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ABSTRACT Leveraging social and communication technologies, we can digitally observe that the collective
attention typically exhibits a heterogeneous structure. It shows that people’s interests are organized in
clusters around different topics, but the rising of an extraordinary emergency event, as the coronavirus
disease epidemics, channels the people’s attention into a more homogenized structure, shifting it as triggered
by a non-random collective process. The connectedness of networked individuals, on multiple social
levels, impacts on the attention, representing a tuning element of different behavioural outcomes, changing
the awareness diffusion enough to produce effects on epidemics spreading. We propose a mathematical
framework tomodel the interplay between the collective attention and the co-evolving processes of awareness
diffusion, modelled as a social contagion phenomenon, and epidemic spreading on weighted multiplex
networks. Our proposed modeling approach structures a systematically understanding as a social network
marker of interdependent collective dynamics through the introduction of the multiplex dimension of both
networked individuals and topics, quantifying the role of human-related factors, as homophily, network
properties, and heterogeneity. We introduce a data-driven approach by integrating different types of data,
digitally traced as user-generated data from Twitter and Google Trends, in response to an extraordinary
emergency event as coronavirus disease. Our findings demonstrate how the proposed model allows us to
quantify the reaction of the collective attention, proving that it can represent a social predictive marker of
the awareness dynamics, unveiling the impact on epidemic spreading, for a timely crisis response planning.
Simulations results shed light on the coherence between the data-driven approach and the proposed analytical
model.

INDEX TERMS Multiplex networks, social networks, epidemics spreading, social contagion, collective
attention, collective awareness, COVID-19.

I. INTRODUCTION
The outbreak of severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), a novel coronavirus, emerged in the
city of Wuhan (Hubei, China) in early December of 2019,
has posed a global public interest and it has raised concerns
in most people worldwide on the future health and well-
being [1]–[3]. This new betacoronavirus have shocked the
world and has drawn global attention since it has caused a
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fast diffusion. The groups of cases of pneumonia of unknown
cause detected in Wuhan was reported to the World Health
Organization (WHO) on the 31st December 2019, and con-
sequently this new virus was named 2019 novel coronavirus
(2019-nCoV) [4] and SARS-CoV-2, by the International
Committee on Taxonomy of Virus (ICTV) on the 11th Febru-
ary 2020, and the diseases caused by SARS-CoV-2 were
named Corona Virus Diseases 2019 (COVID-19) on the same
day [1], [4]. Since then, besides China, cases confirmed with
COVID-19 had also been detected in many other countries
and territories [4], [5], thus, from the city of Wuhan that
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has taken unprecedented measures in response to the out-
break, including extended school and workplace closures,
also the other countries follows these strategies through var-
ious national responses to the pandemic, including measures
such as lockdowns, quarantines, curfews and other restric-
tions (stay-at-home orders, shelter-in-place orders, shut-
downs/lockdowns) aimed at preventing further spread of
COVID-19. On 30th January 2020 WHO officially pro-
claimed the outbreak of COVID-19 as a public health emer-
gency of international concern, and establishes temporary
recommendations, early indications, giving a boost to a differ-
ent reaction, especially in terms of timing. The public health
measures for managing the possible outbreaks count on the
preparedness ability of each country, namely the capacity
to prevent, detect, verify, assess, and react in accordance
with the International Health Regulations for COVID-19
[6], [7]. The majority of methods, which take into consid-
erations evidence-based public health prevention strategies
weighs the people’s interests and the ongoing development
consciousness which makes it possible to shape the public
awareness on behaviours [6]. The global public attention to
this issue can reflect people’s interests and their propensity
to acquire knowledge on COVID-19 with the aim at taking
precautionary actions. In fact, to understand an emergency
event, it is insufficient to rely on numerical reports based
only on confirmed cases and the spatial spread [8], but it
is needed adding more information, integrating knowledge
and data on people’s behaviours to quantify other dominant
variables that can influence and impact possible future out-
breaks. Exploiting the social networks and communication
technologies under this extraordinary emergency condition,
a systematic understanding of social collective dynamics,
based on the complex networks paradigms that integrate
weighted multiplex networks mathematical representation,
can be achieved. To do this, we need to detect how the pub-
lic attention around COVID-19, could guide the situational
awareness and the timing of intervention strategies, impact-
ing on the epidemics spreading. A large corpus of scientific
literature have studied the phenomenon of spreading deepen
inside a better understanding on how it produces dynamics
which depends on various structural and human-related fac-
tors [9], [10], suggesting that in social networks the dynamics
depend on the nature of social ties [11]. Since behaviours
[11], [12], misinformation [13], [14], infectious diseases [15],
[16], distress [17], emotions [18] 0and competing processes
[19], [20] spread through interactions of networked individu-
als, starting from classical epidemiological models [21]–[23],
and based on an interdisciplinary approach which involves
several research fields in complex network science [24]–[27],
we are able to model the diffusion dynamics into the social
networks. Taking into consideration the modeling approach
of dynamics of social contagion and spreading processes
in complex networks [16], [18], [28], we are interested to
grasp the linkage among the shape of collective phenom-
ena and their interpersonal spreading in networks structure,
in response to a triggering force as an extraordinary event

able to shift the common outcomes to unexpected peaks
and clusters. Many studies have investigated the spreading
phenomena and its co-evolution, as the awareness, modelled
as social contagion phenomena and the epidemics spreading
unveiling the interplay between them, in a multiplex network
but separating and constraining each of the processes to
only one of the layers [9], [29], [30]. By contrast, in [16],
[17], it has been explored and quantified the impact of the
co-evolution of the two processes in all the layers considering
the introduction of the multiplexity dimension. Multiplex
networks representation consider the same set of nodes in all
the layers of interactions, and constitute the most suitable net-
work structure to understand such dynamical processes and
their complex interdependence [12], [31]–[33]. The interplay
between epidemic spreading and awareness dynamics allows
to highlight the role of structures and human-related factors in
the multiplex networks which influence the dynamical trend
of both processes. Since the more the networked individuals
are aware about a disease spreading, the more they may be
able to adopt strategies with consciousness, permitting the
rising of collective awareness. In this paper, we propose an
analytical and data-driven rigorous investigation of what is
the shape of response in terms of collective attention around
a shocking and long-lasting event in which awareness and
attention, in single and collective terms, jointly develop in an
interdependent way. We investigate and measure which is the
role and the weight of multiple and heterogeneous social ties,
through the introduction of the weighted multiplex network,
and the impact on the epidemic spreading. We consider two
weighted multiplex networks, in which we evaluate both the
complex dynamics of nodes belonging to a population and
that one referred to keywords, mined from social networks,
and linked to the topic COVID-19. As social ties between
nodes may have different weights reflecting their inten-
sity [34], we consider the two weighted multiplex networks
providing new definitions of weights for both multiplexs.
We include, in the weights of population-based multiplex,
the homophily and the awareness difference between nodes,
which in turn depends on the collective attention dynamics of
the keywords-based multiplex, that considers the keywords
co-adoption interactions, defined in our model. We quantify
the impact of the attention and awareness on epidemic spread-
ing, by introducing heterogeneity, both in terms of suscepti-
bility and awareness, for optimally schedule effective crisis
communications, facilitating timely crisis response planning,
such as the decision of a time warning and quarantine. It is
crucial to examine how the attention and the awareness
arise and fade in different communities, affected in various
times, impacting and influencing behaviours and decisions.
Moreover, we define a data-driven approach applied in the
case of COVID-19, referred to social networks and social
media platforms user-generated data, as Twitter and Google
Trends [1], [35]. We compare our findings with a null model,
to investigate a time-dependant and complex relationship of
attention and awareness centred on the ongoing epidemics of
COVID-19.
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A. CONTRIBUTIONS OF THIS PAPER
Once explained the motivations behind the proposed method-
ology, the main contributions of the paper are summarised
below.
• We propose a modeling and data-driven approach to
structure a systematic understanding of collective atten-
tion dynamics of social networks, during an extraordi-
nary event for a better crisis response. We point out to
unveil the dynamical interplay between collective atten-
tion and two co-evolving spreading processes of aware-
ness and epidemics on weighted multiplex networks.

• We disclose the role of human-related factors, such as
homophily, namely the tendency of interacts with similar
users, network properties and heterogeneity through the
introduction of two interdependent weighted multiplex
networks which respectively include connections of net-
worked individuals, based on theoretical and empirical
interactions, and connections between keywords, based
on the co-adoption relationships. The empirical inter-
actions between users and the co-adoption interactions
between keywords are mined from the user-generated
data digitally traced from Twitter and Google Trends,
during the COVID-19 epidemics.

