the sample eigenvalues to
the mean. For more the nonlinear shrinkage methods, refer
to [12], [13].

D. GRAPHICAL LASSO
Graphical models use the nodes and the edges to describe
both the conditional and unconditional dependence structures
of a set of variables. Among them, GGMs are the most
popular [37]. The minimum variance portfolio model relies
on the assumption of normality of asset returns, so GGMs
can also be used to estimate the linear dependence between
assets [27]. Assume that the return on assets is a normally
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distributed random variable, r ∼ NN (µ, 6). Then an undi-
rected graph G(V ,E) can be defined to be associated with r,
where the nodes in the vertex set V correspond to each asset,
and the edges E are composed of correlation coefficients with
nonzero bias for each group of assets.

The glasso method refers to the introduction of L1 norms
to the maximum likelihood estimation problem, so that most
of the non-diagonal elements in the estimated inverse covari-
ance matrix are zero [24]. The corresponding optimization
problem is

6̂−1 = argmax
6−1

(log |6−1| − Tr(6−1S)− ρ‖(6−1)
−
‖1),

(10)

where ρ is the penalty parameter to control sparsity (larger ρ
means more zero elements in the inverse covariance matrix).
(6−1)− means that the diagonal elements are set to zero,
and the corresponding matrix 6−1 of other elements is
unchanged.

The estimated inverse covariance matrix is obtained by
solving (10), and the inverse operation is performed to obtain
the estimated covariance matrix. For new insights and faster
estimates of the glasso methods, we refer the reader to [38].

E. GRAPHICAL MODELING WITH TLASSO
The returns of financial assets often show the characteristics
of leptokurtic and fat tails. Therefore, the low-freedommulti-
variate t-distribution assumption is better for financial mod-
els. The tlasso approach is to estimate the inverse covariance
matrix sparsely on the premise that the asset returns follow a
multivariate t distribution. Finegold and Drton [25] expressed
the multivariate t distribution as multivariate normal distribu-
tion and gamma distribution, and used the expectation max-
imization (EM) algorithm to estimate the inverse covariance
matrix.

Let r be a random vector obeying the t distribution of
N elements, where the dispersion matrix is 9−1, and there
are v degrees of freedom, that is, r ∼ TN (µ, 9−1, v). The
use of 9−1 to represent the dispersion matrix is to make
the subsequent derivation process more convenient. Then the
inverse covariance matrix can be expressed as

6−1 =
v− 2
v

9. (11)

Let W ∼ NN (0, 9−1) and τ ∼ 0(v/2, v/2) be random
variables obeying a multivariate normal distribution and a
gamma distribution, respectively. Then

r = µ+
W
√
τ
∼ TN

(
µ, 9−1, v

)
. (12)

Assuming that r1, . . . , rT are T samples in r, the EM algo-
rithm can be divided into steps E and M, as follows.

• Step E
Calculate τ̂ (j+1)t of period j+1 according to the estimated
values µ̂(j) and 9̂(j) of period j, with t = 1, . . . ,T , that

is,

τ̂
(j+1)
t =

v+ N

v+
(
(rt − µ̂(j))

′
9̂(j)(rt − µ̂(j))

) . (13)

• Step M
Calculate µ̂(j+1) and Ŝ(j+1) in period j+ 1 as

µ̂(j+1)
=

T∑
t=1

τ̂
(j+1)
t rt

T∑
t=1

τ̂
(j+1)
t

, (14)

and

Ŝ(j+1)=
1
T

T∑
t=1

τ̂
(j+1)
t

[
rt − µ̂(j+1)

] [
rt−µ̂(j+1)

]′
. (15)

Then 9̂(j+1) is obtained by solving the following optimization
problem

9̂(j+1)
= argmax

9
(log |9| − Tr(9Ŝ(j+1))− λ‖9‖1). (16)

When estimating the inverse covariance matrix, the initial
mean vector and dispersion matrix are obtained from the
samples. Next, iterate through steps E andM in sequence until
the maximum difference between 9̂(j) and 9̂(j+1) is less than
a given threshold. Finally, use (11) to calculate the estimated
covariance matrix.

