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ABSTRACT The physics-of-failure (PoF) technique is a practical approach to evaluate the reliability
of semiconductor devices. However, the PoF approaches are usually insufficient in dealing with multi-
mechanism failure and fitting the Monte Carlo (MC) sampling data. In our study, we propose an improved
reliability evaluation method based on PoF technique and maximum entropy (MaxEnt) principle. The PoF
models are used to generate time-to-failure samples of the failure mechanisms. Cumulative damage rules
and competing failure rules are adopted to deal with multi-point and multi-mechanism failure and generate
lifetime samples of the device. And the lifetime samples are fitted by MaxEnt distributions through the
proposed fitting algorithm. The numerical examples given in the paper indicate that theMaxEnt distributions
can describe the samples well and have a competitive advantage in dealing with multi-peak samples. A case
study about a semiconductor device with multi-mechanism failure is presented to explain the workflow
of the proposed reliability evaluation approach. The results show that the proposed MaxEnt distributions
can yield reliable reliability evaluation results compared with Weibull and Lognormal distributions in the
multi-mechanism failure process.

INDEX TERMS Maximum entropy principle, multi-mechanism failure, physics-of-failure, semiconductor
device reliability.

I. INTRODUCTION
The recent years have seen the rapid development of semicon-
ductor devices in many fields such as 5G, Internet of things,
artificial intelligence, etc. Owing to the increase of integration
density and functional variety, reliable semiconductor devices
play an increasingly important role in the electronic prod-
ucts or systems. Consequently, the reliability evaluation of
semiconductor devices has aroused wide attention from both
industry and academia. Reliability evaluations for semicon-
ductor devices mostly have three kinds of approaches: empir-
ical methods, testing methods and physics-of-failure (PoF)
methods [1]. Among these, PoF methods are recognized as
physics-based approaches that consider failure mechanisms
and processes to predict the lifetime of semiconductor devices
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on their service conditions [2]. The notable advantage of
using PoF methods is that it could describe potential failure
mechanisms and evaluate the reliability during the design
stage, so it could save the cost and time and is widely used
in reliability prediction.

A considerable amount of literature on the reliability of
semiconductor devices focuses mainly on various failure
mechanisms. Kim et al. proposed a Spatio-temporal defect
process model to evaluate the reliability of ultra-thin gate
oxides breakdown for metal-oxide-semiconductor field effect
transistor (MOSFET) [3]. Fu et al. implemented the fail-
ure models for the front end of line (FEoL), back end of
line (BEoL) and Packaging failure mechanisms and compet-
ing failure rules to predict the reliability of system-in-package
based on PoF methods [4]. Ahn et al. established a predic-
tive model for integrated circuits (ICs). They implemented
it to evaluate the IC reliability of FEOL and BEOL failure
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mechanisms, such as negative-bias temperature instability
(NBTI), hot carrier injection (HCI), time-dependent break-
down (TDDB) and electromigration (EM) [5]. For packag-
ing failure such as the fatigue of solder joint, the damage
caused by thermal cycling and vibration can be regarded as
a cumulative form. Qi et al. estimated lifetime of PBGA
solder joints under combined loading conditions based on
Engelmaier model and generalized Manson-Coffin model,
and experiments were conducted to validate their estima-
tion [6]. Eckert et al. compared the lifetime predicted by lin-
ear and incremental damage superposition approaches with
the experimental results. They suggested a linear damage
superposition approach to predict the lifetime of combined
load cases [7]. Overall, PoF methods are practical in evaluat-
ing the reliability of semiconductor devices, but they do not
go into details about the multi-mechanism failure process.

Monte-Carlo (MC) sampling, considering process varia-
tions and environmental fluctuations, has been employed to
obtain the reliability results based on PoF methods. How-
ever, what remains unclear is how to select the appropriate
distributions and fit the sampling data [8]. Xu et al. eval-
uated the modular multilevel converter (MMC) reliability
utilizing MC simulations and obtained the Weibull lifetime
distribution without being tested [9]. Jiao et al. fitted the
three-parameter Weibull distribution of MC sampling data,
which also showed poor fitting [10]. Qiu et al. performed
the MC random sampling of HCI, NBTI and EM lifetime.
They conducted the Kolmogorov-Smirnov test for lognormal
distributions, Weibull distributions and normal distributions
separately, and found the highest significance level of lognor-
mal distributions for HCI, NBTI and EM failure lifetime [11].
Nevertheless, previous studies have failed to find a general
distribution to fit the MC sampling data well in PoF methods.

There are considerable common reliability probability
distributions, such as exponential, Weibull, normal and log-
normal distributions [12]. Among these distributions, a max-
imum entropy (MaxEnt) probability distribution has the
largest value of entropy and the least biased estimate on the
given information [13]. Many researchers have attempted
to fit the MaxEnt probability distribution function (PDF)
from various sampling data based on the MaxEnt prin-
ciple [14]–[17]. Zhang et al. approximated the structural
performance function. They derived the reliability-based sen-
sitivity index based on the principle of MaxEnt with frac-
tional moment (FM), which determined accurate estimation
results from MC simulations [18]. Xiong et al. established
the Halphen distributions for the flood frequency analysis and
used the MC simulation samples of the peak flows to obtain
the 2-order MaxEnt, normal, exponential, Weibull, gamma,
Pearson Type III (P3), generalized extreme value (GEV),
and log-Pearson type III (LP3) distributions. P-values of
Kolmogorov-Smirnov test, root-mean-square errors (RMSE)
values and Akaike information criterion (AIC) values were
calculated to prove the 2-order MaxEnt made better agree-
ments than other distributions [19]. Arvind Rajan et al.
exploited the high-order moments and developed a MaxEnt

distribution fitting algorithm for the uncertainty evaluation.
The 4-order MaxEnt, 8-order MaxEnt and Pearson distribu-
tions were conducted to fit the bimodal distribution, and the
MaxEnt distributions showed a visible two peak pattern [20].
Taken together, the evidence reviewed here seems to suggest
that the high-order MaxEnt distribution is an appropriate
alternative to describe the MC sampling reliability data.

