
Received September 19, 2020, accepted September 29, 2020, date of publication October 14, 2020,
date of current version October 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030891

Maneuvering Target Detection Based on
Three-Dimensional Coherent Integration
LANGXU ZHAO , HAIHONG TAO , AND WEIJIA CHEN
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Corresponding author: Haihong Tao (hhtao@xidian.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Universities under Grant BDY06, in part by the Innovation
Project of Science and Technology Commission of the Central Military Commission under Grant ∗∗-H863-∗∗-XJ-001-∗∗∗-02, in part by the
Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2019JQ-112, in part by the National Nature Science
Foundation of China (NSFC) under Grant 61701414, and in part by the China Postdoctoral Science Foundation under Grant 2018M631123.

ABSTRACT Due to the target motion, range cell migration (RCM) and Doppler frequency migration (DFM)
always occur. That is harmful to the signal enhancement and detection. In order to solve the problem,
a novel three-dimensional (3-D) coherent integration (TDCI) based algorithm is proposed in this article
which consists of three stages. Firstly, a 3-D space is generated by the autocorrelation function. After
that, TDCI algorithm is realized and TDCI domain is obtained in which the motion parameters can be
accurately estimated. Finally, compensating off the RCM and DFM by the estimates, the target signal
can be accumulated and detected in range-Doppler frequency domain. Theoretical analyses and simulation
experiments are given to demonstrate that the proposed algorithm is able to deal with the problems of
velocity ambiguity, shadow effect, and cross-term with superior resolution. Comparisons with several
representative algorithms lead us to the conclusion that the proposed algorithm can strike a good balance
between computation cost and anti-noise performance. In the end, real measured data processing and result
analysis are carried out, which further verify the effectiveness of the proposed algorithm.

INDEX TERMS Coherent integration, Doppler frequency migration, parameter estimation, range cell
migration, maneuvering target detection.

I. INTRODUCTION
With the development of radar filed, maneuvering target
detection and parameter estimation have received a growing
attention [1]–[5]. High speed, low signal to noise ratio (SNR),
and multiple targets are three main problems against the
radar performance. High speed may lead to range walk and
velocity ambiguity, degrading the detection performance and
parameter estimation accuracy. Low SNR causes poor target
detection probability directly. In the multi-target scenario,
some weak targets may be missed due to the shadow effect.
Besides, false alarms may occur in the nonlinear algorithms
affected by cross-terms. Long-time integration can effectively
improve the radar performance which can be generally cate-
gorized into two kinds: incoherent integration and coherent
integration [6], [7]. Incoherent integration based algorithms
such as Hough transform [8]–[10], Radon transform [11] and
track-before-detection [12] are relatively easy to implement
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with low computation costs, since they employ only ampli-
tude information without strict phase adjustments. In general,
their performance is less efficient as compared to the coher-
ent integration based algorithms. Coherent integration based
algorithms utilize both amplitude and phase information with
relatively high computation complexities. Thus, their perfor-
mance is more advantageous. Notably, Long time integra-
tion based algorithms always encounter two main problems:
range cell migration (RCM) andDoppler frequencymigration
(DFM) [13], [14], deteriorating their focusing performance.
Thus, for better integration gain, RCM and DFM issues need
to be resolved.

As to the target with uniform motion, three repre-
sentative algorithms are mentioned including keystone
transform (KT) [15], [16], axis rotation-moving target detec-
tion (AR-MTD) [17], [18], and Radon-Fourier transform
(RFT) [19]–[21]. KT can blindly correct RCM and effectively
achieve coherent integration. However, its performance may
suffer from degradation in the case of Doppler ambiguity.
AR-MTD and RFT are implemented by two-dimensional
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searching process. Accordingly, their computation costs may
be high.Moreover, these three algorithmswill perform poorly
while dealing with the target with high-order motion because
of their invalidity for DFM.