• We define weights between users of the first weighted
multiplex network by taking into account both the con-
cept of homophily and awareness, pointing out how
these weights influence the epidemics dynamics on the
social multiplex network. For the second weighted mul-
tiplex network, we define the interactions weights based
on the co-adoption of a pair of keywords, as the fre-
quency of their combined use by users digitally traced
through the data-driven approach.

• We explore and quantify the dynamical interplay of
collective attention on COVID-19 with the co-evolving
spreading processes, defining the awarenessmeasures of
the users, as a measure depending on their participation
coefficient, and the entropy of the topics, traced and
analyzed in a specific temporal window and mined from
social and communications technologies.

• We quantify the reaction of collective attention, detect-
ing a social network predictive marker of the awareness
dynamics in social networks and its key role on a timely
crisis response planning and management of the epi-
demics spreading of COVID-19.

II. RELATED WORKS
A. EPIDEMICS SPREADING AND AWARENESS AS SOCIAL
CONTAGION IN MULTIPLEX NETWORKS
The complex systems are fully described by their connected-
ness and the network representation of the nodes, belonging
to them, which interact to each other via multiple links. We
can describe a network through a standard approach, consist-
ing of the analysis of the aggregate graph, that includes all
links between nodes but neglecting important information,
resulting in a losing knowledge about the structural complex-
ity and connectivity. In fact, the relationships and interactions

between nodes in many real-world systems can be different
for relevance, context and meaning and can be characterized
by a distance or weight [31], [32], [34]. To preserve the
knowledge related to the different interactions in multiple
layers we need to introduce the multiplex dimension of the
network. It enables us to better quantify information encoded
in terms of collective and social behaviours and in terms of
spreading and diffusion. Multiplex networks, in which nodes
can be adjacent to each other, through intra-layer edges or to
its counterpart on another layer through the inter-layer ones
[31], [32], represent the most suitable network structure for
analyzing the emerging dynamical patterns of spreading phe-
nomena, depending on the nature of social ties [17], [36]. The
investigation of a multi-dimensional network representation
through themultiplex networks enable us to fully characterize
the behaviour of a complex system, unveiling interesting
structural properties that helps to understand emerging phe-
nomena such as cascading failures, super-diffusion, spread-
ing and epidemic dynamics [17], [37]–[42]. These networks
allow us to encompassmultiple interactions exploring in what
measure, the ties in the different layers, have an impact on
the diffusion of social phenomena. The importance of this
mathematical representation is such that the scientific interest
around multiplex networks applications ranges between a
multitude of different areas: biological, social and technolog-
ical systems, social networks and relationships, epidemic and
social contagions, air transportation networks and brain com-
puting dynamics [11], [16], [17], [37]–[39], [41]. Complexity,
in connections, can be explored in a deeper way in structural
terms taking into considerationsweightedmultiplex networks
[34], since in real-world context, the social ties between nodes
may have different weights reflecting their intensity in the
different layers. For that assumption, the links between nodes
not only are distinguished by the kind of interaction linking
the nodes, but also by the intensity reflecting the importance
of these interactions. Since we are interested in capturing
the impact that the dynamics of collective attention around
a real event has on the co-evolution of epidemic spreading
and awareness,and differently from the above cited scientific
literature, we firstly investigate the role of weightedmultiplex
networks by defining specific weights of the ties. In addition,
with regards to the complexity in emerging dynamics of the
co-evolving and interdependent spreading processes, in the
weighted multiplex networks, we include the analysis of
social contagion. Social contagion is modelled as a spreading
process of diseases [16], and it is based on epidemiological
models [21], and it finds applications in network science,
social behavioural analysis, misinformation diffusion, infec-
tious disease and emotions spreading [11]. These phenomena
spread inter-personally, and, thanks to a vast amount of litera-
ture that has investigated these complex dynamics, following
classical epidemiological models [21]–[23], involving sev-
eral research fields in network science [24]–[27], [43]–[46],
we can state that the nature of social ties has a key role
in a phenomenon diffusion on a social network [11], [14],
[18], [28], [47], [48]. Several studies investigate the role of
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the awareness in the disease spreading process, disclosing
his effect on the networked individuals more likely to adopt
strategies targeted at self-protecting [16], [17] to slow dif-
fusion, if they are more aware about it. Many studies have
explored the spreading and competition of both phenomena
separating them into different layers of diffusion [9], [30],
[49]–[51]. Otherwise, since the multiplex networks consti-
tute the most fit network structure to study these processes,
their interdependence and co-evolution [33], we follow the
approach to do not separate each of the spreading process
to only one layers, but as in [16], [17] we investigate and
quantify the impact of the co-evolution of the two processes
in all the layers of the weightedmultiplex network, adding the
collective attention influence on the awareness dynamics fit-
ness during an extraordinary event as COVID-19 epidemics.
Coherently with the real nature of multiplex networks [36],
it has been taken into account heterogeneity and its impact
along with awareness on the epidemic spreading [16], [52].

B. COLLECTIVE ATTENTION
A growing number of existing studies have investigated the
concept of collective attention, especially when it comes from
the user-generated data. Since the escalation of social and
communication technologies provides everyday a chance to
digitally observe the interests of networked individuals, there
is a growing involvement by the researchers in leveraging
these technologies with the aim at providing predictors useful
in case of crisis response [35]. Social media, and major
communication platforms is having a significant impact
on broadening participation by social networked individual,
facilitating the contribution of information, ideas, contents,
opinions, that we can see as a marker of their interests [35],
[53]. The heterogeneity in terms of information loaded in
the communications platforms, in conjunction with the het-
erogeneity in terms of network structure, impact on the user
attention, showing that if the collective attention is limited,
this can leads to a low discriminating capacity for users in
understanding the quality of information [53]. Other studies
have investigated how the collective attention in the online
social platforms can represent a digital fingerprint of the
human behaviours. It is interesting to underline that, when a
real-world event occurs, the activity, in terms of participation
or content sharing, which represents the collective attention
on social media, exhibits a burst-like increase and an irregular
oscillation, otherwise it follows a regular circadian rhythms,
as showed in [54]. Moreover, as investigated in [35], with a
comparison between originally observed attention graphs and
a baseline, it is notable that collective attention displays a het-
erogeneous structure, showing that the interests of networked
individuals generally are polarized around clusters, with ref-
erence to different topics. When an emergency or shocking
event occurs, there is a shifting on people’s attention inducing
a convergence into amore homogeneous structure. The events
attract the attention of people impacting on the awareness
of them, changing the social behaviour and, in some cases,
it depends more from the content exposure and much less

by the event dynamics, such as in case of an epidemics [55].
Although the concept of collective attention remains not well
defined and it is related to different quantities and parameters,
such as burstiness or popularity in content sharing [51], [56],
[57], in several works, authors decided to focus on the emer-
gence of collective attention through the analysis of contents
streams from Twitter communications, to detect the shape
of the dynamics [35], [53], [54]. Other works are based on
Google Trends, which enables to analyze the popularity of
specific search terms [58], [59]. Recently, around the emer-
gency linked to the COVID-19, in [1], such as in case of
other health emergencies [60], the authors studies the overall
search trends regarding the epidemics, which increase in the
early time of the observation period, varying in each country
considered. To systematically understand the digital traces
of the collective attention released and the interplay with
the individual awareness which in turns produces changes in
behaviours, [11], [30], [45], we need to discover and quantify
the dynamics of the interdependence, using both theoretical
frameworks and empirical data. To this aim, we propose an
analytical framework based on the heterogeneous weighted
multiplex networks structure and the data-driven approach
which allow us to integrate and collect data from Twitter
communications and Google Trends. In this way we are able
to detect a possible social network marker to forecast the
trend of awareness dynamics and its impact on the epidemics,
exploiting the infodemics of online social platforms and the
connectedness of users.

