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ABSTRACT Long-term dynamic monitoring of the water quality of freshwater resources is of great
significance to the stable and orderly operation of human society. Most studies only use one of the measured
data from the monitoring station and the remote sensing satellite data as the data source. However, a single
data source will cause inaccuracy and incompatibility of the water quality monitoring results. Few studies
start from practical applications to generate digital images of water quality changes. Furthermore, the
performance of shallow neural networks in water quality monitoring is not often ideal. Considering the
above problems, we proposed a long short-term memory network model (LSTM) to invert four key water
parameters including pondus hydrogenii (PH), dissolved oxygen (DO), chemical oxygen demand (CODMn)
and ammonia-nitrogen (NH3-H). Moreover, the model was applied to the satellite images of various periods
to generate the inverted image of each water quality parameter. The proposed model has exhibited excellent
performance in the water quality assessment of the project, with the coefficient of determination (R2), the
relative root-mean-square error (rRMSE), and the mean relative error (MRE) values of 0.83, 0.16, and 0.18,
respectively. And the inverted images are also consistent with the official information.

INDEX TERMS Remote sensing, water quality parameters, water quality monitoring, LSTM network.

I. INTRODUCTION
Adequate and high-quality water is one of the most impor-
tant foundations for the healthy and sustainable develop-
ment of human society and ecosystems [1]. Water quality
is broadly defined as the biological, chemical, and physical
characteristics of water to be maintained to meet the needs
of various water usages including drinking, irrigation, and
recreation [2]. As the largest developing country in the world,
many parts of China face severe water stress as well as
the health risks caused by water contamination, after ever-
growing demands and misuse of surface water resources over
the last decades [3]. In order to meet the needs of water for
human life, industrial production and agricultural irrigation,
it is urgent to propose an efficient and convenient method for
long-term dynamic monitoring of water quality.

In recent years, calculating the water quality parame-
ter is used widely as a tool to classify and characterize
water resources for different activities such as agriculture
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and drinking purposes among many others [4]. However,
since different water quality parameters have different lim-
itations in specific research, more studies have focused on
the efficient approaches for determining key water quality
parameters and measuring and analyzing them at low cost
[5]. Mohammadmehdi et al. developed a semi-empirical
model for predicting Chl-a and Total Suspended Solids (TSS)
by combing Sentinel-2A data and machine learning using
samples collected from several water reservoirs within the
southern part of the Czech Republic, Central Europe. The
results showed that the model performed well for both Chl-
a (R2

= 0.85) and TSS (R2
= 0.80) [6]. Under the ice-free

condition, Griffin et al. used Landsat TM and ETM+ data
to invert the colored dissolved organic matter (CDOM) and
dissolved organic carbon in major Arctic rivers, and the R2

reached 0.67 to 0.84 [7]. Chen et al. developed an empir-
ical band ratio algorithm using the model ranking method
to determine the best band ratio as well as their empirical
functions, and derived a CDOM that could be directly applied
to Landsat-8 imagery, which demonstrated the potential
applications of estimating CDOM from Landsat-8 imagery
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in long-term and large-scale water quality monitoring [8].
In order to fully understand the temporal-spatial changes of
water quality, Xia et al. collected monthly data of 8 water
quality parameters of the Three Gorges Reservoir after its
experimental impoundment. By analyzing the water quality
status and trends, they finally concluded that most water qual-
ity parameters showed obvious seasonal patterns [9]. How-
ever, the performance of the model of water quality parameter
inversion needs to be carefully considered and evaluated in
combination with the specific research background [10].