Recently, many algorithms have been developed for
the target with acceleration motion. KT-fractional FT
(KT-FRFT) [22] and improved AR-FRFT (IAR-FRFT) [23]
are two popular algorithms. They coherently integrate the
target signal by eliminating RCM and DFM separately. Since
KT and IAR are unable to tackle the RCM caused by the
acceleration completely, part of the integration gain may
be lost. In order to completely remove RCM and DFM
simultaneously, several three-dimensional (3-D) searching
based algorithms are proposed, such as maximum likeli-
hood (ML) based algorithm [24] and Radon based algorithms
(including Radon-FRFT (RFRFT) [25], Radon-Lv’s distribu-
tion (RLVD) [26], and generalized RFT (GRFT) [27], [28]).
ML based algorithm builds ML function and determines
targets by its poles in the parameter space. Radon based
algorithms are implemented by accumulating the targets sig-
nals along their trajectories. Nevertheless, the high com-
putation burden and severe false alarm induced by the
3-D ergodic searching process and blind speed sidelobe
limit their application. In order to avoid searching, sym-
metric autocorrelation function-scaled FT (SAF-SFT) [29],
3-D scaled transform (TDST) [30], scaled nonuniform fast
FT-scaled periodic discrete FT (SNUFFT-SPDFT) [31], prod-
uct scaled periodic LVD (PSP-LVD) [32] and the algo-
rithm proposed in [33] are studied. These algorithms can
effectively deal with the maneuvering targets. Unfortu-
nately, they may be inappropriate for the low-SNR scenario.
Besides, some algorithms are proposed for the array radar
system [34].

In this article, a novel 3-D coherent integration (TDCI)
based detection algorithm is proposed. The proposed algo-
rithm accurately estimates the motion parameters in TDCI
domain, which helps to completely eliminate the RCM and
DFM. Thereafter, the target signal is coherently integrated
and detected via constant false alarm rate (CFAR) technol-
ogy in range-Doppler frequency domain. Both the theories
and simulations illustrate its superior resolution and cross-
term suppression capability. Compared with several existing
algorithms on computation complexity, detection capability,
and parameter estimation accuracy, the proposed algorithm
can effectively ease the computation burden with acceptable
anti-noise performance. Finally, a set of real measured data
is processed to further demonstrate the effectiveness of the
proposed algorithm.

The rest of this article is organized as follow: Section II
establishes the mathematical model for the received target
signal. Section III introduces the theory and main procedure
of the proposed algorithm. In Section IV, we give some anal-
yses for the proposed algorithm, including integration capa-
bility, cross-term suppression, theoretical resolution, efficient
implementation, and computation complexity. In Section V,
simulated and real data are processed and some performance

comparisons are carried out. Finally, conclusions are given in
Section VI.

II. SIGNAL MODEL
Suppose the radar transmits a linear frequency modulated
signal with the form

p(t) = rect
(
t
Tp

)
exp

[
j2π

(
fct +

1
2
γ t2

)]
(1)

where rect(u) represents the rectangular pulse function
expressed as

rect(u) =

{
1, |u| ≤ 0.5
0, |u| > 0.5.

(2)

where t denotes the fast time variable, TP denotes the pulse
width, fc denotes the carrier frequency, γ denotes the chirp
rate.

Assuming that K targets appear in the radar surveillance
area, the received signal after down conversion can be repre-
sented as

sr (t, tm) =
K∑
k=1

A1krect
(
t − τk
Tp

)
exp (−j2π fcτk)

× exp
[
jπγ (t − τk)2

]
(3)

where tm denotes the azimuth slow time variable,A1 k denotes
the amplitude of the k-th target signal, τk = 2Rk (tm)

/
c

denotes the time delay, c denotes the speed of light, Rk (tm)
denotes the instantaneous radial range between the k-th target
and the radar which can be expressed as

Rk (tm) = R0k + vk tm +
1
2
ak t2m (4)

where R0k denotes the initial radial range between the
k-th target and the radar, vk and ak denote the radial velocity
and acceleration, respectively. After pulse compression (PC),
the signal can be formulated as

spc (t, tm) =
K∑
k=1

A2k sin c
[
B
(
t −

2R0k + 2vk tm + ak t2m
c

)]
× exp

(
−j2π fc

2R0k + 2vk tm + ak t2m
c

)
(5)

where A2 k denotes the amplitude, sin c (·) denotes the sinc
function, B denotes the bandwidth.

Then, the Doppler frequency of the k-th target signal can
be obtained, expressed as

fd = −
2vk + 2ak tm

λ
(6)

where λ = c/fc denotes the wavelength. From (5) and (6),
it is clearly that the envelopes of the target signals walk across
the range units and the Doppler frequencies are linear time
varying, i.e. both RCM and DFM occur, which will seriously
affect the radar detection and parameter estimation.
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III. NOVEL TDCI BASED DETECTION ALGORITHM
As mentioned above, RCM and DFM seriously affect the
radar performance. Fortunately, according to the signal
model, they can be completely compensated by accurate
parameter estimates. Thereafter, the target signal can be
integrated and detected in range-Doppler frequency domain.
Motivated by this idea, a novel TDCI based detection algo-
rithm is proposed in this section.