Based on the above research, it can be concluded that the
existing PoF methods partially solve the reliability evaluation
of semiconductor devices with MC simulations. However,
more efforts are still needed, especially for the treatment
of multi-mechanism failure and the fitting of the MC sam-
pling data. In this paper, an improved reliability evaluation
approach for semiconductor devices based on PoF technique
and the MaxEnt principle is proposed. The PoF models,
cumulative damage rules and competing failure rules are used
to deal with the multi-mechanism failure process and can
improve the accuracy of the lifetime sampling data. TheMax-
Ent distributions, derived from theMaxEnt principle, are used
to fit the lifetime sampling data. The MaxEnt distributions
can describe the sampling data well because the shape is
flexible with the changeable order. And a case study is given
to explain the workflow of the proposed reliability evaluation
approach.

The remaining part of the paper proceeds as follows.
Section 2 summarized the procedure of PoF method and
introduced some typical PoF models and rules of the
multi-mechanism failure process. In Section 3, the general
form ofMaxEnt PDFwas derived from theMaxEnt principle,
and the MaxEnt PDF fitting algorithm was formulated. Three
numerical examples were applied in Section 4 to validate
the accuracy of MaxEnt PDFs. A case study was presented
in Section 5 to illustrate the reliability evaluation procedure
and verify the effectiveness of this approach. The discussion
was made in Section 6, and conclusions were summarized in
Section 7.

II. PoF METHOD AND SAMPLING DATA ACQUISITION
PoF method is an approach to the design and assessment
of reliable devices. The fundamental tools of PoF method
are failure mechanism models, which are used to predict
time-to-failure (TTF) corresponding to failure mechanisms.
The failure mechanism model is a mathematical model that
describes TTF as a function of loading conditions and param-
eters related to the manufacturing process. Equation (1) is a
failure model of TDDB mechanism.

TTF = At exp(−atEox/kT ) exp(Eat/kT ) (1)

where At is a parameter dependent on material and process
detail, at is the effective dipole moment for the molecule
(constant), Eox is the externally applied electric field across
the dielectric, Eat is the activation energy (constant), k is
Boltzmann’s constant, T is the local temperature.

The parameters in failure mechanism models are classified
into stress-related parameter S and process-related parame-
ter2. Stress-related parameter S is a set of parameters related
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FIGURE 1. The procedure of PoF method to evaluate the reliability of semiconductor devices considering
cumulative damage and competing failure.

to loading conditions (e.g., Eox and temperature T in (1));
process-related parameter 2 is process and materials related
parameter set (e.g., At in (1)).

Due to the fluctuation of loading conditions and the insta-
bility of the manufacturing processes, parameters in S and 2

are actually random variables and can be described by empir-
ical random distribution like uniform, triangular or normal
distribution.

The procedure of PoF method to evaluate reliability is
shown in FIGURE 1. The samples of parameters S and 2 are
acquired first by Monte Carlo sampling from their distribu-
tions. Then, the parameter samples are used to calculate TTF
and generate TTF samples s corresponding to failure mech-
anisms, using failure mechanism models. By considering the
relationship between failure mechanisms, the TTF samples
of the device can be obtained. The final reliability evaluation
is conducted based on the lifetime distribution fitting of TTF
samples.

A. PoF MODELS FOR TYPICAL FAILURE MECHANISMS
Failure mechanism refers to the specific physical or chemical
process leading to the failure of devices. The TTF corre-
sponding to the failure mechanism can be figured out by the
failure mechanismmodel. The extensive researches on FEoL,
BEoL and packaging failure mechanisms are conducted, and
the failure mechanism models, including TDDB, HCI, EM,
thermal fatigue et al., are established. Commonmature failure
mechanism models are given in the TABLE 1. Those models
are broadly applied in reliability evaluation and accelerated
test design.

As shown in TABLE 1, most failure mechanism models
take the form of Arrhenius model or Eyring model, e.g.,

TABLE 1. Physics of failure mechanisms, models and positions in
semiconductor devices.

TDDB, HCI. But the thermal fatigue model and the vibra-
tion fatigue model have different forms. The thermal fatigue
models of solder joint have many different forms. This paper
presents a strain energy-based crack propagation model that
is commonly used in the industry:

Nf = K1(1W )K2 +
atf

K3(1W )K4
(2)

where Nf is the number of thermal cycles to failure. 1W is
the increment of strain energy density per thermal cycle. atf is
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the length of the solder joint. K1, K2, K3, K4 are arbitrary
constant, which are dependent on materials.

The vibration fatigue model is derived from Steinberg’s
three-band method based on Gaussian distribution and
Miner’s linear cumulative damage law [30]:

D =
n1
N1
+
n2
N2
+
n3
N3

Ni =
(
1εiE
3.5σu

)n
(i = 1, 2, 3) (3)

where ni is the cumulative cycles corresponding to i∗σ strain
range. n1 = 0.683N0t , n2 = 0.271N0t , n3 = 0.0433N0t .
N0 depends on the natural frequency of the device. Ni is the
number of thermal cycles to failure of i∗σ strain range; t is
the duration of vibration. 1εi is the i ∗ σ strain range during
vibration. E is Young’s modulus of solder; σu is the tensile
strength of solder, n is the fatigue component depends on the
material.

B. RULES OF MULTI-MECHANISM FAILURE PROCESS
The failure mechanisms of the semiconductor devices are
multiple and parallel, among which the relativity is com-
plicated. By the number of failure mechanisms, the fail-
ure process can be classified into single-mechanism failure
and multi-mechanism failure. Further, the multi-mechanism
failure process can be divided into single-point failure and
multi-point failure in accordance with the potential failure
sites.

For semiconductor devices, the complicated failure
process shows the characteristics of both multi-point fail-
ure and multi-mechanism failure. Reasonable cumulative
damage rules can be utilized to describe the related failure
mechanisms at each single failure point, and appropriate com-
peting failure rules can be applied to analyze the unrelated
failure mechanisms at each single failure point or between
multiple points. Combining the cumulative damage rules and
competing failure rules, the lifetimes of devices with a multi-
mechanism failure process can be calculated.