In regard to hydrological monitoring, a great number of
environmental monitoring data have traditionally been col-
lected worldwide by individual environmental departments
and agencies [11]. The four key water quality parameters
selected in this study, including PH, DO, CODMn andNH3-H,
and water quality classification standards are all adopted
from the China National Environmental Monitoring Centre.
PH is an index reflecting the acidity and alkalinity of water,
which not only directly affects the physiological activities of
aquatic organisms, but also indirectly affects human beings
by changing the physicochemical and biological factors in the
water environment [12]. The PH of the water suitable for the
general production and living needs of human beings should
be within the range of [7.5, 8.5], beyond which the water
body may be polluted. DO is molecular oxygen dissolved in
the air in water, and its content is an indicator to measure
the self-purification ability of the water body. After the DO
in the water is consumed, if it returns to the initial state in
a short time, it indicates that the water body has a strong
self-purification capacity, or that the water body is not seri-
ously polluted. According to China’s regulations on ground
water quality standard, the DO content in the water should
be not less than 4 mg/L (level III) [13]. NH3-H refers to
nitrogen in the form of free ammonia (NH3) and ammonium
ions (NH+4 ) in water. Free ammonia, also known as non-ionic
ammonia, is the leading factor causing toxicity to aquatic
organisms, while ammonium ions are relatively non-toxic.
When oxygen-consuming organisms in water increase, DO
decreases accordingly, resulting in an increase in the content
of NH3-H in the water, which in turn affects the PH of
the water [14]. CODMn is a chemical method to measure
the amount of reductive substances that need to be oxidized
in a water sample. It is an important and fast determina-
tion of organic pollution parameters [15]. The determina-
tion method of CODMn in this study is the acid potassium
permanganate oxidation (K2MnO4) method, which is widely
used at present. Although the oxidation rate of this method is
lower, the actual operation is relatively more convenient and
efficient.

Since 1970, remote sensing technology has gradually
been applied from ocean water color remote sensing to the
study of inland water, from simple water identification to
remote sensingmonitoring ofwater quality parameters.Water
absorbs radiation in the red and near-infrared regions of
the electromagnetic spectrum, and no reflectance signal is
detectable from a clear body of water from the wavelength

750 nm or longer [16]. Long-termmonitoring of water quality
using remote sensing techniques benefits from observation
complementarities and synergies by combining in-situ mea-
surements and satellite images to provide more precise and
higher temporal resolution monitoring [17]. Remote sensing
satellites have been used by researchers to observe water
quality changes due to their various advantages. Francis et al.
used satellite data to observe water quality changes from the
northern Bay of Biscay to the eastern of the English Channel
over a period of 20 years [18].

Medium spatial resolution sensors (10 to 30m) designed
for terrestrial mapping are capable of resolving approxi-
mately 90% or more of global lake area and their radiometric
sensitivity has been improving with advancing technology
[19]. Landsat-8 has been applied to inland water monitor-
ing due to increased spectral sampling and radiometric per-
formance advances over its predecessors [20]. Additional
improvements to spectral resolution and spectral sampling
of Landsat sensors should enhance monitoring of complex
inland waterbodies [21]. However, the potential risk of aug-
mented spectral sampling affecting Landsat data continu-
ity must be considered [22]. Therefore, Landsat-8 remote
sensing data is used in this study.

Machine learning for remotely sensed water quality esti-
mation has become popular in recent years thanks to the
advances in algorithm development, computing power, sensor
systems, and data availability [23]. The most powerful form
of machine learning is so called deep learning (DL), a hier-
archically structured neural network that can extract useful
information and make predictions from raw data. DL has
shown unparalleled advantages for water quality mapping
[24]. Since 2014, the remote-sensing community has shifted
its attention to DL, and DL algorithms have achieved sig-
nificant success at many tasks including land use [25] and
land cover classification [26], equipment fault detection [27],
scene classification [28], and object detection [29]. As an
alternative widely used supervised learning model, the recur-
rent neural network (RNN) model is traditionally used for
a discrete sequence analysis [30]. With the unfolding in
time of the computation involved in the forward computa-
tion, RNN will generate very deep feed forward networks
to learn long-term dependencies, which is an intractable task
for ordinary RNN [31]. Therefore, several specialized mem-
ory units have been developed—for example, the long short
term memory cell [32] and gated recurrent unit [33]. In this
study, in order to make full use of the time series charac-
teristics (TSC) of water quality parameters and avoid the
long-term dependence problem of ordinary RNN, the LSTM
network model is established to predict the concentration of
major pollutants in lakes and the changing trend of lake water
quality, so as to provide reference for water quality control
and water resources development and utilization [34].

Our main contributions can be summarized as follows:
I) An LSTM network model is proposed to process events

with relatively long-time intervals and lags in time
series that cannot be achieved by ordinary RNN.
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FIGURE 1. Study area.

II) Analyze the variation trends of water quality
parameters according to the measured data set, and
combine the analysis results with the spectral informa-
tion of remote sensing images to train themodel, which,
to some extent, solve the problem that the accuracy
of inversion of water quality parameters using only
spectral data is not satisfactory.

III) A concrete scheme for monitoring water quality param-
eters is proposed, which is to train the model using the
preprocessed data, and the obtained model is further
used to invert the water quality parameters. In addition,
the model is applied to satellite images of various peri-
ods to obtain the water quality parameter concentration
of each pixel, and the water quality changes are contin-
uously monitored in the whole space area and multiple
time series.