III. IMPROVED DYNAMIC CONDITIONAL CORRELATION
ESTIMATORS
To solve the conditional heteroscedasticity of the multivari-
ate variables, Engle [1] was the first to consider the classic
multivariate DCC-GARCH model,

rt = µt + at ,
at = H1/2

t zt ,
Ht = DtRtDt ,

(17)

which is also-called the DCC model.
The symbols rt , at , µt , and zt denote N × 1 dimensional

vectors, which respectively represent the log returns, the
returns removing the mean value, the mean, and the inde-
pendent and identically distributed errors. Ht , Dt , and Rt
denote N × N dimensional matrices, which are respectively
the conditional covariance, the standard deviation, and the
correlation coefficient matrixs of at at time t . The vectors at
and zt satisfy the conditions E(at ) = 0, Cov [at ] = Ht and
E(zt ) = 0, E

[
ztzTt

]
= I. For more details, we refer the reader

to [39].
The elements in the diagonal matrix Dt are the standard

deviations of the univariate GARCH model, that is,

Dt =


√
h1t 0 · · · 0

0
√
h2t

. . .
...

...
. . .

. . . 0
0 · · · 0

√
hNt

 , (18)
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where

hit = αi0 +
Qi∑
q=1

αiqa2i,t−q +
Pi∑
p=1

βiphi,t−p. (19)

Univariate GARCHmodels can have different orders, but the
simplest and most effective model is GARCH (1, 1).

The conditional correlation coefficient matrix is

Rt =



1 ρ12,t ρ13,t · · · ρ1N ,t
ρ12,t 1 ρ23,t · · · ρ2N ,t

ρ13,t ρ23,t 1
. . .

...
...

...
. . .

. . . ρN−1,N ,t
ρ1N ,t ρ2N ,t · · · ρN−1,N ,t 1

 .
(20)

If follows from (17), (19), and (20) that

[Ht ]ij =
√
hithjtρij. (21)

It should be noted that Rt must satisfy the following two
conditions.
• Condition 1: each element in Rt must be less than or
equal to 1;

• Condition 2: Rt must be positive definite.
In the DCC model, Rt is decomposed into the following

form

Rt = Q∗−1t QtQ∗−1t , (22)

where εt = D−1t at ∼ NN (0,Rt), a and b are the scalar
parameters, and Q∗t is a diagonal matrix composed of the
square roots of the diagonal elements of Qt given by

Qt = (1−a− b)Q̄+ aεt−1εTt−1 + bQt−1. (23)

To ensure that Rt is positive definite, a and b must meet the
following conditions:

a ≥ 0, b ≥ 0, a+ b < 1. (24)

The DCC model effectively solves the problem of het-
eroscedasticity in multivariate statistical analysis. However,
the sample covariance is used to estimate Q̄ in the tradi-
tional DCC model, which performance is poor [6] when the
data dimension is much larger than the sample size. Engle
et al. [35] recently proposed a DCC-NL large-dimensional
dynamic covariance matrix estimator, which uses the nonlin-
ear shrinkage model to estimate the unconditional covariance
matrix Q̄. They increased the order of magnitude of assets
and obtained better numerical results. For minimum variance
portfolios, Goto and Xu [26] and Torri et al. [27] both pointed
out that the performance of the glasso method is better than
the nonlinear shrinkage.

To further improve the covariance matrix, we use the
glasso and tlasso methods to estimate the unconditional
covariance matrix Q̄ in the DCC model. The corresponding
DCC-glasso and DCC-tlasso models for large-dimensional
dynamic covariance matrix estimators are developed. The
estimation steps are given below.