III. MODEL
A. SCENARIO
We introduce a new framework, as showed in Fig. 1,
to quantify the interplay between collective attention and
awareness dynamics, modeling them in two co-evolving and
interdependent weighted multiplex social networks. Center-
ing the analysis around the COVID-19, we choose geograph-
ical countries, represented as ‘‘communities’’, which have
encountered the first case of COVID-19, within a fixed time
window T . The T interval has been properly selected to
extract the relevant spreading dynamics in different coun-
tries. Each first episode of COVID-19, officially reported
in each selected geographical countries, here is stated as
‘‘event occurrence’’ Eci in T , with ci, the country belonging
to the set C of countries selected. Following the data-driven
and sampling approaches, presented in the Sections IV-A,
the users, belonging to the communities, constitute the nodes
which populate the first multiplex social networkM1, namely
the population-based multiplex. Each layer of M1 is referred
to different kinds of interactions based on social networks
relationships. For this reason, in M1, the interactions in the
first layer between users, follow the theoretical scheme of
a scale-free network [10], [61], with a power-law depen-
dence of the degree distribution P(k) − kγ , with the expo-
nent γ = 2 that typically satisfying values around 2 <

γ < 3. Instead, the second layer of M1 follows the graph
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FIGURE 1. From Modeling to Data-driven approach. The figure schematically describes the various steps and key aspects starting from the modeling
procedure to the data-driven approach. In the left side of the framework we highlight the modeling steps, in which we define two weighted multiplex
social networks, population-based and keywords-based, with their dynamics, respectively, a social contagion dynamics of two co-evolving spreading
processes, epidemics and awareness, and the collective attention. In the right panel we show the data-driven approach, specifically around the
COVID-19 epidemics. The outcomes of the latter approach and analysis are showed in the central panel, in which some of the entries are empirically
extracted from the Twitter communications and from Google Trends. Moreover, we underline the interplay and the interdependence between
awareness and attention which link in a complex co-evolution the dynamics of the two weighted multiplex social networks, allowing us to disclose
the joint impact of attention and awareness on epidemics, and helping us to forecast how the individuals react to the emergency.

network extracted from the data-driven approach, showing
virtual mined relationships for the same set of users. As
detailed in the Section IV-A, we integrate and analyze large
social networks communication by using Twitter datasets and

Google Trends. We construct a set of keywords K , mining a
set H of unique hashtags from Twitter, related to the sampled
relevant users (see IV-A3), and the set Q of the most popular
terms of searches from Google Trends, in the fixed temporal
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window T . The elements of the subset H of K , represent the
nodes of the population of the second weighted multiplex net-
worksM2,namely the keywords-based multiplex network. In
M2, each layer is a community-based level, and it is referred
to a kind of interaction, that we define as ‘‘co-adoption’’
relationships, based on the combined use of keywords by
any users of that community representing the layer, whose
social interactions are explored in the multiplex networkM1.
Following, for each weighted multiplex social networks,
we detail the mathematical representation, the definitions of
weights, by highlighting statistical estimators and themetrics,
which impact on the co-evolution of collective awareness and
attention, and the impact on the epidemic spreading.

B. MULTIPLEX SOCIAL NETWORKS MODELING
1) POPULATION-BASED
With regards to the first weighted multiplex social net-
work, we highlight the importance of including multiple
relationships between users, representing people of differ-
ent communities as explained in the section III-A. The first
multiplex network M1, allowing to investigate how different
network structure impact on the contagion dynamics, consists
of two layers of interactions of the same set of users, a scale
free-networks and a graph extracted from the data-driven
approach. This makes us able to show a theoretical and an
empirical interactions scheme to represent and investigate
two types of virtual relationships for the same set of users.
Let us consider the first weighted multiplex social network of
M1 layers α1 = {1, . . . ,M1} and N1 nodes i = {1, . . . ,N1}.
The multiplex network is a set of M1 weighted networks (or
layers) defined as a set of graphs G, vertices V and edges
E , Gα = (V ,Eα) (see Fig 1). The set of nodes N1 is the
same for each layer, whereas the set of links E1 changes
according to the layer [34]. Each network Gα is described
by the adjacency matrix, denoted by Aα with elements aαij ,
where aαij = wαij > 0, if there is a link between i and j with
a weight wij, otherwise aαij = 0. We include a definition of
weights as function of the discrepancy of users awareness
about the referred topic (1aw) of COVID-19 and homophily
(hαij), namely the tendency of interacts with similar users.
Definition 1 (Weights of Interactions in M1): Referred to

the first multiplex network, the weights denoted as wαij are
given by:

wαij |M1 = hαij · |1aw| + 1 (1)

where hij = 1/1+ δij is the homophily between nodes i and j.
Homophily is defined as the tendency to associate and interact
more with similar people [36], where δαij is the measure of the
homophily difference between nodes i and j as expressed in
[36] and1aw is equal to the absolute difference of awareness,∣∣awi − awj∣∣, between nodes i and j (see III-B3). Homophily
represent the principle that similarity breeds connections,
enabling the structural understanding of how social connec-
tions are forged over time, [36]. It stands for an overall value
which takes into account different dimension of similarity.
Following the representation of that different dimension as

different homophily values, we choose to indicate with δij the
homophily difference between a pair of nodes and with σ its
standard deviation.

2) KEYWORDS-BASED
With reference to the second multiplex network, we under-
line the role of ‘‘keywords’’ as broker for users’ involved
topics. We characterize the second weighted multiplex social
networks M2, populating it with keywords as nodes, and the
multiple interactions, different for each layer, between nodes
as the ‘‘co-adoption’’ relationships.We consider each layer of
this multiplex network referred to each geographical country
and the coexistence of several types of interactions among
keywords based on the collective attention of individuals
mined from social networks. Let us consider the second
multiplex network of M2 layers α2 = {1, . . . ,M2} and N2
nodes i = {1, . . . ,N2}. The set of nodes is the subset H
of h hashtags, linked to the main topic under investigation.
As explained below, in section IV-A, we construct that set,
mining a set of unique hashtags from Twitter, used by any
users in the fixed temporal window T . In T , based on a
data-driven approach, we analyze a large corpus of datasets
and we digitally investigate and measure the collective atten-
tion. As underlined for M1, we can also describe M2 by the
adjacency matrix, denoted by Aα with elements aαij , where
aαij = wαij > 0, if there is a link between i and j with a weight
wij, otherwise aαij = 0.
Definition 2 (Weights of Interactions in M2): Regarding

to the second multiplex network, the weights are denoted
as wαij|M2

. To mathematically define the interaction weights,
since they are based on the ‘‘co-adoption’’ relationships,
as explained before, we introduce the hashtags ‘‘co-
adoption’’ probabilities as relative frequencies, that are: pαhihj
which denotes the relative frequency of using both hashtags
by users belonging to the community of the layer α of M2,
and pαhi as the relative frequency of using the hashtags h

α
i , by

users belonging to the same community. In accordance to the
latter, the weights of interactions inM2 are given by:

wαhihj|M2
= phihj · (phi − phj ) (2)

where, hs with s in {1, 2, . . .H} are hashtags elements belong-
ing to a subset of hashtags H , linked to COVID-19, the main
topic under investigation.

3) AWARENESS AND ATTENTION INTERPLAY
The awareness represents the acquired knowledge as a result
of reasoning and understanding and, eventually, experiencing
the epidemics. To capture the linkage between awareness and
attention dynamics, which in turns impacts on the epidemics
patterns, in this paper, we assume that the ‘‘awareness’’
measure, awi, for each node i belonging to users population
of weighted multiplex network M1, depends on structural
heterogeneity, collective attention dynamics onM2, and node
properties [31], [34], [62]. Moreover, we shed light on that
awareness measure has not change according to the layers,
since awareness once acquired is the same in the different

189208 VOLUME 8, 2020



M. Scatá et al.: Dynamical Interplay of Collective Attention, Awareness and Epidemics Spreading

layers in which a user is involved. It can be influenced by
the fading of interests on acquiring additional and correlated
awareness, or verifying if it is fact-checked or misinformation
based [17], [63]. The awareness gap between two interacting
nodes in M1, impacts on the weights of links as detailed
in section III-B1, in conjunction with the homophily value
hij. In fact it is crucial to include the tendency to interact
with similar people, through the introduction of homophily
measure since strongly homogeneous groups tend to prefer
contents that confirm their shared beliefs, polarizing rumours
or misinformation. This phenomenon is defined as ‘‘echo
chambers’’ effect which have a strict interplay with the spread
of misinformation [63]. In presence of misinformation and
highly homophilic clusters of users in social networks, it is
very likely having fake news masqueraded as fact-checked
contents [64].
Definition 3 (Awareness Measure in M1): Referred to the

first multiplex network M1, the awareness measure for each
node i, is denoted as awi, and it is given by:

awit=T = (Pi|M1 ·

∑
h∈H

Hh ·
∑
q∈Q

ηq)+ awit=t0 (3)

where Pi is the multiplex participation coefficient which
enable us to include the heterogeneity of the number of neigh-
bours of node i across the layers inM1 [31]. TheHh represents
the Shannon entropy of the hashtags h, mined from Twitter
communications, belonging to the set H , which represents
the population of nodes in M2 [31], [34], and ηq is a score,
represented by the relative search volume (RSV), associated
with the Google search popularity of terms q, elements of the
subsetQ extracted through Google Trends (see section IV-A).