IV) The pollutant concentration distribution map in the
study area is generated, which provides a direction
for the subsequent targeted management of water
resources.

The rest of the paper is organized as follows: data
acquisition and preprocessing are introduced in Section 2.
Section 3 describes the basic concept of LSTM network.
In Section 4, the LSTM inversion model is depicted. Results
and discussion are presented in Section 5. Section 6 narrated
conclusion.

II. DATA
A. STUDY AREA
As shown in Figure 1, the overall study area is Taihu Lake
in China (the red triangle), which is vast with a surface water
area of about 2,338.1 square kilometers. As the third largest
freshwater lake in China, Taihu Lake has a water depth of 2 m
to 5 m all year round [35]. It plays a vital role in flood storage,
water supply, irrigation, navigation and tourism. Therefore,
its water quality affects the water safety of thousands of
families.

The red dots in Figure 1 represent the data collection
points of the six monitoring stations. The six monitoring

FIGURE 2. Interception of the southern waters of Taihu Lake.

stations are Shazhu in Wuxi, Jiangsu province (SZ), Xishan
in Suzhou, Jiangsu province (XS), Lanshanzui in Yixing,
Jiangsu province (LSZ), Jishui port, Qingpu district, Shang-
hai (QP),Wangjiangjing in Jiaxing, Zhejiang province (WJJ),
and Xintang port in Huzhou, Zhejiang province (XT).

Due to the distribution characteristics of the data collection
points, we intercepted a portion containing all these data
collection points (the red transparent square of Figure 2(a)).
Figure 2(b) is the intercepted result.Moreover, the intercepted
area contains both tributaries and dense residential areas,
as well as deep water areas. These features make the area
have the ability to represent the entire Taihu Lake and also
provide a reliable and effective data source for the subsequent
inversion image operations.

Figure 2(a) is a satellite image of the area where Taihu Lake
is located. It can be seen that the lake borders Suzhou in the
east, Yixing in the west, Wuxi in the north, and Huzhou in the
south. In Figure 2(b), the main tributary that joins Taihu Lake
is called Huanqingxi, followed by three ring canals.

Generally, there are two methods for extracting water
areas using remote sensing information: traditional methods
based on band spectral values and operations and water body
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FIGURE 3. Water extraction.

index methods based on various water-body indexes [36].
The traditional methods are mainly the single-band threshold
method and the spectrum-photometric method. The water
index method used in this study is a derivative method of the
spectrum-photometric method and is the most widely used
method to extract water at present, mainly including normal-
ized differential water index method (NDWI) and modified
NDWI method (MNDWI) [37]. The basic principle of the
water index method is to make use of some specific bands
to conduct normalized difference treatment according to the
spectral characteristics of the water body, so as to highlight
water body region and restrain non-water body region.

In 1996, McFeeters first proposed the NDWI [38], which
is defined as (1):

NDWI =
p(Green)− p(NIR)
p(Green)+ p(NIR)

(1)

where p(Green) is the reflectance of the green band, and
p(NIR) is the reflectance of the near-infrared band.
Using NDWI to extract water is effective, but it has certain

limitations. Figure 3(a) is the result of using NDWI to extract
the water areas of Figure 2(b), where the white area is the
water area and the black area is the non-water area such
as urban buildings. It can be found that large water areas
are basically extracted, but there are certain misjudgments in
areas with many building backgrounds.

On this basis, Xu conducted numerous comparative
experiments and proposed theMNDWI [39], which improved
the shortcoming of NDWI’s large error in the urban archi-
tectural background and solved the problem of difficulty
in distinguishing water areas from building shadows [40].
Figure 3(b) is the result of using MNDWI to extract the water
area of Figure 2(b). The formula of MNDWI is:

MNDWI =
p(Green)− p(MIR)
p(Green)+ p(MIR)

(2)

where p(MIR) is the reflectance of themid-infrared bandwith
a wavelength of 770µm to 900µm.

Figure 3(c) is the result of processing Figure 3(b) by math-
ematical morphology method, which removes the small and
disconnected areas, and only retains the shape of the entire
lake and the main river.