1) COMPETING FAILURE RULES
Competing failure rules deal with unrelated failure mecha-
nisms at a single point or multiple points. For single point
failure, the failure is assumed to occur due to k competing
failure mechanisms, and the corresponding calculated TTFs
are, TTFp,1, TTFp,2, . . . , TTFp,k . In competing failure context,
the lifetime of the specific point depends on the shortest of
TTFp,i, i = 1, . . . , k . That is

TTFp = min
(
TTFp,1,TTFp,2, . . . ,TTFp,k

)
(4)

where TTFp is the lifetime of single point.
For example, EM on the chip is activated by high current

density and the failure mode is the cavity growth. HCI on
the chip is caused by the strong electric field and the failure
mode is threshold voltage shift, etc. There is little interaction
between them, so the TTF of them can be calculated inde-
pendently. It should be noted that there are still correlations

between them. For example, the stress conditions are related:
the power supply is single for the device, the electrical stress
is related; the temperature across the transistor is almost
the same, so the temperature for models of TDDB, HCI,
EM should be the same; for the package, the humidity, tem-
perature and vibration are also the same.

For multiple points, the lifetime of each point is calculated
first. Failures occur at different points are assumed to be inde-
pendent and failure at any point will lead to device failure.
If there are m potential failure points in the device, the TTF
of each point (TTFp1, TTFp2, . . . , TTFpm) is calculated first.
Then, by applying competing failure rules, the lifetime of the
whole device TTF_D can be calculated by

TTF−D = min
(
TTFp1,TTFp2, . . . ,TTFpn

)
(5)

2) CUMULATIVE DAMAGE RULES
The cumulative damage rules deal with related failure mech-
anisms at a single point. And series of cumulative damage
theories can be employed in calculating the damage or pre-
dicting the lifetime of the specific point, such asMinner linear
cumulative damage law, Marco-Starkey theory, Two-Stage
linear damage theories.

For semiconductor devices, the cumulative damage rules
are commonly used to describe damage accumulated by ther-
mal fatigue and vibration fatigue [31]. Solder joint fatigue
is a critical issue in the failure of device package. Under the
service condition, thermal stress caused by CTEmismatching
andmechanical stress induced by vibration damage the solder
joint simultaneously. And both mechanisms contribute to sol-
der deformation and crack propagation. Minner linear cumu-
lative damage rule is adopted here to calculate the lifetime of
solder joint. While thermal cycling and vibration are imposed
to solder joint simultaneously, the accumulated damage per
thermal cycle, D, has the form

D =
fv/ft
Nv
+

1
Nt

(6)

where fv is the natural frequency of the device, ft is the
frequency of thermal cycling; Nv and Nt are the predicted
cycles to failure under single vibration and single thermal
condition, respectively. Consequently, the lifetime of solder
joint TTF_R can be calculated

TTF−R =
1
D
× Tt =

Nv · Nt
ft · Nv + fv · Nt

(7)

where Tt is the period of thermal cycling. Let TTFv = Nv/fv,
and TTFt = Nt /ft , then

TTF−R =
TTFv · TTFt
TTFv + TTFt

(8)

It should be noted that there may be more complicated
interactions between failure mechanisms, e.g., narrowing of
metal trace induced by EM or SM will change the current
and voltage stress of TDDB and HCI. These complicated
interactions are not considered in this paper because there
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FIGURE 2. The flowchart of Monte Carlo sampling method for multi-mechanism failure.

are no broadly accepted theories for them, and they are com-
plex issues that require in-depth research. This paper mainly
focuses on the PoF procedure and the MaxEnt principle, so a
simple and practical method is adopted for the treatment of
multi-mechanism failures. The whole procedure of the paper
can still be applied if the interactions are further studied and
considered.

C. MC SAMPLING FOR MULTI-MECHANISM FAILURE DATA
Monte Carlo sampling is applied in our study to provide a
mass of lifetime samples of the device for the subsequent
distribution fitting. MC sampling generates reliable sampling
data, considering the stochastic parameters and complex
multi-mechanism failure processn. The MC method can be
explained by FIGURE 2.

First, TTF sampling data for each potential mechanism at
each failure point are acquired by PoF models and stochastic
parameter sampling. TTF (k)

i,j is the kth calculated TTF of jth
mechanism at ith point, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni,
k = 1, 2, . . . , l, where m is the number of potential failure
points, ni is the number of involved mechanisms at ith point,
l is the number of samples. Then, TTF of related mechanisms
can be calculated by applying cumulative damage rules:

TTF−R
(k)
i = TTF (k)

i,1 · TTF
(k)
i,2 /

(
TTF (k)

i,1 + TTF
(k)
i,2

)
(9)

where TTF (k)
i,j represents kth TTF sample due to relatedmech-

anisms at ith point.

And TTF for single-point unrelated mechanisms is
obtained according to competing failure rules:

TTF−U
(k)
i = min

{
TTF (k)

i,3 ,TTF
(k)
i,4 , . . .TTF

(k)
i,ni

}
(10)

where TTF−U
(k)
i represents kth TTF sample due to unrelated

mechanisms at ith point.
Finally, l lifetime sampling data of the device TTF_D(1),

TTF_D(2), . . . , TTF_D(l) can be obtained by applying compet-
ing failure rules to multiple points and unrelated mechanisms.
The sampling data acquired by MC sampling procedure can
be used to fit the lifetime distribution of the device.

III. MaxEnt FITTING OF SAMPLING DATA
The MaxEnt PDF derived from the MaxEnt principle is pre-
sented in this section. A fitting algorithm with MLE and
integral interval transformation was proposed to solve the
MaxEnt PDF. The sampling data generated by Section II will
be fitted by the MaxEnt PDF. Furthermore, the fitted MaxEnt
PDF will be be used to evaluate reliability.

The 3-order to 7-order MaxEnt PDFs were fitted in the
paper. Because the 1-order and 2-order MaxEnt PDFs are
in forms of exponential and normal PDFs, which cannot
reflect the specialty of MaxEnt PDFs. In general, we are
inclined to use higher order MaxEnt PDFs because they have
higher degrees of freedom, which means they can better
describe objective data and thus can make a more accurate
reliability evaluation. However, fitting higher order consumes
more computing resources and time and improves the fitting
limitedly. Hence, the order is limited to seven in our study.
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Meanwhile, the 3-order to 7-order MaxEnt PDFs are broadly
used in relevant research.