C. SOCIAL CONTAGION DYNAMICS
1) DISCUSSING THE APPLICABILITY OF SEIR MODEL IN
CO-EVOLUTION WITH THE UAF MODEL FOR COVID-19
We study the spreading of two processes in M1 in
co-evolution in the same multiplex network, referred to the
epidemic and the awareness spreading [16]. Deciding to not
disjoint the two processes we are able to explore the emerging
complex dynamics in order to highlight the effect of the
awareness dynamics, which is marked by cognitive limita-
tions, on epidemic spreading, underlining also its impact on
how we are likely to accept the unprecedented restrictive
measures due to the COVID-19. In fact, in response to the
epidemic outbreak [2], [65]–[67] both local and national gov-
ernments have taken non-pharmaceutical physical distancing
interventions, strategies to reduce its impact, extended school
closures and workplace distancing along with emergency
spreading in time [68]. This complex dynamics investigation
can shed light on the role of awareness in this emergency
event, unveiling its interdependence with collective attention,
keeping a watchful eyes on the fact-checked news, that can
distance the natural memory leaks or fading of interest by
human brain on epidemics. It is nevertheless worth men-
tioning that COVID-19, as it is clearly visible observing
the timeline of pointed key occurred events [5], differently

from shocking peaked events, like they could be earthquakes
or mass shooting [35], it still observed it is an unfolded
emergency in time. This raises the challenge of quantify-
ing the impact of awareness, influenced by the dynamics
of people interests, in terms of searching for information
and content adoption, that is revealed by the analysis of
the growing number of users-generated data [35], [54], [56],
[69]. To this aim, we explore how dynamics could change
according to network structure heterogeneity and awareness,
which in turns depends on the attention dynamics explored
in M2. To detect a marker of the complex social dynamics,
we adopt a data-driven approach which exploits large social
media platform communications and searches as Twitter [35],
[56] and Google Trends [59]. A rising number of studies
explored the model to fit mathematically the transmission of
COVID-19, taking into consideration measures and strategies
which reduces social mixing, modifying both the pattern
within the population and the trajectory of the epidemics.
Since the transmission is mostly driven by who interacts with
whom, which can vary by age, location, contact, the protec-
tive measures of distancing have been designed to shift the
social mixing patterns [2]. Given that, most of these limita-
tions transform population mixing as well as human habits
and the real social connectedness, consequently it becomes
crucial the understanding to what extent the attention and
the awareness in social networks can lead to behaviours
in accordance with the provided reduction strategies. For
that reason, currently, the increasing virtual connectivity [1],
[64], [70], expressed in multiple layers, can marker the real-
ization of a collective consciousness and impacting on the
COVID-19 epidemic progression. In accordance with the
recent epidemiological studies on parameters of the out-
break and propagation [71], [72], [72]–[75], we consider the
susceptible-exposed-infected-recovered (SEIR) model [2],
[21], [72], as the epidemiological model for COVID-19, ana-
lyzing it in conjunction and co-evolution with the awareness
social contagion processUAF [16], inM1. The SEIRmodel is
generally used to model influence-like-illness, and it has been
used to numerically analyze the evolution of the Severe Acute
Respiratory Syndrome (SARS) in different social settings
[21]. As observed in [71], the SEIRmodel fitsmathematically
with the nature of COVID-19 transmission. This model is a
variation of the SIRmodel, with the inclusion of exposed state
(E) [21]. Moreover, in line with [2], [21], [73], we assume
that, Exposed state (E) is a state in which individuals have
been infected by the disease but cannot yet transmit it. In [72],
the authors consider a SEIR model with different assump-
tions, since they indicate asE the latent state inwhich the pop-
ulation is asymptomatic but infectious, and I referred to the
symptomatic and infectious population. The incubation rate
σ is described as the rate by which the E individual develops
symptoms. In [74], instead, the authors named the proposed
model as SIDARTHE discriminating between detected and
undetected cases of infection and between different severity
of illness (SOI), non-life-threatening cases (asymptomatic
and pauci-symptomatic; minor and moderate infection) and
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potentially life-threatening cases (major and extreme). In our
work, we have assumed that asymptomatic cases represent
a minor proportion of infectiousness compared with symp-
tomatic cases, following the hypothesis in accordance with
[2], [73]. In fact, although the contributions of asymptomatic
or sub-clinical cases represent a pivotal point, and the ques-
tion of whether such individuals are able to transmit infection
remains unresolved at the time of writing, we do not consider
that cases in this work, in accordance with the choice of
temporal window that was aim at tracing the initial phase of
rising the interest of collective attention around COVID-19.
To analyze the co-evolving dynamics of both epidemics and
awareness spreading on M1 multiplex network, we exploit
theDynamicMicroscopicMarkovChainApproach (MMCA)
(see section III-C3). Following our assumptions, we do not
consider all demographic changes, age, structure features and
other relevant compartments in population [21].

2) CO-EVOLVING SPREADING PROCESSES
In accordance with what we have defined in the previous
section, here we start from the key assumption that each node
in M1 has a different awareness on COVID-19 as underlined
in section III-B3. As a consequence, each node, will be het-
erogeneously susceptible to the epidemics spreading, since
the awareness acquired has an influence on the behaviours of
people, improving their knowledge about epidemics. Hetero-
geneity and awareness are introduced in order to describe the
spreading scenario and extricate the complex co-evolution of
the interdependence, from one hand, between epidemics and
awareness and, from the other hand, between awareness and
attention (see section III-B3). We analyze two co-evolving
spreading processes in the first weighted multiplex network
M1 (see section III-B1). The first process of epidemic spread-
ing is indicated by ShEIR, where Sh indicates the hetero-
geneous susceptible state, E the exposed state and I and R,
respectively the infection and the recovered ones [16], [21].
The second is the awareness spreading process, coexisting
and co-evolving with the first one, indicated as UhAF , that
stands for ‘‘Unaware-Aware-Faded’’ model. The awareness
spreading process is thought as a SIR-like, where U indi-
cates the condition of heterogeneous unawareness state, A
is the aware state, while the F state, is the faded state in
which the nodes, tend to decrease the interest to the referred
topic, over time up to the point that it completely vanishes.
The Awareness state is referred to the case of those who is
aware on topic, which means that a user acquires knowledge
about epidemics, as a result of a collective attention dynam-
ics in social networks. This can leads to a discriminating
capacity in understanding quality of good information on
epidemics. In our model, the awareness state is not directly
correlated to the ensuring that users follow quarantine or
other physical strategies. Although an increasing of aware-
ness can infers a good behaviour in line with that strategical
measures,,influencing people to follow preventive measures
as distancing interventions [16], [17], [71], in our work it
has been intended as a knowledge and a consciousness that

can contrast for example the misinformation diffusion about
COVID-19. The node, in the F state, maintain the same
awareness measure, but it has no interest in increasing its
acquired knowledge on the phenomenon linked to the referred
topic. Starting from the model presented in [16], we extend it
introducing, other than the heterogeneity in terms of nodes’
susceptibility and awareness, in the layers of M1 multiplex
network, also the linkage to the expressed collective attention
which feeds and drives the shape of awareness measure. The
meaning of the various states of the two spreading processes
are explained in Table 1, and a complete list of symbols with
its fair meaning is summarized in Table 2, as follows:

TABLE 1. MMCA - States. We include the definitions of the different
states in the MMCA, adding more details about the interdependence
between epidemics, awareness and attention (see section III-C).

a: HETEROGENEOUS SEIR
The ShEIR spreading process is diagrammatically expressed,
in terms of reaction-diffusion equations, as follows:

ShEIR⇒ Sh
βαi
→ E

γ
→ I

µ
→ R (4)

with βαi , the infection rate for each node i at each layer α
in the multiplex network M1. The probability of an exposed
individual becoming infectious is γ , while the probability
of becoming recovered after infection is equals to µ. The
heterogeneous infection rate represents the probability of a
susceptible-infected contact results in a new exposure, as fol-
lowing expressed:

βαi =
1

1+ λαi
·
1
Y αi

(5)

It depends on the network structure heterogeneity, through
the measures of inverse participation ratio Y αi [34] (see Sup-
plementary Information) and the rate of awareness λαi as
expressed in Eq. 7.