A. TDCI ALGORITHM FOR PARAMETER ESTIMATION
By performing FT to (5) along t-axis, the signal is trans-
formed into range frequency domain.

sf (f , tm) =
K∑
k=1

A3krect
(
f
B

)
× exp

[
−j2π (f +fc)

2R0k+2vk tm+ak t2m
c

]
(7)

where f denotes the range frequency variable, A3 k denotes
the amplitude.

In (7), 2vk tm and ak t2m are coupled with f +fc, leading to the
RCM and DFM, which makes it impossible to achieve coher-
ent integration and parameter estimation directly. Define an
autocorrelation function (AF) as

R (f , tm, τm) = sf

[
f , tm +

(
τm +

h
2

)]
·sf

[
f , tm −

(
τm +

h
2

)]
(8)

where τm denotes the lag time variable, h denotes a constant
delay. Similar to the analysis in [35], in order to achieve the
best anti-noise capability, h should be set above the integra-
tion time T . Substituting (7) into (8), one has

R (f , tm, τm)

=

K∑
k=1

A23krect
(
f
B

)

× exp

−j2π
(
f + fc
fc

)4R0k+4vk tm+2ak[t2m+(τm+ h
2

)2]
λ

︸ ︷︷ ︸
auto−terms

+

K∑
i=1

K∑
j=i+1

Rcross,i,j (f , tm, τm) (9)

where Rcross,i,j (f , tm, τm) denotes the cross-term generated
by the i-th and j-th targets, expressed as

Rcross,i,j (f , tm, τm)

= 2A3iA3jrect
(
f
B

)

×exp

−j2π
(
f +fc
fc

)41R0+41vtm+21a[t2m+(τm+ h
2

)2]
λ



× cos

{
2π
(
f + fc
fc

)
4∇v

(
τm+

h
2

)
+ 4∇atm

(
τm +

h
2

)
λ

}
(10)

where 1R0 =
(
R0i + R0j

)/
2,1v =

(
vi + vj

)/
2,1a =(

ai + aj
)/

2,∇v =
(
vi − vj

)/
2,∇a =

(
ai − aj

)/
2.

Then, the 1st coherent integration along the τm-axis is
achieved via the following scaled transform.

C1 (f , tm, fτm)

=

∫
R (f , tm, τm) exp

[
j2π

(
f + fc
fc

)
fτm

(
τm +

h
2

)2
]
dτm

=

K∑
k=1

A4krect
(
f
B

)

× exp
[
−j2π

(
f +fc
fc

)
4R0k+4vk tm+2ak t2m

λ

]
δ

(
fτm−

2ak
λ

)

+

K∑
i=1

K∑
j=i+1

C1−cross,i,j (f , tm, fτm) (11)

where fτm denotes the scaled frequency variable with respect
to τm,A4 k denotes the amplitude, δ (·) denotes the Dirac delta
function, C1−cross,i,j (f , tm, fτm) denotes the cross-term.

Afterwards, the coupling between f and t2m can be removed
by multiplying an exponential term to (11), presented as

C∗1 (f , tm, fτm)

= C1 (f , tm, fτm)× exp
[
j2π

(
f + fc
fc

)
fτmt2m

]
(12)

From (11), we acquire an important point: due to the inte-
gration, the energies of the auto-terms are concentrated into
planes fτm = 2ak/λ(k = 1, 2 . . .K ). Thus, the multiplication
in (12) can be considered approximately equivalent to

C∗1 (f , tm, fτm)

=

K∑
k=1

A4krect
(
f
B

)
× exp

[
−j2π

(
f + fc
fc

)
4R0k + 4vk tm

λ

]
δ

(
fτm −

2ak
λ

)
+

K∑
i=1

K∑
j=i+1

C∗1−cross,i,j (f , tm, fτm) (13)

whereC∗1−cross,i,j (f , tm, fτm) denotes the cross-term. It can be
observed that the coupling is removed.

When
∣∣4vk/λ∣∣ > PRF

/
2, autocorrelation velocity ambi-

guity occurs, and vk should be rewritten as

vk = Nkvab + v0k (14)

where Nk denotes the autocorrelation fold factor, vab =
PRF × λ

/
4 denotes the autocorrelation blind velocity,

|v0k | < vab
/
2 denotes the autocorrelation base band velocity.