A. MaxEnt PRINCIPLE
The concept of information-theory entropy was proposed
by Shannon [32] to describe the amount of uncertainty,
expressed as:

H (p) = −
n∑

k=1

pk ln pk (11)

where p1, p2, . . . , pn are probabilities of random events, and
there are two constraints: pk > 0 and 6pk = 1. For a
continuous random variable X , with the density function f (x),
the entropy function can be given as

H [f (x)] = −
∫
+∞

−∞

f (x)[ln f (x)]dx (12)

In terms of the MaxEnt principle [13], the PDFs with the
maximum entropy can best describe the existing knowledge.
Supposing that the first few origin moments of an arbitrary
random variable are known, the MaxEnt PDF that gives the
smallest estimation error can be optimized and obtained as
follows:

Maximize: H [f (x)] = −
∫
+∞

−∞

f (x)[ln f (x)]dx (13)

Subjected to:
∫
+∞

−∞

f (x)dx = 1 (14)∫
+∞

−∞

x if (x)dx=mi, i=0, 1, . . . , n (15)

where f (x) is the PDF of a random variable X and mi is
the ith-order origin moment as the constraint, which can be
determined by the random variable X .

The Lagrange method is used to work out the MaxEnt PDF
from (13), (14) and (15). The Lagrangian function L(x) is
established with the moment constraints,

L(x) = H [f (x)]+ λ0

[∫
+∞

−∞

f (x)dx − 1
]

+

n∑
i=1

λi

[∫
+∞

−∞

x if (x)dx − mi

]
(16)

where λi (i = 0, 1, . . . , n) is the unknown Lagrange
multiplier.
According to moment constraints, the maximum of the

Lagrangian function can be solved as follow:

∂L(x)
∂f (x)

= −

∫
+∞

−∞

{ln[f (x)]+ 1}dx + λ0

∫
+∞

−∞

1dx

+

n∑
i=1

λi

(∫
+∞

−∞

x idx
)
= 0 (17)

∫
+∞

−∞

{
− ln[f (x)]− 1+ λ0 +

n∑
i=1

λix i
}
dx = 0 (18)

− ln[f (x)]− 1+ λ0 +
n∑
i=1

λix i = 0 (19)

ln[f (x)] = −1+ λ0 +
n∑
i=1

λix i (20)

Then, the MaxEnt PDF is expressed as:

f (x) = exp

(
−1+ λ0 +

n∑
i=1

λix i
)

(21)

Referring to (14), the Lagrange multiplier, λ0, is derived
as:

λ0 = 1+ ln
∫
+∞

−∞

exp

(
n∑
i=1

λix i
)
dx (22)

B. MaxEnt PDF FITTING ALGORITHM
A fitting algorithm with MLE method and integral interval
transformation is proposed to obtain the 1-order to M -order
MaxEnt PDFs. MLE method is used to reduce the computing
difficulty and improve the algorithm efficiency. Meanwhile,
the integral interval transformation can prevent computation
overflow. With these above methods, the flowchart of the
MaxEnt PDF fitting algorithm is shown in FIGURE 3.

The procedure to fit the 1-order toM -order MaxEnt PDFs
consists of eight basic steps, as follows.

Algorithm 1MaxEnt PDF fitting algorithm
Step 1: Generate the random samples x1, x2, . . . , xl using

MC sampling based on PoF method.
Step 2: Transform the random samples x1, x2, . . . , xl to x ′1,

x ′2, . . . , x
′
l using (32) by integral interval transforma-

tion method.
Step 3: Calculate the origin momentsm′i (i = 1, 2, . . . ,M ) of

the transformed random samples x ′1, x
′

2, . . . , x
′
l , and

set the iteration counter n = 0.
Step 4: Set n = n+1, and set the initial values λ′ [λ′1,

λ′2, . . . , λ
′

n−1, 0] of the Lagrange multipliers, then
solve the optimization problem shown as (26) and
(27) using the nonlinear optimization method (e.g.,
downhill simplex method, Quasi-Newton Method,
etc. ).

Step 5: Get the n-order Lagrange multipliers λ′ [λ′0, λ
′

1,
λ′2, . . . , λ

′
n], and save them to the database.

Step 6: Judge whether n = M−1. if Yes, go to step 7; if no,
go to step 4.

Step 7: Read the 1-order to M -order Lagrange multipliers
λ′ from the database, and transform all Lagrange
multipliers λ′ to λ.

Step 8: Determine the 1-order toM -order MaxEnt PDFs.

In this algorithm, the random samples x1, x2, . . . , xl are
lifetime samples TTF_D(1), TTF_D(2), . . . , TTF_D(l) of the
device, acquired by MC sampling procedure in Section II.
In the algorithm, a sequential update strategy was adopted,
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FIGURE 3. The flowchart of MaxEnt PDF fitting algorithm.

which can obtain 1-order to M -order MaxEnt PDFs. Mean-
while, due to the set of initial values from previous results,
the algorithm has not only the computational efficiency but
also the enhanced accuracy. For the nonlinear optimization
algorithm, the downhill simplex method was chosen because
of the fast computing speed. This algorithm in the study
fitted the 3-order to 7-order MaxEnt PDFs. However, the
1-order and 2-order MaxEnt PDFs with little significance
were ignored, considering that they are other forms of expo-
nential and normal PDFs.

1) MAXIMUM-LIKELIHOOD ESTIMATION
In this paper, we use theMLEmethod to obtain the parametric
estimated value of the MaxEnt PDF.