• For each asset return series, fit the GARCH (1, 1) model.
• Use the glasso and tlasso methods to estimate the uncon-
ditional covariance matrix Q̄.

• Maximize the composite likelihood function and esti-
mate the dynamic covariance matrix.

IV. SIMULATIONS AND APPLICATIONS
A. DATA DETAILS
The data in this article comes from the China Stock Mar-
ket & Accounting Research (CSMAR) Database. The target
assets of the Shanghai 50 Index (SSE50), Shanghai and Shen-
zhen 300 Index (HS300), and China Securities 500 Index
(CSI500) are selected as the research objects.

We selected the target assets of each index starting in
January 1, 2010, and ending in December 31, 2019, and used
the sample covariance matrix of 10-year daily data (a total
of 2430 trading days) to simulate the true covariance matrix.
In practical applications, stock suspensions often increase the
risk of a portfolio, so it is not appropriate to select stocks
that have been suspended for a long time when constructing
a portfolio stock pool. We eliminated stocks that had been
suspended for a long time (greater than 20% of the sample
period), and studied the remaining stocks. A total of 41 stocks
remained in the SSE50, 219 stocks remained in the HS300,
and 377 stocks remained in the CSI500.

In the simulations, we standardized the data to force the
optimal value of the penalty parameter to appear in the range
[0, 1] in the optimization process.

In the empirical research, we divided the period of the data
into two parts: within the sample and out of the sample. The
sample was from January 1, 2010, to January 31, 2012. Out
of the sample was February 1, 2012, to December 31, 2019.
The rolling period window method was used to analyze the
performance of the out-of-sample model. The window of the
estimated covariance matrix was T = 500, and the portfolio
weights were readjusted by calculating theminimumvariance
portfolio on a fixed-size window every five trading days
(one week).

B. SIMULATIONS
Simulations were divided into two parts. The first part needed
to determine the optimal penalty parameters in the glasso and
tlasso approaches. The second part compared the advantages
and the disadvantages of each estimator through simulations.

For the first part, we used the Bayesian information crite-
rion (BIC) to optimize ρ. We used the maximum likelihood
method to estimate that the degree of freedom of the real-life
asset returns was close to 4, so the degree of freedom was set
to 4 in the tlasso method. The threshold in tlasso was set to
0.01 [25].

For the second part, we simulated the DCC model with
a = 0.008 and b = 0.938 to compare the advantages and
disadvantages of different estimators. The parameters were
estimated by the actual data of 2,340 days. The univariate
GARCH model was fitted with the GARCH (1, 1), where
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FIGURE 1. Optimal choice of penalty parameter for glasso and tlasso
based on SSE50 with 41 assets.

the parameters αi = 0.05, βi = 0.90 [35]. The maximum
value of the concentration ratio c is 0.756 (377/500). Both
DCC-glasso andDCC-tlasso, as considered in this article, can
be applied to the cases where c is greater than 1. Because
the traditional DCC model does not work when c ≥ 1.
To compare with the traditional DCC model, this article does
not discuss the case where c is greater than 1.

1) OPTIMAL CHOICE OF PENALTY PARAMETER
The estimated inverse covariance matrix in the glasso and
tlasso approaches depends largely on the penalty parameter ρ.
The larger the value of ρ, the sparser the inverse covariance
matrix. In special cases, the result obtained by the model
when ρ = 0 is the inverse of the sample covariance matrix.
We use BIC to optimize ρ, calculated as

BIC = −2 log
(
Likρi

)
+ k

6̂−1
× log(T ), (25)

where Likρi is the likelihood function value corresponding to
the i-th ρ, and k

6̂−1
is the number of nonzero elements in the

estimated inverse covariance matrix.
Figs. 1 to 3 show the changes of BIC of the glasso and

tlasso methods with the penalty parameters for the different
asset amounts. It can be seen that BIC in both models
tends to decrease first, increase, and then decrease again
with the increase of the penalty parameter ρ. The subsequent
decrease in BIC in three figures is due to the fact that with
the increase of ρ, the inverse covariance matrix has been
punished, resulting in the estimated inverse covariancematrix
being all zero except for the diagonal elements, which is not
the ideal result in this article. Therefore, we choose ρ = 0.09

FIGURE 2. Optimal choice of penalty parameter for glasso and tlasso
based on HS300 with 219 assets.