Figure 3 shows the results of extracting the water areas
in Figure 2(b) using different methods. In the process of
water extracting, the threshold is set as 0. Values greater than
0 indicate water areas, which are shown as white. Values less
than 0 indicate non-water areas, which are shown as black.
It can be seen from Figure 3(a) that when the NDWI method
is used to extract water, misjudgments occur in both the water
and the non-water areas. When the MNDWI method is used
to extract water, although the result is better than that of
NDWI, there are still many misjudgments in the non-water
area (Figure 3(b)). However, these errors were corrected after
mathematical morphological processing (Figure 3(c)). There-
fore, this study used the MNDWI method to extract the water
body and then used mathematical morphology method for
further processing.

B. TSC OF WATER QUALITY PARAMETERS
Time series refers to the numerical sequence of the observed
values of a statistical index arranged according to the time
sequence [41]. The measured values of water quality param-
eters obtained from water quality monitoring stations are
arranged in chronological order, forming a time series [42].
Due to the change of natural environment and human inter-
vention, water quality parameters often fluctuate within a
small range in the overall trend of change, but the trend
is more obvious in a period. For example, at the turn of
spring and summer, the overall DO decreased, while the
CODMn increased. In addition, water quality parameters
showed obvious seasonal changes, with higher DO and lower
CODMn due to reduced aquatic biological activities in the
winter.

We collected weekly data of each water quality parameter
from 2013 to 2015 at the monitoring station XS, and further
generated a line chart as shown in Figure 4. Figure 4(a),
4(b), 4(c), and 4(d) respectively show the change trend of
PH value and that of the content of DO, CODMn and NH3-H
during this period. It can be clearly seen that PH, DO and
CODMn all have certain periodicity. However, NH3-H has no
obvious periodicity, the main reason is that there are many
external factors that can affect it, which leads to a large
fluctuation of its line chart.
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FIGURE 4. Changes trend of 4 water quality parameters.

C. DATA ACQUISITION
Landsat-8 was launched from Vandenberg Air Force Base,
California, on February 11, 2013, carrying two sensors: oper-
ational land imager (OLI) and thermal infrared sensor (TIRS),
and the remote sensing data used in this article comes from
the former. Table 1 shows the parameters and main uses of
each band of OLI.

The open-use Landsat-8 data is divided into four levels.
Among them, the L0Rp data is a lower level, which is only
processed by framing and cataloging, and generally used
for radiation correction and geometric correction. The L1G
data is the data after the preliminary geometric correction,
but it lacks the matching with the digital elevation model.
L1Gt level data is obtained by geometric correction of the
system using ground control points and digital elevation
model (DEM) data. The L1T data product selected in this
article has been subjected to system radiation correction and
ground control point geometric correction, and topographic
correction has been carried out through DEM.

In the process of constructing the water quality parameter
inversion model, each pixel of the satellite image reflects the

TABLE 1. Band Description of OLI.

spectral reflectance of a certain range, while the measured
data is the precise value of a certain point. In order to establish
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TABLE 2. The Indicators Used to Evaluate the Model.

the correspondence between them, it is necessary tomatch the
two kinds of data [43].We obtained themeasured weekly data
of four water quality parameters and water quality evaluation
grade from 2013 to 2018 from six monitoring stations in
Taihu Lake. After removing some invalid data caused by the
satellite return visit cycle and cloud cover, these water quality
parameters are matched with the spectral data of each band of
remote sensing images on date and geographical coordinates.
The matched data is used to train the model.

D. PERFORMANCE METRICS
It is necessary to evaluate the performance of a model
before practical application. The evaluation of the inver-
sion model includes evaluation of its accuracy, stability and
model prediction ability, and the result is determined by R2,
root-mean-square error (RMSE), rRMSE, MRE, maximum
absolute error (Emax), and minimum absolute error (Emin).
The detailed description is shown in Table 2.

In Table 2, yi is the measured value of the ith sample, ŷi is
the inversion value of the ith sample, yi is the average value
of the sample, and n is the total number of the sample.

III. BASIC CONCEPTS OF LSTM NETWORK
A. RNN
The change trend of the water quality parameters analyzed
in this article are not completely random. They are not
only related to the spectral curve of remote sensing images,
but also closely related to the parameter values of the past
moments, and their changes have certain gradual character-
istics. Figure 4 also shows that the measured sample data
has the characteristics of trend, seasonality and periodicity,
so the data can be treated as a time series, that is, the current
output of the series is determined by the current input and
the previous input. In order to use as much historical data
of water quality parameters as possible and make full use

FIGURE 5. Ordinary RNN sequential logic architecture.

of the TSC of water quality parameters, RNN is proposed to
process sequence data, which can better predict data with time
sequence due to its memory of previous moment information.