Suppose x1, x2, . . . , xl is a continuous random sample and
X subjects to the MaxEnt probability distribution. Under this
case, the likelihood function of MaxEnt PDF is given by

L (λ0, λ1, · · · , λn) =
l∏
j=1

exp

(
−1+ λ0 +

n∑
i=1

λix ij

)
(23)

In order to avoid the excessive value of the likelihood
function, the modified likelihood function L ′ with a modified

exponent 1/l is given by

L ′ (λ0, λ1, · · · , λn) =

 l∏
j=1

exp

(
−1+ λ0 +

n∑
i=1

λix ij

) 1
l

(24)

The logarithm of the modified likelihood function (24) is
given by

lnL ′ (λ0, λ1, · · · , λn) =
1
l

l∑
j=1

(
−1+ λ0 +

n∑
i=1

λix ij

)

= −1+ λ0 +
n∑
i=1

λi

1
l

l∑
j=1

x ij


= −1+ λ0 +

n∑
i=1

λimij (25)

where mi is the ith-order origin moment. Based on the MLE
method, let the Lagrange multiplier λi (i = 0, 1, . . . , n) be
the optimization variables, the optimization problem can be
determined as

Maximize: lnL ′ (λ0, λ1, · · · , λn) = −1+ λ0 +
n∑
i=1

λimij

(26)

Subjected to: λ0 = 1+ ln
∫
+∞

−∞

exp

(
n∑
i=1

λix i
)
dx (27)

As showed above, though the MaxEnt PDF has the charac-
teristic of highly non-linearity, the MLEmethod is conducted
to lower the non-linearity of MaxEnt PDF and reduce the
difficulties of optimization solutions.

2) INTEGRAL INTERVAL TRANSFORMATION
In solving the Lagrange multiplier λi (i = 0, 1, . . . , n),
the integral calculations of the exponential part are likely
to overflow and fail due to the high lifetime value of the
upper and lower boundaries. Transformation of integration
interval can be used to prevent the excessive numerical values
of the Lagrange multiplier. The transformation algorithm
transforms the initial interval to a proper target interval, which
has a small interval upper and lower bounds and is accessible
to calculation.

Suppose the initial interval of a MaxEnt PDF f (x) is l ≤
x ≤ u, shown as (28), the target interval is l ′ ≤ x ′ ≤ u’, and
the transformed MaxEnt PDF f ′(x ′) is given by (29).

f (x) = exp

(
−1+ λ0 +

n∑
i=1

λix i
)
, l ≤ x ≤ u (28)

f ′
(
x ′
)
= exp

(
−1+ λ′0 +

n∑
i=1

λ′ix
′i

)
, l ′ ≤ x ′ ≤ u′ (29)
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For the convenience of calculation, constant S and A are
introduced, defined as

S =
u′ − l ′

u− l
(30)

A =
Sl − l ′

S
(31)

Using S and A, the relationship of x and x ′ is given by (32),
and the relationship of f (x) and f ′(x ′) is given by (33).

x = A+
x ′

S
(32)

f (x) = Sf ′
(
x ′
)

(33)

Substituting (32) and (33) into (29), we have

1
S
f (x) = exp

{
−1+ λ′0 +

n∑
i=1

λ′i[S(x − A)]
i

}
, (34)

that is,

f (x) = exp[−1+ ln S + λ′0 +
n∑
i=1

λ′iS
i(−A)i

−

n∑
i=1

λ′iS
i

i∑
j=1

C j
i x
j(−A)i−j] (35)

where C j
i is the number of j-combinations of an i-set.

From (32) and (35), the relationship of the Lagrange multi-
plier vector λ and the transformed Lagrange multiplier vector
λ′ can be given by

λT = Gλ′T (36)

where the transformingmatrixG is given by and the Lagrange
multiplier vector λ and the transformed Lagrange multiplier
vector λ′ are given by

λ =
[
ln S + λ0 λ1 λ2 · · · λn−1 λn

]
(38)

λ′ =
[
λ′0 λ

′

1 λ
′

2 · · · λ
′

n−1 λ
′
n
]

(39)

The transformation method of integration interval is an
adjunct to the MaxEnt fitting algorithm, which converts the
initial interval to a small interval [0,1], to avoid calculation
overflow, save time and improve efficiency.

C. PERFORMANCE OF THE FITTING ALGORITHM
In order to examine the performance of the MaxEnt PDF
fitting algorithm, the data sampled fromWeibull distribution,
Lognormal distribution, and Bimodal distribution were fit-
ted. The Weibull distribution and Lognormal distribution are
widely used in reliability evaluation. And Bimodal distribu-
tion is appropriate for describing the failure with two or more
failure mechanisms.

As part of numerical analysis, two discrimination criteria,
the root-mean-square error (RMSE) and the Akaike informa-
tion criterion (AIC)were computed to evaluate the descriptive
ability of theMaxEnt PDFs. RMSE canmeasure the goodness
of data fits, and AIC can reward not only the accuracy of the

fitted PDFs but also contains a penalty which is increased by
the number of estimated parameters. The RMSE and AIC can
be given by [33]:

RMSE =

√√√√1
n

n∑
i=1

(
ŷi − yi
yi

)2

(40)

AIC = n · ln

{
1
n

n∑
i=1

(
ŷi − yi
yi

)2
}
+ 2K (41)

where ŷi is the estimate of yi, yi is the sample point in the
histogram, and K is the number of parameters to be fitted.

1) EXAMPLE 1: WEIBULL DISTRIBUTION
In this subsection, three datasets from Weibull distribution
are given by MC sampling, the sampling numbers of which
are separately 103, 104 and 105. The parameters of Weibull
distribution are the shape parameter β = 1.50, the scale
parameter α = 2000, the location parameter γ = 10000.

The estimations of three datasets, sampling number
N = 1000, 10000, 10000, using Lognormal method, Weibull
method and MaxEnt method with order numbers n = 3
to 7 are shown in FIGURE 4. Then, the values of RMSE
and AIC, shown in TABLE 2, are calculated to evaluate both
the goodness of fits and the simplicity of the model. Finally,
the lifetime predictions, including average lifetime, medium
lifetime and interval estimation (CL = 95%), are conducted
by the above three methods and compared with the sampling
data, given by TABLE 3.

Based on FIGURE 4, the fitting curves of Weibull PDF
and high-order (n = 6, 7) MaxEnt PDFs and reliability
distributions match the sampling data better than these of
Lognormal and low-order (n = 3, 4) MaxEnt PDF and
reliability distributions.