189210 VOLUME 8, 2020



M. Scatá et al.: Dynamical Interplay of Collective Attention, Awareness and Epidemics Spreading

TABLE 2. List of symbols.

b: HETEROGENEOUS UAF
The second spreading process is diagrammatically expressed
as follows:

UhAF ⇒ U
λi
→ A

δ
→ F (6)

with λαi and δ, defined as transition rates, respectively repre-
sent the rate of awareness for each node i at each layer α of
the multiplex M1 and the fading rate. The rate of awareness
is expressed as follows:

λαi =
sαi

1+ sαi
· λ (7)

with sαi the strength of node i in the layer α of the multi-
plex networksM1 [34] (see Supplementary Information). The
Dynamic Microscopic Markov Chain Approach (MMCA),
enables us to explore the spreading dynamics of co-evolution
on the weighted multiplex networkM1, depending also from
the collective attention dynamics inM2. In the next subsection
we give amore detailed explanation of theMMCAused in our
model.

3) DYNAMIC MICROSCOPIC MARKOV CHAIN
We start to assign to each node a state probability to be in
one of the initial state, since at the beginning it can occupy
only one of the following: susceptible and unaware (SU),
susceptible and aware (SA), infected and aware (IA), exposed
and unaware (EU) (see Fig. 2). Some states are not reachable
or do not exist, such as infected and unaware (IU) and recov-
ered and unaware (RU), due to the assumption that if a node
has been infected or recovered has experienced the disease,
developing a measure of awareness (see Fig. 2). At time
step t each node i can occupy one of the initial states, with
probabilities pSUi (t), pSAi (t), pIAi (t), and pEUi (t) respectively.
We consider, as in [17], qi(t) as the probability of node i not
being infected at time step t and ri(t) the probability of an
unaware node i staying unaware at time step t , as follows:

qi(t) = (1− β i)
∏
j

[1− ajipIj (t)β i] (8)

ri(t) = (1− λi)
∏
j

[1− ajipAj (t)λj] (9)

where aij are the elements of the adjacency matrix of each
layer of the weighted multiplex networkM1. β i and λi respec-
tively are the mean values of the heterogeneous infection and
awareness rate. The following MMCA equations represent
the probability of each node of being in one of the states at
time step t + 1, as showed in Fig. 2:

pSAi (t + 1) = qi(t)pSAi (t)+ (1− ri(t))(1− δ)pSUi (t);

pSUi (t + 1) = ri(t)pSUi (t);

pSFi (t + 1) = δ(1− ri(t))pSUi (t);

pIAi (t + 1) = γ (1− qi(t))(1− µ)pSAi (t)

+ (1− µ)pIAi (t));

pEUi (t + 1) = ri(t)pEUi (t);

pEAi (t + 1) = (1− δ)(1− ri(t))pEUi (t)

+ (1− γ )(1− qi(t))pSAi (t);

pEFi (t + 1) = δ(1− ri(t))pEUi (t);

pRAi (t + 1) = µ(1− δ)pIAi (t)

+ γµ(1− qi(t))(1− δ)pSAi (t);

pRFi (t + 1) = µδpIAi (t)+ δγµ(1− qi(t))pSAi (t); (10)

To obtain the contagion threshold, we investigate the
steady state solution of the system constituted by the previous
equations. When time t → +∞, there exists a contagion
threshold βC for the two co-evolving processes, so that the
contagion can outbreak only if β ≥ βC . Following the math-
ematical approach presented in [16], the contagion threshold
is given by the order parameter ρi and it is defined as follows:

ρI =
1
N

N∑
i=1

pIi =
1
N

N∑
i=1

pIAi (11)

Thus, starting from equation pIAi (t + 1) (see Eq. (10)),
at steady state we have:

pIAi = γ (1− µ)(1− qi)p
SA
i (12)
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FIGURE 2. Probability tree. We show the probability tree, linked to the
MMCA method, representing the states and the transitions, at each time
step. Roots represent the initial states, SA, SU, IA and EA at time step t,
while leaves are all the possible states at the subsequent time step.
Arrows are labelled with the corresponding transition probabilities.

Since around the contagion threshold βC , the informed prob-
ability is close to zero (pIAi = ηi � 1), the probabilities of
being informed can be approximated as follows:

qi = (1− βi)[1− βj
∑
j

aijηj] = (1− βi)(1− ωi) (13)

where:

ωi = βj
∑
j

aijηj (14)

Furthermore, close to the contagion onset we have that
the fading rate is approximately close to zero (δ ' 0).
Considering this approximation into Eq. 12 and omitting
higher order items, Eq. 12 is reduced to the following form:

µηi ' γ (1− µ)pSAi βiβj
∑
j

aijηj (15)

The contagion threshold is obtained starting from the fol-
lowing condition:∑

j

∣∣∣∣∣γ (1− µ)βipSAi aij −
µ

βj
tji

∣∣∣∣∣ ηj = 0 (16)

where tji are the elements of the Identity matrix. By defining
the matrix H whose elements are given by: hij = [γ (1 −
µ)βipSAi ]aij, the contagion threshold βc is the value corre-
sponding to the largest eigenvalue of the matrix H , which
is given by 3max(H ) = γµ/βj, so finally we get: βc =
γµ/3max(H ). The onset of the epidemic is the minimum
value satisfying the Eq. 16. By denoting with 3max(H ) the
largest eigenvalue of H , we obtain the critical point of βc
which depends explicitly on the co-evolving dynamics. Even
if we consider the critical value referred to the onset of the
awareness spreading dynamics λc as a simple spreading pro-
cess, when decoupled from the epidemic, the (βc, λc) defines

a sort of meta-critical point for the spreading dynamics. In our
work, the thresholdmodel depends on the complex dynamical
interplay, since the values of β change also accordingly with
the awareness rate, the network structure of the weighted
multiplex network, the collective attention and the double
heterogeneity in terms of susceptibility and awareness.

IV. EXPERIMENT
A. DATA-DRIVEN APPROACH
1) CHARACTERIZING COLLECTIVE ATTENTION AND
AWARENESS INTERPLAY, UNDER COVID-19
In our model, we propose a data-driven approach for eval-
uating the complex dynamics of co-evolving epidemics and
awareness spreading, in function of the collective atten-
tion. To this aim, in the weighted multiplex network M2,
as showed in section III-B2, we analyze user-generated data
and searches, respectively, by using a large corpus of Twit-
ter communications datasets as listed in Table 3, and the
most popular Google search terms, under COVID-19. The
vast communications streams and searches, which still going
on, enables us to monitor collective attention and, through
the proposed framework in this paper, understand how it
manifests itself under a real-world emergency event. In the
whole temporal window considered T , we include small
ranges1tEci created as a consequence of relevant events hap-
pened, referred to the time in which the event has been offi-
cially reported in the ci geographical countries considered,
as detailed in section III-A. In particular, we take into account
seven short sub-intervals, as listed in Table 4, in order to
monitor attention patterns around the first officially reported
cases of COVID-19 in each geographical country considered.
Due to the observation constraints of Twitter API, in order
to evaluate a large corpus of data in a long time window
we exploited data collected in [76], [77], whose statistics are
shown in Table 3. These datasets were created searching for
users who have applied hashtags related to COVID-19 such
as: #coronavirus, #coronavirusoutbreak, #coronavirusPan-
demic, #covid19, #covid_19 [76], [77]. Each tweet in the
datasets includes textual content, the author id and nickname,
the creation time, if it was in reply to another tweet, whether
it is a retweet and additional metadata. To identify all topic,
we extracted from tweets’ text all hashtags adopted and we
considered both original tweets and retweets. In order to
have a representation of the social network where the hash-
tags’ diffusion takes place and to estimate the activity of
users around COVID-19 emergency, we traced back users,
through the Twitter REST API, and we collected additional
information such as locations and number of Followers (see
Supplementary Information for further details). As showed
in section III-A, we take into consideration two interdepen-
dent weighted multiplex networks to disclose the interplay
between epidemics and awareness spreading, based on col-
lective attention dynamics.Wemined the ‘‘Retweet-Mention-
Reply’’ graph of a group of relevant users, that through the
sampling approach, becomes the sampled set N of unique
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TABLE 3. Datasets used in this study.

TABLE 4. Time windows.

users, population of the weighted multiplex network M1.We
also construct the subset of the most relevant hashtags H
which represent the population of the weighted multiplex
network M2, restricting our data to the unique hashtags used
by users in N in all states under observation (see Supple-
mentary Information). For these two weighted multiplex net-
works, we analyze the collective dynamics and interactions
of the population of sampled users N for M1, and hashtags
belonging to the subset H for M2. In order to examine the
attention dynamics, we evaluate also the set Q mined from
Google Trends considering the top 25 search keywords, hav-
ing the relative search volume (RSV) score greater than 0,
and in particular, among these, the related queries of searches
about ‘‘COVID-19’’ in each geographical country for each
time interval ti in T . The pseudo code of the sampling and
modeling approach and the social network marker detection
is shown in Algorithm 1.