VOLUME 8, 2020 188323



L. Zhao et al.: Maneuvering Target Detection Based on TDCI

Considering the special equation exp (−j2π4Nkvabtm /
λ) = 1, (13) must be rewritten as

C∗1 (f , tm, fτm)

=

K∑
k=1

A4krect
(
f
B

)
exp

[
−j2π f

4Nkvabtm
c

]
× exp

[
−j2π

(
f + fc
fc

)
4R0k + 4v0k tm

λ

]
δ

(
fτm −

2ak
λ

)
+

K∑
i=1

K∑
j=i+1

C∗1−cross,i,j (f , tm, fτm) (15)

This problem is similar to the velocity ambiguity men-
tioned in [7], [29], and [36]. In order to guarantee the sub-
sequent integration, the first exponential term in (15) must be
removed. Define a matched filtering function

Hn (f , tm) = exp
(
j2π f

4nvab
c

tm

)
(16)

When n = Nk , multiplyingHNk (f , tm)withC
∗

1 (f , tm, fτm),
one has

C∗1−Nk (f , tm, fτm) = C∗1 (f , tm, fτm)HNk (f , tm)

=A4krect
(
f
B

)
exp

[
−j2π

(
f+fc
fc

)
4R0k+4v0k tm

λ

]
δ

(
fτm−

2ak
λ

)

+C∗1−Nk−others (f , tm, fτm)+
K∑
i=1

K∑
j=i+1

C∗1−Nk−cross,i,j (f , tm, fτm)

(17)

where, C∗1−Nk−cross,i,j (f , tm, fτm) denotes the cross-term.
where

C∗1−Nk−others(f , tm, fτm)

=

K∑
l=1,l 6=k

A4lrect
(
f
B

)
exp

[
−j2π f

4 (Nl − Nk) vabtm
c

]

× exp
[
−j2π

(
f + fc
fc

)
4R0l + 4v0l tm

λ

]
δ

(
fτm −

2al
λ

)
(18)

Thereafter, the 2nd coherent integration along tm-axis is
achieved via scaled inverse FT (SIFT).

C2−Nk (f , ftm, fτm)

=

∫
C∗1−Nk (f , tm, fτm) exp

[
j2π

(
f + fc
fc

)
ftmtm

]
dtm

= A5krect
(
f
B

)
exp

[
−j2π (f + fc)

4R0k
c

]
× δ

(
fτm −

2ak
λ

)
δ

(
ftm −

4v0k
λ

)
+C2−Nk−others (f , ftm, fτm)

+

K∑
i=1

K∑
j=i+1

C2−Nk−cross,i,j (f , ftm, fτm) (19)

where ftm denotes the scaled Doppler frequency variable, A5 k
denotes the amplitude,C2−Nk−cross,i,j (f , ftm, fτm) denotes the
cross-term.

where

C2−Nk−others(f , ftm, fτm)

=

K∑
l=1,l 6=k

A5lrect
(
f
B

)
exp

[
−j2π (f +fc)

4R0l
c

]
δ

(
fτm−

2al
λ

)

× δ

(
f + fc
fc

(
4v0l
λ
− ftm

)
+ f

4 (Nl − Nk) vab
c

)
(20)

It can be observed from (19) that the energy of the k-th
auto-term is concentrated along a line parallel to f- axis. Thus,
the final coherent integration along f -axis is achieved via
inverse FT (IFT), after which the TDCI domain is obtained as
expressed in (21). Due to the 2nd Dirac delta function in (20),
the fold uncompensated auto-terms cannot be integrated by
the final integration.

TDCINk
(
t ′, ftm, fτm

)
=

∫
C2−Nk (f , ftm, fτm) exp

(
j2π ft ′

)
df

= A6k exp
(
−j2π

4R0k
λ

)
δ

(
fτm −

2ak
λ

)
δ

(
ftm −

4v0k
λ

)
× sin c

[
B
(
t ′ −

4R0k
c

)]
+ TDCINk−others

(
t ′, ftm, fτm

)
+

K∑
i=1

K∑
j=i+1

TDCINk−cross,i,j
(
t ′, ftm, fτm

)
(21)

where, t ′ denotes the new fast time variable, A6 k denotes
the amplitude, TDCINk−others

(
t ′, ftm, fτm

)
denotes the fold

uncompensated auto-terms, TDCINk−cross,i,j
(
t ′, ftm, fτm

)
denotes the cross-term.

Equation (21) indicates that the energy of the k-th target
signal is coherently integrated into a point(
4R0k

/
c, 4v0k

/
λ, 2ak

/
λ
)
in TDCI domain. According to the

point, the motion parameters can be accurately estimated.
Fig. 1 shows the diagram of TDCI algorithm, where the dark
shadings represent the energy of the target signal.