FIGURE 3. Optimal choice of penalty parameter for glasso and tlasso
based on CSI300 with 377 assets.

for SSE50, ρ = 0.07 for HS300, and CSI500 in portfolio
selection.

2) LIST OF ESTIMATORS AND THEIR LOSSES
To judge the quality of the estimators, we use the conditional
covariance matrix loss function proposed by Engle et al. [35],
i.e.,

L(6̂,6) =
Tr(6̂−166̂−1)/N

[Tr(6̂−1)/N ]2
−

1
Tr(6−1)/N

. (26)
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TABLE 1. The loss of each estimator.

The above loss function is extended to the conditional
covariance matrix case,

L =
1
T

T∑
t=1

L(Ĥt ,Ht ). (27)

The five methods introduced in II are applied to the DCC
model to estimate the unconditional covariance matrix Q̄,
and the following five estimators are constructed. We mainly
discuss the last two models.

1) DCC-S: The sample covariance matrix is used to esti-
mate the unconditional covariancematrix Q̄ in theDCC
model [1].

2) DCC-L: The linear shrinkage estimation method is
used to estimate the unconditional covariance matrix
Q̄ in the DCC model [35].

3) DCC-NL: The nonlinear shrinkage estimation method
is used to estimate the unconditional covariance matrix
Q̄ in the DCC model [35].

4) DCC-glasso: The glasso method is used to estimate the
unconditional covariance matrix Q̄ in the DCC model.

5) DCC-tlasso: The tlasso method is used to estimate the
unconditional covariance matrix Q̄ in the DCC model.

The loss of each estimator is shown in Table 1, where the
minimum loss is bolded. It can be seen that the DCC models
based on the glasso and tlasso approaches achieve smaller
losses. As the number of assets increases, the effect of the
glasso and tlasso methods becomes more significant.

C. APPLICATIONS
1) MINIMUM VARIANCE PORTFOLIO
Since Markowitz’s pioneering work, the concept of diversi-
fying risks through diversified investment has become the
core of modern investment theory [2]. The minimum vari-
ance portfolio model is essentially a quadratic optimization
problem, i.e.,

min
w

w′6w

s.t. 1′w = 1, (28)

wherew = (w1,w2, . . . ,wN )′ is the asset weight vector, with
dimensions N × 1. Its analytical solution, the optimal weight
vector of the minimum variance portfolio, is given by

ŵ∗ =
6̂−11
1′6̂−11

. (29)

Since the short-selling mechanism of the Chinese stock
market is not perfect, this article limits the weight to be

TABLE 2. Descriptive statistics of stock log returns.

TABLE 3. Performance comparison of five models based on SSE50
with 41 assets.

greater than or equal to zero in the construction of portfo-
lios. We consider the following minimum variance portfolio
problem with nonnegative weights, i.e.,

min
w

w′6w

s.t. 1′w = 1,

wi ≥ 0, i = 1, . . . ,N . (30)

2) EMPIRICAL RESULTS
We used the five methods in IV-B2 to construct the minimum
variance portfolio model, and considered the advantages and
disadvantages of each model from the aspects of the standard
deviation, the mean return and the Sharpe ratio.

Table 2 shows a descriptive statistical analysis of each
index and its main constituent stocks. The results show that
the kurtosis coefficient of each stock’s returns is greater
than 3, and the JB statistical test rejects the assumption of a
normal distribution for each return series. Fig. 4 more clearly
shows the density curves of the three indices and their main
stock returns. Among them, the bold red curve is a normal
distribution with a mean value of 0.00025 and a standard
deviation of 0.0169 (the mean and the standard deviation are
estimated from the sample values of the logarithmic returns).
It can be found that the logarithmic returns of stocks have
obvious fat tails and leptokurtic characteristics. In this article,
the tlasso method is applied to the DCCmodel, which is more
suitable for the distribution of the data itself.