2) SAMPLING APPROACH
To construct the networks structure of the M1 weighted mul-
tiplex network (see section III-B1), we consider a popula-
tion of users, interacting through a scale-free network in the

Algorithm 1 The Interplay of Collective Dynamics in Multi-
plex Social Networks
Input: Event in T (as COVID-19); Datasets collected
(DBt ); δij, µ, δ,γ .
Output:M1,M2, awi,βc, ρI in T .
1: Phase 1: Sampling Approach.
Sampled Set of Users N ←− ∅
Sampled Set of Hashtag H ←− ∅
Sampled Set of Queries Q←− ∅
2: Set ti ∈ T filtering DBt by Tweets’ creation time.
3: ∀ti ∈ T , ∀u ∈ U collect data about users through Twitter
API.
4: ∀ti ∈ T , ∀c collect queries through GTrends API.
5: ∀ti ∈ T and ∀u ∈ U calculate ‘‘activeness’’ and ‘‘con-
nectedness’’ of users, considering the number of tweets nTu
of a user u and a threshold TT , the number of followers nFu
of a user u and a threshold TF .
if ∀ti ∈ T , nTu > TT AND nFu > TF then N = N ∪ u.
6: ∀ti ∈ T and ∀u ∈ N retrieve Hashtags from Tweets in
DBt .
7: Filter N by location, c, and consider Hc set of retrieved
Hashtags.
8: CreateH = H1∩H2 . . .∩Hc, andQ = Q1∩Q2 . . .∩Qc
from the most frequent queries ∀ti ∈ T .
9: Mining of the ‘‘Retweet-Mention-Reply’’ graph of the
users in N and the c ‘‘Hashtags co-adoption’’ graphs of the
hashtags in H .
10: Calculate the relative frequency of the hashtags in H ,
ph.
11: Phase 2: Multiplexity - Social Contagion.
12: Set N as N1 population ofM1.
13: Set the ‘‘Retweet-Mention-Reply’’ graph of the users
in N as Gα=1 and a Scale-free networks as Gα=2, with Gα
graphs of theM1 with α = 1, . . . ,M1 layers.
14: Set H as N2 population of M2 multiplex network and
the ‘‘Hashtags co-adoption’’ graphs of the users in N as
Gα=c, with Gα graphs of the M2 with α = 1, . . . ,M2
layers.
15: ∀i ∈ N1 in M1 calculate ki, oi, Pi, Zoi .
16: ∀h ∈ H , inM2, calculate calculate kh, oh, Hh and ∀q ∈
Q a score η for each c location.
17: ∀i ∈ N1,in M1, calculate awi, wij, sαi , Y

α
i

18: Calculate whihj in M2.
19: ∀i ∈ N1, in M1, assign to i one of the initial states SU
- SA - IA.
20: at time step t , calculate λαi , β

α
i , qi(t), ri(t).

21:MMCA method.
22: Calculate βC ,ρI in T .
23: Phase 3: Social Network Marker.
24: detect the emergence of the first event case E Ic , and ∀c,
detect Ec,Rct , SM

c
t , and calculate the delays DRct E Ic , DcmstEc

and DRct Ec .
25: ∀c, calculate awr , and, its growth rate ±awr (%) as the
social network marker impact.
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first layer and a sampled weighted graph network in the
second layer, mined from a selection of a set of interacting
nodes on Twitter and based on the datasets analyzed [76],
[77]. Although a straightforward way for an understanding
of attention dynamics is to gather data from as many users
as possible, we assume that it is fundamental to apply a
sampling approach, to identify the most influential users and
their relationships, preserving the topological properties of
the original structure. This set of sampled users, are that
more likely can trigger awareness diffusion giving an impact
on epidemic spreading. An ideal sample set should consider
users with the following features [35]:

• Activeness: We examine in the sampled set, users who
tend to tweet with hashtags linked to COVID-19, at a
relatively high frequency during the time of interest
T . In this way we include who have the tendency to
maintain a high level of interest on topic through time,
presuming that they are more likely to be active in the
spreading dynamics. A user is included in the sampled
set N if has posted a number of tweets greater than a
threshold TT in each time window ti.

• Connectedness: We examine and include in sampled
set, users who tend to be actively connected with other
users showing their capability to cover a broader set of
users, namely those who actively join into the common
interests of many other users. We define the threshold
TF of users’ number of followers and we add to the set
N of sampled users who has a ‘‘followers_count’’ value
greater than TF .

Evaluating both the activeness and the connectedness we
select the most popular users that are at the same time,
the most active within the time period considered, avoiding
missing content or activity gaps over time.

3) COMPARISON WITH A NULL MODEL
An interesting pivotal point is bringing together the nature
of the extraordinary event, such as the one represented by
COVID-19, with the usual emerging dynamical patterns from
social networks. Without any doubt, this epidemic is not a
common health emergency. In terms of collective attention,
the interest is spread over time and continues to involve the
population as a result of strategical measures and an unin-
terrupted updates on the data and the evolution of spreading
itself [68], [70]. To evaluate if the emerging dynamical pat-
terns is caused by an interplay between polarized attention
and awareness on epidemics, or by a change on individual
interests dynamics, rippling with a similar shape in other
cases, we compare the observed dynamics with that one based
on a null model. The null model is created for a fixed set
of users, comparable to those considered in our model, in a
period of time, prior to COVID-19, and comparable with our
time interval T , during which we analyze the same set of data
required to match the dynamical patterns. In this way, we can
observe how and in what measure the observed dynamics
differs from a baseline.

B. SIMULATION RESULTS AND DISCUSSION
Simulations have been carried out considering two weighted
multiplex networks, respectively M1 and M2 as explained
in Sections III-B1 and III-B2. Firstly, with regards to the
M1 weighted multiplex social network, we consider the key
role of multiple relationships between users, which represent
people of different communities, referred to the seven states
considered in the data-driven approach. In M1, we take into
consideration the population ofN = 1461 users, representing
the users of the sample extracted as showed in Section IV-A.
In the first layer the interactions are based on the graph
network extracted from the data-driven approach, showing
virtual relationships for the sampled set of users, while in
the second one the interactions follow the theoretical scheme
of a scale-free network [10], [61].

From Fig. 3, we can observe how the structural hetero-
geneity of interactions and the heterogeneous distribution
of the awareness characterize our model, depending on the
parameters of the multiplex network, considering the fea-
tures of each node regarding the two co-evolving spreading
processes around epidemics and awareness dynamics. Each
node belongs to the sampled users set extracted from the
data-driven approach, and it owns a distinct awareness mea-
sure, such a consciousness that allows to react differently to
the epidemics, producing a different susceptibility. Following
the assumption of our proposed model and the data mined,
in panel (a) of Fig. 3 we highlight the heterogeneity distri-
bution in network structures for the case of awareness mea-
sures based on multiplex parameters and user-generated data
mined from Twitter and Google Trends (see details in both
Sections III-B3 and IV-A), in comparison with the awareness
measures based on baseline statistics, as showed in panel (b).
It is notable how the multiplex network exhibits a heteroge-
neous distribution of awareness measures in panel (b), as a
result of a global attention distributed in various clusters of
different topics. Instead, consequently to the occurrence of an
emergency event, as COVID-19, it acts as a shaking force that
polarizes the collective attention shaping the awareness dis-
tribution in multiplex network M1 into a more homogenized
structure since the nature of the event rules the choice on
what to pay attention [35]. This effect produces a decreasing
in randomness and an increasing of a collective process.
In accordance with the assumption of our model, the aware-
ness measures distribution acts on the interactions weights in
conjunction with the homophily measure, impacting on the
heterogeneity in terms of node susceptibility against the epi-
demics, and in terms of infection and awareness rate, shaping
also the structural heterogeneity of the degree distribution in
the M1 weighted multiplex network.