More quantitive analysis can be carried out according
to TABLE 2. The RMSEs and AICs of Weibull PDF and
high-order MaxEnt PDFs are minimal, which means Weibull
PDF and high-order MaxEnt PDFs achieve higher accuracy
and efficiency for Weibull sampling data than Lognormal
PDF. Further, the RMSEs of MaxEnt PDFs under the con-
ditions of small sampling number (N= 1000, 10000) are less
than these of Weibull PDF. Constantly, when N = 100000,
Weibull PDF fits the sampling data better than MaxEnt
PDFs. For the AICs, the Weibull PDF is more effective than
high-order MaxEnt PDFs due to the fewer parameters. The
average lifetime, medium lifetime and confidence interval
(95%) are obtained by sampling data, Lognormal distribution,
Weibull distribution and MaxEnt distributions (n = 3 to 7),
shown in TABLE 3. Compared with the results of sampling
data, Weibull distribution and high-order MaxEnt distribu-
tions predict more accurately than Lognormal distribution.

2) EXAMPLE 2: LOGNORMAL DISTRIBUTION
Lognormal MC sampling (N = 103, 104, 105) is conducted
to obtain three datasets in this subsection, and the parameters
of the Lognormal distributions are µ = 100000, σ 2

= 0.05.
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FIGURE 4. Estimated PDFs and reliability functions of Weibull MC sampling (N = 1000, N = 10000, N = 100000) using Lognorm method, Weibull method
and MaxEnt method with order numbers n = 3 to 7.

TABLE 2. The RMSE and AIC of Lognorm method, Weibull method and MaxEnt method with order numbers n = 3 to 7 to fit the Weibull MC Sampling data
(N = 1000, N = 10000, N = 100000).

The parameters of Lognormal, Weibull and MaxEnt
(n = 3 to 7) distributions are estimated to fit the three datasets
of Lognormal MC sampling (N= 1000, 10000, 100000) and
plotted in FIGURE 5. The RMSEs and AICs are computed
in TABLE 4. Moreover, the results of lifetime predictions are
shown in TABLE 5.

FIGURE 5 shows the approximation of the Lognormal
MC sampling data by the Lognormal, Weibull, MaxEnt

(n = 3 to 7) PDFs and reliability distributions. Weibull dis-
tribution has a more significant mismatch than other distribu-
tions from the qualitative perspective.

Considering the values of the RMSE and AIC, Lognormal
and MaxEnt distributions have better goodness of fit than
Weibull distribution, shown in TABLE 4. The RMSEs of
low-order (n = 3,4) MaxEnt distribution are below Lognor-
mal distribution. On the contrary, the AICs of Lognormal

G =


C0
0S

0(−A)0 C0
1S

1(−A)1 · · · C0
n−1S

n−1(−A)n−1 C0
nS

n(−A)n

0 C1
1S

1(−A)0 · · · C1
n−1S

n−1(−A)n−2 C1
nS

n(−A)n−1

...
...

. . .
...

...

0 0 · · · Cn−1
n−1S

n−1(−A)0 Cn−1
n Sn(−A)1

0 0 · · · 0 Cn
nS

n(−A)0

 (37)
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TABLE 3. Lifetime predictions (Hours) of Weibull MC sampling (N = 100000) by Lognormal method, Weibull method and MaxEnt method with order
numbers n = 3 to 7.

FIGURE 5. Estimated PDFs and reliability functions of Lognormal MC sampling (N = 1000, N = 10000, N = 100000) using Lognorm method, Weibull
method and MaxEnt method with order numbers n=3 to 7.

TABLE 4. The RMSE and AIC of Lognorm method, Weibull method and MaxEnt method with order numbers n = 3 to 7 to fit the Lognormal MC sampling
data (N = 1000, N = 10000, N = 100000).

distribution are lower than MaxEnt distribution. The order
number of MaxEnt distribution has little influence on the
accuracy of data fitting, so that increasing order number
presents a higher value of AIC. For the lifetime prediction,
TABLE 5 shows the Lognormal and MaxEnt distribution can
predict the lifetime from sampling data more accurately than
Weibull distribution.

3) EXAMPLE 3: BI-MODAL DISTRIBUTION
A complex bi-modal distribution, more accordant with multi-
mechanism failure, is defined as a sum of twoGaussian distri-
butions [34]. Assuming two main mechanisms of the device
failure are subject to two independent normal distributions
with different proportions, shown in TABLE 6, three datasets
are generated by MC sampling (N = 1000, 10000, 100000).
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TABLE 5. Lifetime predictions (Hours) of Lognormal MC sampling (N = 100000) by Lognormal method, Weibull method and MaxEnt method with order
numbers n = 3 to 7.

FIGURE 6. Estimated PDFs and reliability functions of bi-modal MC sampling (N = 1000, N = 10000, N = 100000) using Lognormal method, Weibull
method and MaxEnt method with order numbers n = 3 to 7.

TABLE 6. The parameters for bi-modal MC sampling.

Lognormal,Weibull, andMaxEnt (n = 3 to 7) distributions
are fitted to the bi-modal MC sampling shown in FIGURE 6.
The RMSEs and AICs are calculated in TABLE 7, and the
lifetimes are predicted in TABLE 8 by Lognormal, Weibull,
and MaxEnt method.

Lognormal,Weibull, andMaxEnt (n = 3 to 7) distributions
are fitted to the bi-modal MC sampling shown in FIGURE 6.
The RMSEs and AICs are calculated in TABLE 7, and the
lifetimes are predicted in TABLE 8 by Lognormal, Weibull,
and MaxEnt method.

FIGURE 6 presents that 4 to 7 order MaxEnt PDFs with
obvious double peaks accord well with the bi-modal distri-
bution. However, Lognormal, Weibull, and 3-order MaxEnt

PDFs show single peaks which can not describe the bi-modal
distribution well. For bi-modalMC sampling data (N= 1000,
10000, 10000), the fitting ability and predictive power of
high order MaxEnt PDFs are better than the Lognormal and
Weibull PDFs, according to RMSEs and AICs showed in
TABLE 7. As to the prediction results of average lifetimes,
medium lifetimes and interval estimations, the 7-order Max-
Ent method agree best with the sampling data among all
methods, shown in TABLE 8.