Tables 3-5 shows the performance measures of the five
portfolio models with different asset amounts. When con-
structing a minimum variance portfolio, the standard devia-
tion is the most important performance metric. In addition,
we calculate the average return of the portfolio and the
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FIGURE 4. Density curve of stock log returns.

TABLE 4. Performance comparison of five models based on HS300
with 219 assets.

TABLE 5. Performance comparison of five models based on CSI500
with 377 assets.

Sharpe ratio to analyze the risk-adjusted return. In calculating
the Sharpe ratio, the risk-free interest rate is 1.75% of the
one-year deposit rate in China.

It can be seen from Table 3 that the standard deviation of
the DCC-S model for the in-sample is only 0.0065, which is
the smallest of all the models. While the out-of-sample stan-
dard deviation is 0.0229, which is significantly higher than
the in-sample standard deviation. This phenomenon can also
be seen in Tables 4 and 5. The variation of the out-of-sample
standard deviation of other models is significantly smaller
than that of the DCC-S model. This verifies that the use
of sample covariance in the estimation of large-dimensional
covariance matrices will have a negative impact on the port-
folio selection.

Table 3 compares of the performance results of eachmodel,
where the number of assets is 41. The DCC-NL model is
optimal in all three aspects.

TABLE 6. Difference in out-of-sample standard deviations between the
DCC-tlasso and the alternative methods.

Table 4 and Table 5 compare the performance results
of the models with the numbers of the assets of 219 and
377, respectively. The tables show that the performance of
the DCC-glasso and DCC-tlasso models is superior to that
of other models from the three out-of-sample performance
metrics. The DCC-tlasso obtains the smallest out-of-sample
variance and the largest average return, which leads to the
highest Sharpe ratio of the models.

In the above empirical analysis, the moving window is T =
500. As the number of the assets increases, c will increase.
Empirical research results show that the greater the c, the
better the DCC-glasso and DCC-tlasso models proposed in
this article. At the same time, it can be seen from Table 2 that
the assets do not follow a multivariate normal distribution.
Therefore, the DCC-tlasso is superior to the DCC-glasso.

The homogeneity of the variance test can determine
whether the variances of the two populations are equal, but if
the test data do not obey a normal distribution, the robustness
of the test will be greatly reduced. In view of this, Ledoit and
Wolf [40] proposed an improved test method called bootstrap
inference, which we use to test for a significant difference
between the DCC-tlasso portfolios and the alternative meth-
ods in the out-of-sample standard deviation. Table 6 shows
that the out-of-sample standard deviation of the DCC-tlasso
is significantly lower than that of other models as the number
of assets become larger.

V. CONCLUSION
We applied two sparse estimators, the glasso and tlasso
approaches, to estimate the unconditional covariance matrix
Q̄ in the DCC model. The corresponding models are called
the DCC-glasso and the DCC-tlasso, respectively. Numerical
simulations illustrate that the proposed models have smaller
losses than other combined DCC types, including the DCC-S,
the DCC-L, and the DCC-NL models. We applied them to
the real-life stock returns data, and found that the greater
the asset dimension, the better DCC-glasso and DCC-tlasso
perform.

The anonymous referees pointed out the proposal for the
GGM under the long-tailed symmetric distribution by Aǧraz
and Purutçuoǧlu and the contribution to the construction of
a robust investment portfolio by Kara et al.. The detailed
comparisons of models can also be carried out in future
research. Another interesting topic about combining approx-
imate factor model (AFM) [41] with the DCC-tlasso to
construct the AFM-DCC-tlasso can be considered in future
studies.
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