Different from traditional neural networks, RNN introduces
state variables to store previous information and use them to
jointly determine the current output with the current input
[44]. This feature makes RNN the most natural neural net-
work structure for dealing with time-series related problems,
and it is widely used in speech recognition, language mod-
eling, machine translation and timing analysis. The temporal
logic architecture of an ordinary RNN is shown in Figure 5.

As shown in Figure 5, RNN has an input Xd at each
moment, and then determines an output yd together with
the current state Ad . Ad is calculated from the state Ad−1 at
the previous moment and the current input Xd (refer to (3)).
Equation (4) is the calculation formula of the output layer. Ai
retains the crucial features of the information at the current
moment and the previous moment, and then predicts what
will happen next with a high probability based on these char-
acteristics. Note that RNN requires an input at every moment,
but not an output at every moment. Moreover, parameters in
the network are shared at different times.

Ad = f (U × Xd +W × Ad−1) (3)

where f is the activation function. U andW are input weight
matrix and memory weight matrix respectively.

yi = soft max (V × Ai) (4)

where softmax is the classifier, V is the output weight matrix,
and yi is the output with high probability.

Although it is proposed to process sequence information,
ordinary RNN do not perform well when dealing with longer
sequences. This is due to the back propagation method used
in deep neural network training. In the process of calculating
the gradient of each layer, the multiplication operations will
be involved. When the factor of continuous multiplication
is less than 1, once the network is too deep, the gradient
update information obtained will decay exponentially, and
then the vanishing gradient problem will occur. On the other
hand, if the factor of continuous multiplication is greater
than 1, as the network deepens, the gradient update informa-
tion finally obtained will increase exponentially, and then the
exploding gradient problem will occur.

Although RNN can theoretically establish the dependence
relationship between long-term intervals states, it is diffi-
cult for RNN to establish such a long-distance dependence
relationship due to the problem of vanishing gradient or
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FIGURE 6. The logical structure of a hidden unit in ordinary RNN.

exploding gradient. The problem with the exploding gradient
is usually solved by adding a threshold in the network: when
the gradient exceeds the threshold, the network intercepts
the data directly, thus suppressing the gradient explosion.
However, there is no solution for the vanishing gradient
problem for a long time, which makes it difficult for RNN to
capture the dependence of the large time step distance in the
time series in practice. Therefore, the deep learning technique
known as LSTM network is proposed to resolve the vanishing
gradient problem [45].

B. LSTM
LSTM is a deformed structure of RNN, which overcomes
the problem of vanishing gradient and achieves controllable
memory information on time series by adding memory units
in each neuron in the hidden layer of ordinary RNN. Each unit
of the hidden layer uses several controllable gates (forget gate
(FG), input gate (IG), candidate gate (CG), and output gate
(OG)) to determine which of the previous and current infor-
mation is removed or retained, thereby achieving long-term
memory of the RNN network. The structure of each gate is
very simple and consists of a sigmoid function (σ ) and a point
multiplication operation.

The improvement of RNN by LSTM can be seen more
intuitively through the two pictures below. Figure 6 is a
logical structure diagram of a hidden unit of an ordinary
RNN, and Figure 7 is a logical structure diagram of an
LSTM hidden unit. It can be seen that the difference between
LSTM and ordinary RNN is that its hidden layer unit is no
longer just an activation function, but the previous and current
information are screened together by FG, IG, CG and OG.
Such a network structure solves the exploding gradient while
avoiding the vanishing gradient, and realizes the long-term
memory function of the sequential data.

The key to LSTM’s long-term memory is the control of
the cell state. The cell’s state is transmitted from left to
right along this line (The black solid line in Figure 8), and
only a few simple linear operations are carried out in this
process, so that the information will basically not change
during the transmission process (Figure8). And this means
of managing cell state by linear manipulation of neurons is
called gate operation. ct−1 represents the cell state at the
previous moment, and ct represents the current cell state.

FIGURE 7. The logical structure of a hidden unit in LSTM network.

FIGURE 8. Schematic diagram of cell state transfer.

FIGURE 9. The logical structure of FG.

The simplest LSTM network uses FG, IG, and OG to
control the cell state. Nonetheless, in order to facilitate the
presentation, a CG is generally added to control the propor-
tion of the information at previous moment and the input
information at current moment. By using controllable gate
to accurately select forgetting, storing and transferring infor-
mation, LSTM solves the long-term dependence problem of
ordinary RNN. The following describes the concrete opera-
tion process of these four gates.