In each plot of Fig. 4, the curves correspond to the different
values of the distribution of Pi, the participation coefficient
of node i in the weighted multiplex network M1 in the range
[0, 1], that gives information about the distribution of the
edges across the layers for a node i. Firstly, we can observe
that there is a quite broad distribution suggesting the presence
of various levels of node’s participation to each of the two
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FIGURE 3. Awareness distribution on Multiplex Network. We show the heterogeneous distribution of the awareness on the two layers in the
weighted multiplex network M1. In (a) and (b) we illustrate the two layers of the weighted multiplex network M1 (as explained in
section III-B1). In the top-left and bottom-left panels, in (a), we respectively show the heterogeneous distribution of the awareness measures,
in the first and in the second layer, extracted from the data-driven approach of user-generated data around COVID-19. In the top-right and
bottom-right panels, in (b), we respectively shed light on the heterogeneous distribution of the awareness measures, in the the first and in
the second layer, in the baseline case. See section IV-A for details about baseline and data-driven comparison method.

layers in M1. We consider this variation in function of the
Z-score of the overlapping degree of the node, representing
its overall importance in terms of number of edges, with the
aim at introducing a classification of nodes in terms of its
properties into the multiplex network, highlighting also the
awareness distribution, showed as size of nodes. Moreover,
the panels (a)-(c)-(e) are referred to the data-driven awareness
measures, the panels (b)-(d)-(f) to the baseline statistics, and
in both cases from the top to bottom panels we decrease the
homophily measures among nodes [31], [78]. We identify
in each plot different categories of nodes, hubs, for which
oi ≥ 2, regular nodes, for which oi < 2. Representing
each node as a point in the plane Pi − Zoi , by considering
the multiplex participation coefficient and the variation in
function of Zoi , we pick out the six classes of nodes as
highlight in Fig.4, varying homophily measures, showing the
awareness distribution. While we observe the same trend in
both cases, it is observable the greatest randomness effect,
in terms of awareness distribution, in plots referred to the
baseline statistics, (b)-(d)-(f). In the case of (a)-(c)-(e) plots,
the more participatory the nodes are, the more they acquire
a greatest value of awareness, especially in the case of high
homophily among nodes (as showed in plot (a)), disclosing
this trend especially for regular mixed and multiplex aware
nodes. Decreasing homophily values, from (c)-(d) to (e)-(f),
respectively referred to awareness data-driven and that one
based on baseline statistics, we highlight, with an increasing
of Pi values, a heterogeneous distribution of awareness in
the plane Pi − Zoi , and a higher density of hubs nodes,
in focused roles with higher awareness values. This trend is
more evident in the case of awareness based on data and it
means that, decreasing the homophily, it is possible to find
out a higher presence of focused hubs, more aware in the case

of awareness based on data than in baseline statistics case,
since the latter suffers the effect of attention randomness. As a
result of a collective process around an extraordinary event,
in (e) plot we depict this effect, showing how the most aware
nodes are either more participatory or more central.

In Fig. 5 we display the phase diagram in the plane ρ −
β − λ, according to the co-evolving processes of epidemics
and awareness in the weighted multiplex network M1, and
its interdependence with the collective attention dynamics in
M2. In both panels we show how the double heterogeneity,
in terms of infection and awareness rates, allows delaying
the contagion outbreak and reducing the density of infected
nodes. An increasing of awareness rate results in a decreasing
of infection rate up to a specific value of awareness rate,
as showed in (a) plot, in which the awareness measures for
each node derived from the baseline statistics in a scale-free
structure. This means that the remarkable shape is due to the
dependence of the heterogeneous susceptibility on the aware-
ness and, when the probability of acquiring more awareness
exceed a threshold, this leads to a more probable shift in
attention in correlated topics, resulting in an increasing of ρ,
the density of infection. Differently, in the (b) plot of Fig. 5,
which is referred to the case of awareness measures derived
from data, that effect vanishes due to more homogenized
trend of awareness values around topic linked to the extraor-
dinary event occurrence, and with an increasing of awareness
rate we have a decreasing of the epidemics trend. In Fig. 6 we
show the trend of infection rate in function of awareness rate,
varying the homophily value. The homophily, representing a
human-related factor of our modeling approach enables the
structural investigation of how the connections are forged in
social networks. For that reason, we vary its standard devia-
tion associated to traits, that define the similarity between a
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FIGURE 4. Roles of nodes. We show a cartography of the roles of the
nodes in the multiplex network M1 obtained by plotting, for each node,
the multiplex participation coefficient Pi versus the Z -score of the total
overlapping degree oi . Even if two nodes have exactly the same value of
z(oi ), they can have different roles, as indicated in figure, according to
the value of the multiplex participation coefficient. We compare the plots
(a)-(c)-(e), which are referred to the case of data-driven awareness
measures, with (b)-(d)-(f), which represent the roles of nodes in the
baseline case as explained in Section IV-A. We can identify, as put in
evidence in the plots, the focused, mixed, multiplex, regular or hubs
nodes. The size of each node indicates the awareness measure awi and
its distribution, depending on the collective attention, structurally and
dynamically analyzed in M2. In both cases, in (a)-(c)-(e) and in (b)-(d)-(f),
from top to bottom panels, we decrease the homophily measures among
nodes.

pair of nodes showing the resulting trend in the plane λ− β.
We take into consideration the two cases of the baseline and
the data-driven in reference to the awareness of the users,
varying the homophily standard deviation. In the plot (a),
referred to the baseline case, we find out that by decreas-
ing the homophily (from green curve to red curve), up to
a threshold, the increasing of awareness rate have a minor
impact on the infection rate since the population interests are
distributed around different topics and the collective attention
is shaped as amore heterogenous structure. Differently, in (b),
that is based on data mined from Twitter communications
under COVID-19, we figure out that by increasing the aware-
ness rate, we can observe a decreasing in infection rate.
By decreasing the homophily, the awareness impact is lower
than the baseline case, unveiling that the collective dynamics
of attention and awareness is more homogenous around the
COVID-19.

FIGURE 5. Phase Diagrams λ− β − ρ. Plots, both illustrate in the panel
(a) and (b), show the density of infected nodes ρ, ranging from red to
blue, in function of awareness rateλ, and the investment fection rate β,
as a result of the dynamical co-evolution of the two spreading processes,
epidemics and awareness, in the multiplex network M1. We compare the
cases of awareness measures awi , extracted from a null model or
baseline, as in (a) plot, and the extracted from data-driven approach
ones, as showed in (b) plot. Plots are obtained using MMCA method and
MC simulations as detailed in Section III-C3.

In Fig.7, we exploit an heatmap to summarize the collective
attention dynamics, during temporal window T , divided in
seven-time intervals, as detailed in Table 4, around COVID-
19. The heatmap is based on user-generated data from Twit-
ter communications and queries from Google Trends (see
Section IV-A). This plot allows for comparing different net-
work metrics, such as tweets volume, networks size, collec-
tive attention from Twitter and Google Trends, ranging the
different normalized values into coloured bands. We depict
the different colour shades in the bands for each geograph-
ical state considered, in reference to each time interval to
underline the changes in time, in correlation with the red
points, that indicates in which time interval falls the first case
of COVID-19 officially, reported to WHO. The grey bands
point out the lack of values on collective attention, in the
range that covers t1 and t2. Following the assumption of our
model, this puts in evidence that in the sampled users set we
take into consideration users which have a role in the rising
of collective attention and consequently in the awareness
and epidemics dynamics. For that reason, although there are
collective attention data on COVID-19 in t1 and t2, these are
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FIGURE 6. Diagrams λ− β. The plots show, in the plane λ− β, the trend of
infection rate in function of awareness rate, respectively in both cases of
awareness measures of nodes (a), the baseline case and (b),
the data-driven. In both cases we set the following parameters
β = 0.8,λ = 0.4, δ = 0.2,γ = 0.5, and the standard deviation of homophily
value is ranging from a low (σ = 0.2) to high (σ = 30) values (curves from
green to red) in both (a) and (b) plots.