In conclusion, we compare the fitting prediction results for
different sampling data by Weibull, Lognormal and MaxEnt
methods. MaxEnt distribution exhibits an excellent agree-
ment with the sampling distributions. Especially for bi-modal
sampling, the 7-order MaxEnt distribution describes the fea-
ture of double peaks accurately and effectively.

IV. CASE STUDY
In this case, we evaluate the reliability of a typical plas-
tic package device to demonstrate the PoF and MaxEnt
based reliability evaluation method. The device is assembled
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TABLE 7. The RMSE and AIC of Lognormal method, Weibull method and MaxEnt method with order numbers n = 3 to 7 to fit the bi-modal MC sampling
data (N = 1000, N = 10000, N = 100000).

TABLE 8. Lifetime predictions (Hours) of bi-modal MC sampling (N = 100000) by Lognormal method, Weibull method and MaxEnt method with order
numbers n = 3 to 7.

FIGURE 7. The structure of a typical semiconductor device with the
potential multi-mechanism failure.

on the printed circuit board and is characterized by multi-
mechanism. FIGURE 7 illustrates the structure of a typical
semiconductor device with potential multi-mechanism fail-
ure. The electrical and mechanical connections between the
die and the lead frame aremade by bonding layer and bonding
wire. The vulnerable sites involve the die, bonding wire,
bonding layer and solder joint. The relationship between fail-
ure mechanisms is presented in FIGURE 7. The correlation
of failure mechanisms is that they share the same stress and
environmental conditions. For example, TDDB, HCI, EM,
SM on the die have the same temperature.

TDDB, HCI, EM, and SM are recognized as the main
mechanisms leading to die failure, and the relationship for
them is competition. The TTF of the die is

TTFDE = min (TTFTDDB,TTFHCI ,TTFEM ,TTFSM ) . (42)

Failure of solder joint is triggered by the accumulation of
damage contributed by thermal cycling and vibration. The
TTF of solder joint can therefore be determined

TTFSV = Tc/DVF (43)

where Tc is the period of the thermal cycle.
Thermal fatigue can also lead to bonding layer failure,

while corrosion contributes to bonding wire failure. The TTF
for bonding layer and bonding wire is denoted as TTFBL and
TTFBW , respectively. Ultimately, competing failure rule is
applied to the failure of all the sites. The time-to-failure of
the device can be obtained by

TTF_D = min(TTFDIE ,TTFBL ,TTFBW ,TTFSJ ). (44)

TTF corresponding to the failure mechanism can be calcu-
lated by failure mechanism models listed in TABLE 1. And
the values of model parameters are listed in TABLE 9.

The parameters in the failure mechanism models are
assumed to obey the triangle distribution, the feature param-
eters of which are shown in TABLE 9. With the distribution
assumptions and parameter sampling (N = 10000), the TTFs
of multi failure mechanisms in different device sites can be
calculated individually by the failure mechanisms models,
shown in FIGURE 8 (a)-(h).

TTFs of Multi-mechanism failure can be obtained by
cumulative damage theory and competing failure theory for
different sites in this device. For die site, four failure mech-
anisms, including TDDB, HCI, SM, and EM, accord with
competing failure theory. For solder joints, vibration fatigue
and thermal fatigue can be accumulated together based on the
cumulative damage. For the multi-site failure in this device,
the competing failure theory can be utilized to determine the
fatal failure mechanism and evaluate the device’s lifetime.
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TABLE 9. Values of model parameters and feature parameters of distribution.

100, 000 samples of device failure datasets are analyzed,
and the fatal failure mechanisms proportion are statically
computed, shown in FIGURE 8 (i). The potential occurrence
ratios of die TDDB, solder joint fatigue and bonding wire cor-
rosion are individually counted as 81.6%, 18.2% and 0.2%.
The die TDDB can be considered as the highest possible one
of the main failure mechanisms for this device.

Based on PoF and multi-mechanism failure analysis, the
distribution diagram of the fatal failure TTFs is shown in
FIGURE 9 (a), which indicates a double-peak distribution
feature. The reliability distribution diagram of the device is
shown in FIGURE 9 (b).

Lognormal,Weibull andMaxEnt methods are applied to fit
the multi-mechanism failure MC sampling data. As shown in
FIGURE 9 (a), Lognormal distribution, Weibull distribution,
and 3-order MaxEnt distribution can only express the single
peak characteristic with poor fitting results. The peak value of
Weibull distribution and 3-order MaxEnt distribution locate
between two peaks of the TTF distribution. The peak value of
Lognormal distribution appears near the left peak of the TTF
distribution. MaxEnt distributions with 4 to 7 orders present
the double modal feature with better fitting results. With the
increase of the order number, theMaxEnt distribution is more
descriptive for the sampling data.

The RMSEs and AICs of Lognormal, Weibull, and 3- to
7-order MaxEnt distribution are compared in FIGURE 10.
The 7-order MaxEnt PDF possesses the lowest RMSE and
AIC, which means the most accurate and efficient fitting of

samples. From the 4-order and the higher orders, the MaxEnt
has a lower RMSE and AIC compared with the other two
methods, on account of the emergence of the double modal
feature, as shown in FIGURE 9 (a). And there is a clear trend
of decreasing RMSE and AIC with the increase of the order
of MaxEnt PDF.

For the high order MaxEnt PDF represents the MC sam-
pling data well, and a more accurate reliability evaluation
can be made using a better-fitted distribution, the 7-order
MaxEnt PDF was chosen for the reliability evaluation of the
device. The reliability distribution (reliability versus time) is
presented in FIGURE 9 (b). The average lifetime, themedium
lifetime is 17667129.19 s and 14657915.20 s respectively,
and the resulting 95% confidence interval is 2619487.48 s to
40276017.48 s. The results listed in TABLE 10 indicate that
the MaxEnt method gives the most accurate estimates among
the three distributions.

V. DISCUSSION
PoF technique is practical and efficient in the reliability
evaluation and lifetime prediction of semiconductor devices.
However, the existing studies failed to fit the failure data well,
especially when faced with multi-point and multi-mechanism
failure. Consequently, the reliability evaluation only based on
PoF technique cannot describe the multi-mechanism failure.
In this study, PoFmodels,MC sampling for multi-mechanism
failure and MaxEnt PDF are presented. The PoF mod-
els are used to predict TTFs corresponding to the single
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FIGURE 8. The TTF histograms of multi failure mechanisms and fatal failure mechanisms proportion pie chart.