1) As shown in Figure 9, FG decides what and how much
information is forgotten in ct−1. ft is the output of FG
at tth time (refer to (5)).

ft = σ
(
Wf • [ht−1, xi]+ bf

)
(5)

where Wf is the weight matrix of the FG; bf is the
bias of FG; [ht−1, xt ] means connect ht−1 and xt into
a vector.
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FIGURE 10. The logical structure of information input.

FIGURE 11. The logical structure that updates the cell state.

2) As shown in Figure 10, IG determines which new
information can be added to ct (refer to (6)). In addition,
a new candidate c′t is generated using the tanh function
in CG and a value between −1 and 1 is obtained
(refer to (7)). c′t retains new cell state information that
may need to be transmitted.

it = σ (Wi • [ht−1, xt ]+ bi) (6)

c′t = tanh (Wc • [ht−1, xt ]+ bc) (7)

where Wi and Wc are the weight matrix of IG and
CG respectively, bi and bc are the bias of IG and CG
respectively.

3) As shown in Figure 11, the part of the cell state that
need to be preserved obtained after FG screening are
integrated with c′t to obtain ct (refer to (8)). If the output
value of FG is 1 or approximately 1 while the output of
IG is 0 or approximately 0, the cell state information
will not change, and it will be directly passed to the
next hidden unit, that is, ct = ct−1.

ct = ft × ct−1 + it × c′t (8)

4) OG determines what kind of information can be output.
As shown in Figure 12, first, use the sigmoid function to
select what kind of information to output (refer to (9));
then ct is obtained by the tanh function as a vector in the
range (−1, 1); eventually, the two parts are multiplied
and then the result is output (refer to (10)). The state
of the hidden layer output by OG (i.e. ht ) is composed
of input information and cell state. Moreover, when the
output of the sigmoid function is 1 or approximately 1,

FIGURE 12. A logical structure diagram of information output.

ct will participate in the calculation of ht ; otherwise, ct
will be directly output to the next hidden unit.

ot = σ (Wo • [ht−1, xt ]+ bo) (9)

ht = ot × tanh (10)

where Wo is the weight matrix of OG, and bo is the bias
of the OG, and ht is the state of hidden layer at current
moment.

Equations (5) to (10) are all steps of LSTM forward
calculation. The complete logical structure is shown in
Figure 12, in which ht−1 represents the state of hidden layer
at previous moment and xt represents the input at the current
moment. The output interval of the sigmoid function is [0, 1],
and the size of the output value of this function determines
how much information is transmitted: the smaller the output
value, the less information is transmitted.

IV. ESTABLISH AN LSTM NETWORK INVERSION MODEL
Theoretically, when there are two hidden layers in the net-
work, the arbitrary nonlinear mapping relationship between
input and output can be constructed. Blindly increasing the
number of hidden layers will aggravate the over-fitting risk of
the model, and the applicability of the model will be greatly
compromised. In this study, an LSTM network model with
two hidden layers is established to retrieve the water quality
parameters of Taihu Lake. Taking the inversion model of DO
content (mg/L) as an example, we set a total of 7 nodes in
the input layer, which are spectral reflectance of 6 bands and
DO value in the same water at the previous week respectively
(Table 3). The node number of the output layer is set to 1, and
the inverted value of DO(t) is output.

In this article, the number of hidden layer nodes of the
LSTM network is determined according to (11) and the
stepwise test method.

s =
√
m+ n+ α (11)

where m and n are the number of nodes in the input layer and
the output layer, respectively, α representing the fluctuation
range, and constants between 1 and 10 are generally selected.

Before debugging the LSTM model, the learning rate is
set to 0.01, and the trial range of the number of hidden layer
nodes is set to [4], [15]. The training errors of models under
the condition of different number of hidden layer nodes are
calculated successively, and the results are shown in Table 4.
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TABLE 3. Input Layer Data of LSTM Network Model for DO Inversion.

TABLE 4. The Training Error of the Number of Nodes in Each Model’s
Hidden Layer.

In this table, S represents the number of hidden layer nodes,
and Loss represents the model training error.
It can be seen from Table 4 that the optimal hidden layer

nodes of PH, DO, CODMn and NH3-H inversion models are
6, 8, 13 and 9, respectively, and the Loss value of each model
is the smallest under this condition.