not referred to relevant nodes in dissemination. Moreover,
we highlight, through the red points, the time in which each
state goes from being observer to affected community. Thus,
considering the tweets volume and the network size metrics,
we shed light on a shifting in trend after t6, detecting a
delay of two time intervals from the time when the major-
ity of events occurred. Focusing on the collective attention
metrics, stated for sampled set of users, we deep inside the
patterns of collective dynamics zooming the shape of reaction
in response to the events occurred. This shows a growing
interest, that although it is not free from delay, follows the
timing of COVID-19 appearance. In Fig. 8 we illustrate for
each state the evolution of the collective attention, mined
from the analysis of user-generated data from Twitter com-
munications, in different crucial time intervals, t3, t5 and
t7, that fall within the temporal window T . We exhibit the
representation of the weighted graph networks captured by
the use of different co-adopted hashtags, filtered following
the data-driven approach as underlined in Section IV-A. The
Fig. 8 shows, looked at it from top to down, the dynamical
evolution of co-adoption around the topic, reflecting the scat-
tered attention among various co-adopted hashtags linked to
COVID-19 (see Supplementary Information). It highlights a

quantitative measure of users’ attended topics, capturing it
close to the events in t3, after the events happened in t5, and
finally, when the collective attention get up to speed up to t7.
The graph networks populate the layers of weightedmultiplex
networks M2, following the assumption of our model (see
Section III-B2), introducing quantitative dynamical statisti-
cal parameters referred to the collective attention impacting
on the dynamical behaviours of the users in the weighted
multiplex network M1. The Fig. 8 exhibits the rising of the
digital traces allowing for exploring the users’ interest into
co-adopted various hashtags about COVID-19, representing
the willingness to expose their attention to as many people as
possible, thus, increasing the likelihood to give a boost to a
collective process. The Table 5 lists various information about
the response time, in terms of both strategical measures and
social collective attention, the occurrence of COVID-19 cases
and the awareness reactivity to the emergency occurrence,
also with the impact of a social network marker. For the
purpose of comparing the public response to the topic around
COVID-19 across countries selected, we compare the time
of the cases reported to WHO for each country and the
peak response in terms of attention, from Twitter and Google
Trends, as a result of the analysis of user-generated data.
We also consider the ‘‘Delay from China reported first case’’,
which represents the delay of the first response of the collec-
tive attention from the China reported first case, the ‘‘Starting
lockdown-quarantine measures’’, which is the time when the
countries decide to start the strategical measures, and the
‘‘Delay of lockdown measures from the reported internal
cases for each country’’. Moreover, we define the awareness
reactivity awri, for a country i as a statistical parameter which
quantify a measure of responsiveness based on information
entropy H , computed on the basis of data extracted from
social media platforms considered, as Twitter and Google
Trends, over the elapsed time from first reported case of
each country. This parameter weighs the speed at which a
country knowingly took notice of the emergency, deciding to
start strategical measures, to assess the optimal policies while
minimizing the output costs of the protective strategies. High
values of awareness reactivity awri means that there was a
fast response to the emergency, that matches high entropy of
content shared in online social media platforms and collective
attention dynamics, and a high alertness impacting the timing
of strategical safety measures. Moreover, taking into consid-
eration the elapsed time between the first peak of the collec-
tive attention from the first reported case for each country,
we can calculate the awareness reactivity by subtracting this
delay from the other delays considered. As indicated in the
last column, the resulting value is expressed as an awareness
reactivity growth rate, and we find out in most of the cases
a percentage of increase of awareness reactivity. In case of
China, we see a percentage in decrease of awareness reac-
tivity since it is the country that has the first peak of collec-
tive attention response after its first case reported in WHO,
differently from the other countries selected. This value
represent the impact on the awareness reactivity, finding out
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FIGURE 7. The changes of collective attention from user-generated data during time intervals around COVID-19. For each considered state, on time
intervals basis, from t1 to t7, as argued in section IV-A, we display the heatmap, with colours ranging from yellow to blue, and in accordance with the two
referred deviation bars of network metrics values considered in the data-driven approach, as tweets volume, network size, collective attention from
Twitter and collective attention from Google Trends. The colour shades of the tweets volume and network size are referred to the entire population
observed, differently from the other two metrics, collective attention from Twitter and Google Trends in which we consider the sampled users population.
See section IV-A for details.

FIGURE 8. Collective attention and Hashtags co-adoption shifting in time intervals around COVID-19. We display three temporal changes, referred to time
intervals t3 − t5 − t7, respectively corresponding to graphs in top, middle, bottom, for each state, of the weighted multiplex M2, composed by seven
layers, represented by the co-adoption network graph, extracted from Twitter user-generated data, from sampled users come from each state considered
in the model (CHINA, UK, USA, ITALY, GERMANY, FRANCE, SPAIN).

the speeding up of the preparedness and responsiveness that
would have had if it had considered the effects of the collec-
tive attention and awareness dynamics, that is a rising social
measure of the public interest around an emergency that
would soon have arrived. The figure 9 shows the awri changes
and the social marker impact on its growth percentage on the
different time windows considered (see Table 4) in function
of the collective attention extracted from the data-driven
approach. The figure graphically displays the variation of
the awri with regards to COVID-19 based on awareness

dynamics, considering the impact of the social marker (black
line) and not (red line). In particular, the figure represents
a prediction of how the awri for each state would increase
or decrease, graphically representing the impact of the social
marker, if the attention peakwould have been in different time
intervals. As we can see, in the cases b), c), d), e), f), g) in
the time intervals previous respect to the first reported case,
when the states are in the condition of observer the social
marker’s effect produces an increase in awri and when the
states become affected causes a decrease over time. The only
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FIGURE 9. Social marker impact on the Awareness Reactivity Growth Rate. The contour plots show the
awareness reactivity changes and the social marker impact on the different time windows in function of the
collective attention extracted through the data retrieved from Twitter and Google Trends. Each plot is referred to
the different states under investigation ( (a)China, b) France, c) UK, d) Germany, e) Spain, f) USA, g) Italy), the red
lines represents the values of awareness reactivity and the black lines the values of awareness reactivity taking
into consideration in its computation the impact of the social marker. The area enclosed between them is its
variation, in terms of growth rate or decrease.
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TABLE 5. Response time and awareness reaction time.

exception is represented by China (a) which is affected in
the whole-time interval under investigation and has a peak
of attention that is always legging behind the first reported
case to the WHO. In this case, taking into consideration the
effect of the social marker, the awri decreases from the first
time interval.

V. CONCLUSION
Ourwork has investigated andmodelled a systematicmethod-
ology, resulting from a complex modeling approach. Exploit-
ing the social networks and communications technologies,
we have proposed the understanding of interplay between the
collective attention dynamics and the two co-evolving spread-
ing processes as awareness and epidemics, in two interdepen-
dent and heterogeneous weighted multiplex networks, under
emergency situations in consequence of the occurrence of
an extraordinary event as the ongoing COVID-19 epidemics.
The findings demonstrate how the proposed modeling and
data-driven approaches, and the mathematical framework
represent a complex digital observatory to detect a social
network marker exploting the digital traces of behaviours and
connections of people, depicting the possible collective social
response. We identify from dynamical collective patterns,
social networks markers to optimally schedule effective crisis
communications, facilitating timely crisis response planning,
such as the decision of a time warning, based on the trends of
attention and awareness. The rising of the collective attention
in case of shocking event, as a terrorist attacks, mass shoot-
ings or earthquakes takes place immediately during or at the
end of the event, and the fast awareness acquired on the cir-
cumstances could have the strength to limit the consequences,
but does not change the event. Differently, a case similar to a
long-lasting event as COVID-19 epidemics, the acquisition
of awareness over time, conveyed by the attention and its
maintenance, could change the flow of epidemics. This can
improve the future preparedness plans, risk factors assess-
ment and actionable strategies for delaying or stopping the
spreading. In our work, the non-physical distancing factors,

as attention and awareness play an important part in mitigat-
ing the spreading, and especially when physical distancing
measures are relaxed, the dynamics of collective behaviours
in social networks can produce a flow of information that
can lead to a shape of attention to be allocated in an efficient
way for the affected communities. Physical social distancing
strategies, although we do not assume in our work, represent
a key point for our future research that could be directed
towards the understanding of the role of the location-specific
physical distancing policies and the joint impact of real and
virtual collective dynamics on awareness. As future work,
we plan to conduct a more comprehensive study on collective
attention network, comparing different types of events, and
the co-occurrence of some of them. This offers more insights
on human behaviours and interests leading to an optimally
management of the dissemination and the discrimination of
the contents, by including mechanisms to improve users’
cognitive ability. Moreover, weighing the dynamics of real
and virtual conditions, considering physical strategies, as the
social distancing, and non-physical strategies, we will aim at
detecting the configurations of social dilemma and network
structures that conduct to the emergence and sustainability
of human cooperation. This can result in an increasing of
discriminating capacity for users to identify better informa-
tion in comparison with low-quality ones or misinformation.
We envision to consider clustering methods and community
detection algorithms, in order to introduce cluster-specific
preparedness plans.

CODE AVAILABILITY
To build the model, do computation and obtain our results
we used the programming language R and the IDE RStudio.
The figures were generated thanks to the package Plotly and
the software Gephi [79]–[82]. The developed methodology in
terms of multiplex representation, spreading processing mod-
eling and data-driven approach applied to the user-generated
data extracted from Twitter communications and Google
Trends, under COVID-19 epidemics, is available to the
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scientific community at the following repository: https://
github.com/UnictScata/Collective-Attention-Awareness-and-
Epidemics-Spreading-in-the-Multiplex-Social-Network.
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