TABLE 10. Lifetime predictions (Seconds) of MC sampling (N = 100000) by Lognormal method, Weibull method and MaxEnt method.

failure mechanisms in every single point in the semicon-
ductor devices. PoF models calculate TTFs by inputting
loading conditions and structure and process-related param-
eters. Thus, a notable advantage of using PoF models is
that the reliability evaluation can be conducted as early as
the design stage. A mass of PoF models is included, which
cover multiple potential failure mechanisms in semiconduc-
tor devices under operating conditions. For example, the ther-
mal fatigue of the solder joints and the electromigration of the
metal interconnects are proceeding simultaneously when the
device is working. FIGURE 9 suggests that it is necessary to

consider multiple failure mechanisms. The lifetime sampling
data actually exhibits the double-peak characteristic, while
the TTF sampling data of a single mechanism usually exhibits
a single peak feature in FIGURE 8 (a)-(h). According to
FIGURE 8 (i), the main failure mechanism in this case study
is TDDB. And the ratio of solder joint fatigue shows the sec-
ond potential failure mechanism, inducing the second failure
peak.

The cumulative damage rules and the competing failure
rules are adopted to deal with the multi-mechanism failure
process. Based on these rules above, TTFs of each single
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FIGURE 9. Estimated PDFs and reliability functions of multi-mechanism
failure MC sampling (N = 100000) using Lognormal method, Weibull
method and MaxEnt method with order numbers n = 3 to 7.

failure mechanisms can be used to predict the device lifetime
of multi-mechanism failure. The cumulative damage rules
are applied to calculate TTF of a failure point with multiple
related mechanisms. For a typical semiconductor device in
the case study, vibration fatigue and thermal fatigue of the
solder joints are treated by the cumulative damage rules.
Competing failure rules are used to deal with unrelated failure
mechanisms at one single point or mechanisms of different
points. Moreover, considering the fluctuation of loading con-
ditions and the instability of the manufacturing processes,
MC method is utilized to sample stochastic parameters of
the specific distribution. Massive TTF data with sampled
parameters based on PoF models are generated. By referring
to the cumulative damage rules and the competing failure
rules, the device lifetime sampling data are acquired. The
histogram of the device lifetime is shown in FIGURE 9 (a).

The MaxEnt PDF fitting algorithm is proposed to fit the
histogram of the lifetime sampling data. The reliability eval-
uation is performed based on the fitted PDF. The MaxEnt
principle ensures that the data can be best represented by the
MaxEnt PDF.

FIGURE 10. The RMSE and AIC of Lognormal method, Weibull method
and MaxEnt method with order numbers n = 3 to 7 (N = 100000). RMSE
has been normalized for presentation.

The MaxEnt principle states that the probability distribu-
tion which best matches the objective data has the largest
entropy. Based on the thoughts, the MaxEnt PDF whose sta-
tistical characteristics of the random variable are most in line
with the objective data is derived. Three numerical analysis
examples are given to examine the goodness of fitting by
Weibull, Lognormal, and MaxEnt PDFs. The results show
that the high-order MaxEnt can fit well the sampling data
of Weibull, Lognormal and bi-modal distributions, and the
MaxEnt PDF has a significant advantage in processing the
data with a bimodal feature, shown in FIGURE 6. The char-
acteristics of the MaxEnt PDF are particularly suitable for
processing the sampling data of the device failure. As shown
in FIGURE 9 (b), the TTF histogram of the device exhibits a
multi-modal feature under the effect of multiple-mechanism
failure. Weibull for catastrophic failures and Lognormal for
gradual wear out failures cannot fit the sampling data well
in facing this situation, while the MaxEnt PDF can exploit
its superiority to the full. The MaxEnt PDF makes the fewest
assumptions about the true distribution of data and represents
the data best. The fitting curves of the MaxEnt PDF in

188168 VOLUME 8, 2020



B. Wan et al.: Reliability Evaluation of Multi-Mechanism Failure for Semiconductor Devices

FIGURE 9 (a) capture the sample data well. And more accu-
rate reliability evaluations can be conducted using the Max-
Ent PDF, shown in FIGURE 10 and TABLE 10. The physical
meaning behind the fitted MaxEnt PDF is: the failure of the
device is the result of multiple mechanisms, and the lifetime
of the device is dominated by multiple mechanisms. A large
number of failures will occur due to a certain mechanism at
a certain time. The survived devices will continue to serve.
And at a certain time after this time, another large number
of failures will occur due to the leading role of another
mechanism. Hence, the distribution of the device lifetime
(i.e., the MaxEnt PDF) exhibits a multi-modal feature.

VI. CONCLUSION
In this study, we proposed an improved reliability evaluation
approach for semiconductor devices with multi-mechanism
failure based on PoF technique and MaxEnt principle. The
PoF technique utilizes PoF model to calculate TTF corre-
sponding to the failure mechanism, and MC sampling proce-
dure, which considers the fluctuation of process and service
conditions generate a batch of TTF sampling data. Cumula-
tive damage rules and competing failure rules were used to
deal with multi-point and multi-mechanism failure, and they
work with MC sampling to generate lifetime sampling data
of the device. The sampling data were fitted by MaxEnt PDF
derived from the MaxEnt principle. And reliability evalua-
tion was based on the fitted MaxEnt PDF. Three numerical
analysis examples show that the MaxEnt PDF can fit most
of the sampling data well. A case study was presented to
explain the workflow of the proposed reliability evaluation
approach. The lifetime sampling data of the device exhibits
a double-peak characteristic because of the multiple failure
mechanisms in the service conditions. And the MaxEnt PDF
fits best and gives an accurate reliability evaluation.

This study focused on the MC sampling procedure of
multi-mechanism failure and the MaxEnt principle-based
sampling data processing. However, the complicated interac-
tions between failure mechanisms, e.g., TDDB and HCI, are
worth further research when an accurate lifetime prediction
is required.
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