This article uses FLAASH module of ENVI to perform
atmospheric correction on satellite images, builds an LSTM
network model based on the Python 3.7 platform, with
batch_size set to 1. The number of input layer nodes is set
to 7, and the number of output layer nodes is 1. The number
of hidden layer is set to 2, and the number of nodes varies
with the water quality parameters that need to be inverted:
the optimal number of PH, DO, CODMn and NH3-H are 6, 8,
13, 9 respectively. The training data is the matched spectrum
data of each water quality parameter, and the verification data
is the measured data.

The algorithm for training the LSTM network is roughly
the same as that of the BP network. The difference is that
the data processed by the LSTM are time-sequential, which
indicates that the error of the entire time point must be back-
propagated during the training process. The training method
applicable to LSTM is the back-propagation through time
algorithm (BPTT). The main steps are:

I) Determine the initial value of each parameter.When the
data is transmitted along the input layer to the output
layer, the output value of each neuron is calculated in

turn, and the value of the loss function is obtained at
the same time.

II) The error is transmitted backwards on the two levels
of space and time. At the spatial level, the error is
transmitted to the upper layer of the network structure;
at the time level, the error at the current moment is
transmitted to the previous moment is calculated.

III) Calculate the gradient of each weight of each layer.
IV) Repeat I) to III), constantly update the weight to obtain

the expected model.

V. RESULTS AND ANALYSIS
A. LSTM NETWORK INVERSION RESULTS
Figure 13 is the comparison between the inversion values of
PH, DO, CODMn and NH3-H obtained by using the LSTM
network and the measured values. Table 5 is the evaluation
results of the inversion model by using various evaluation
indexes.
Combined with Figure 13 and Table 5, we can find that

although there is a slight difference between some inversion
values and measured values, the number of samples and the
range of the difference are small (Figure 13). Themain reason
for this gap may be the lack of training data, leading to
the inaccuracy of the models. Although the R2 of the PH
inversion model is relatively low among the inversion models
of the four parameters, there is not much difference between
the inversion value and the measured value (RMSE =
0.4925, rRMSE = 0.0674, MRE = 0.0517, Emax = 0.7787,
Emin = 0), which demonstrates that the possibility of mis-
judgment of acid-base or acid-base strength based on the
inversion results is very small. Moreover, the R2 of the DO
inversion model is higher than the PH value, but its RMSE is
the largest among the four models, and its MRE is also larger,
indicating that the model is not robust enough and there are
more extreme values with a large distance from the measured
value. This may be due to the limitations of the current use of
satellite measurements of DO, resulting in a low reliability of
the training data on DO. The R2 of NH3-H inversion model is
the highest among the four models, and the RMSE is small,
which means that the inversion value of this model has a high
degree of fittingwith themeasured value, and themodel is rel-
atively robust. However, the MRE of this model is the largest,
which can be seen from Figure 13(d). Most of the inversion
values are distributed around the measured value with a cer-
tain distance from these values, making the percentage of the
absolute error in the true value higher. The reason for this
situation may be that there are many external factors that can
affect NH3-H in water, leading to its poor TSC and affecting
the operation of the model. As can be seen from Table 5, after
excluding the interference of extreme values, the CODMn
inversion model has the best performance, followed by the
PH inversion model. Nonetheless, this method has certain
limitations: for example, some water quality parameters are
easily affected by external factors, the lack of training data,
changes of climatic conditions and applied water area will
affect the accuracy of the model.
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FIGURE 13. Comparison of inversion data and measured data.

TABLE 5. Model Evaluation Results.

Applying the model to satellite remote sensing images of
various periods, the inverted images of various water quality
parameters obtained are shown in Figure 14. Figure 14(a), (b),
(c) and (d) are the inverted images of PH, DO, CODMn, and
NH3-H respectively.

As can be seen from Figure 14(a), the PH in the northern
waters is between 8.0 and 9.0, and that in the southeast waters
is between 7.0 and 8.0, meeting the requirements of human
society for production and life. It should be noted that the
southwest waters with a pH value of 6.0 to 7.0 which have
a pH lower than the minimum standard of 7.5, are acidic
waters. The reason may be that the nearby river carries acidic
substances and flows into Taihu Lake; or it may be caused

by a nearby factory discharging pollutants into the lake.
Attention should be paid to the pollution of the southwestern
waters, and the sources of pollution should be treated as soon
as possible.

In Figure 14(b), the DO value in the southwest waters is
8.0 to 9.0, and the other parts are 7.0 to 8.0, all of which
meet the above evaluation criteria of not less than 4. This
indicates that the water area contains more oxygen, which
also reflects its higher self-purification ability from the side.
The reason for the difference in DO value in this water area
may be the difference between the depth of the near shore and
the center of the lake: the deeper the water layer, the lower the
DO content; besides, when the algae in the water increase,
oxygen released by photosynthesis makes the water DO very
high.

The water area in Figure 14(c) can be roughly divided into
three parts according to CODMnconcentration. The first part
is the dark gray area in the north, CODMn is 3 to 4; the second
part is the light gray area in the southeast, and the CODMn
is 4 to 5; the third part is the white area in the southwest,
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FIGURE 14. Inverted images.

and the CODMn is 5.5 to 6.0. The higher the CODMn in water,
the more serious the pollution by organic matter. The sources
of these organic matter pollution may be pesticides, chemical
plants, organic fertilizers, etc. If left untreated, many organic
pollutantsmay be deposited on the bottom of the lake, causing
lasting poisoning to aquatic organisms for several years.

In Figure 14(d), the concentration of NH3-H in the northern
waters is 0.2 to 0.4, while that in the southern waters is
0.5 to 0.7, which is corresponding to the PH distribution
in Figure 14(a). Corresponding to the distribution of PH,
the NH3-H content is high in the waters with high PH in
the north, and the NH3-H content is low in the waters with
relatively low PH in the south. The reason why the NH3-H
content in the northern waters is too high may be partly
because the temperature rise causes the PH of the water to
increase, which in turn affects the NH3-H content; the other
part may be that domestic sewage or industrial sewage is
discharged here, causing the rise of NH3-H. Regardless of
the cause, the increased NH3-H concentration in the water
can poison aquatic organisms and threaten human health.

In summary, the coastal areas of Taihu Lake, especially
the waters with tributaries, have low PH, and are seriously
polluted by organic materials. Therefore, it is necessary to
take measures as soon as possible to control the spread of the
polluted waters along the Taihu Lake.

B. COMPARE EXPERIMENTAL RESULTS
In order to reflect the advantages of the proposed model,
we implemented comparative experiment, including two
traditional empirical methods: single band linear regres-
sion (SR) and multiband linear regression (MR), as well as
BP neural network (BP), to monitor the four water quality
parameters and evaluate the results. The evaluation results are
shown in Figure 15.

In SR, the spectral bands in Table 3 that have the best
correlation with each water quality parameter are selected to
establish empirical formulas: Band_5, Band_7, Band_5 and
Band_4 are associated with PH, DO, CODMn, and NH3-H,
respectively. In MR, the empirical of each water quality
parameter is established by combining multiple spectral
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FIGURE 15. Evaluation results of different methods.

bands. In BP, the parameter setting is consistent with that of
LSTM.

It can be seen from the figure that among the four methods,
the performance of the neural network methods is better

than that of the traditional methods in various evaluation
indicators, and the performance of LSTM is better than that of
BP. Although in Figure 15(d), in the experiment of inverting
NH3-H, the MRE of LSTM is higher than that of BP,
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the difference is only 3.24%, which does not affect the overall
evaluation result, that is, the performance of LSTM is the
most satisfactory.

VI. CONCLUSION
Long-term dynamic monitoring of water quality has critical
and far-reaching significant for human social life, industrial
production and agricultural irrigation. In the research of water
quality monitoring, the combination of satellite remote sens-
ing images and machine learning has become a focus of
attention. In order to retain as much historical data as pos-
sible and accurately predict future changes in water quality,
this article establishes an inversion model based on LSTM
network to conduct inversion for four important parameters
for water quality assessment, including PH, DO, CODMn
and NH3-H. Experimental results show that the accuracy
of the four models is satisfactory: the R2 of the model is
around 0.83, the rRMSE is around 0.16, and the MRE is
around 0.18. Moreover, the LSTM network model is applied
to the images of each period to obtain the water quality
parameter concentration of each pixel, and the corresponding
inversion image is further generated. The generated inversion
images are basically consistent with official information. It is
realized to monitor the water quality change of Taihu Lake
continuously with whole space region and multi-time series.
Comparative experiments with other methods also show the
advantages of the proposed model. Experimental results on
Taihu Lake show that, when there is a clear and coherent
historical data in the same water area, the LSTM network
model is chosen to retrieve water quality parameters and the
results are highly accurate, the model is robust and performs
well, and has the ability to meet the basic requirements of
actual water quality monitoring.
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