The formulation of TDCI algorithm is summarized as

TDCIn
(
t ′, ftm, fτm

)
=

∫ ∫ ∫
sf

[
f , tm +

(
τm +

h
2

)]
· sf

[
f , tm −

(
τm +

h
2

)]
Hn (f , tm)

× exp

{
j2π

(
f + fc
fc

)
fτm

[(
τm +

h
2

)2

+ t2m

]}

× exp
[
j2π

(
f + fc
fc

)
ftmtm

]
exp

(
j2π ft ′

)
dτmdtmdf

(22)
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FIGURE 1. Diagram of TDCI algorithm.

B. TDCI BASED DETECTION ALGORITHM
According to the principle in Section III-A, the motion
parameters can be accurately estimated by TDCI algorithm.
Based on that, we propose a novel detection algorithm. Next,
the main procedure is given.

Step 1. Transform the signal spc (t, tm) by TDCI algorithm
with all possible autocorrelation fold factors and acquire the
transformation result TDCIn

(
t ′, ftm, fτm

)
.

Step 2. Estimate the radial velocity and acceleration
(i.e. v̂i and âi) by the highest peak.{
v̂i =

ftmλ
4
+ nvab, âi =

fτmλ
2

}
= argmax

n,ftm,fτm

{
TDCIn

(
t ′, ftm, fτm

)}
(23)

Step 3. Compensate the RCM and DFM by v̂i and âi.

scom(f , tm)

= sf (f , tm) exp
(
j
2π
c
(f + fc) âit2m

)
exp

(
j
4π
c
f v̂itm

)
(24)

Then transform the signal into range-Doppler frequency
domain, expressed as

SDoppler (t, fd ) = FTtm
{
IFTf [scom(f , tm)]

}
(25)

where fd denotes the Doppler frequency variable. FT and IFT
denote the FT and IFT operators, respectively.

Thereafter, realize CFAR detection in range-Doppler fre-
quency domain and obtain the estimations for the initial radial
range and the amplitude (i.e. R̂0i and Â2i)

R̂0i =
ctde
2

(26)

Â2i =

∣∣SDoppler (tde, fde)∣∣
M

(27)

where (tde, fde) denotes the coordinate of the detected target,
M denotes the pulse number.

Step 4. CLEAN the detected target.
Similar to the illustration in [37], while the differences

among the energies of the targets signals are large, the weak
targets may be submerged by the strong ones and noise in
TDCI domain, which is so-called shadow effect. In order

FIGURE 2. Flow chart of the proposed algorithm.

to avoid that, CLEAN algorithm [36] should be employed,
expressed as,

spc (t, tm)= spc(t, tm)−Â2i sin c

[
B

(
t−

2R̂0i+2v̂itm+âit2m
c

)]

× exp

(
−j2π fc

2R̂0i + 2v̂itm + âit2m
c

)
(28)

Step 5. Repeat Step 1 to Step 4 until no target can be
detected.

By the iteration, all the targets can be detected. The flow
chart of the proposed algorithm is shown in Fig. 2.

IV. ANALYSES OF THE PROPOSED ALGORITHM
The principle of the proposed algorithm is given detailedly in
Section III. In this section, five aspects are discussed in theory
and verified by simulations, including integration capability,
cross-term suppression, resolution, efficient implementation
and computation complexity.

A. INTEGRATION CAPABILITY
According to the principle, the proposed detection algorithm
is based on TDCI algorithm. In this part, we demonstrate

VOLUME 8, 2020 188325
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FIGURE 3. Simulation results of Section IV-A.

the theoretical integration capability of TDCI algorithm via
deriving the relationship between the SNR of the received
target signal (i.e. input SNR) and the SNR of the integrated
target signal in TDCI domain (i.e. output SNR). The relation-
ship is detailedly derived in Appendix A, expressed as

SNRout =
M2 Fsη2

BN SNR2in

2
(
M Fsη

BN SNRin + 1
) (29)

where SNRout and SNRin denote the output and input SNRs,
respectively,M ,N , and η denote the pulse number, range gate
number, and sampling number in the pulse width, respec-
tively, Fs and B denote the sampling frequency and band-
width, respectively.

In order to prove the correctness of the derivation, three
cases are simulated by 1000 Monte Carlo runs. The parame-
ters are listed in Table 1 and the results are shown in Fig. 3.
It can be observed that the simulation curves fit the theory
curves well, verifying the validity of the derivation process.
It is worth noting that in addition to increasing M and η,
moderately increasing the ratio of Fs and BN can effectively
improve the integration capability in the case of low input
SNR, which can be proved by (29) and reflected from the
results of Case 1, Case 2, and Case 3.

B. CROSS-TERM ANALYSIS
In multi-target scenario, several cross-terms are generated by
the AF as shown in (9) and (10). The effect of the cross-
term on the detection performance is derived in Appendix B.
According to the analysis, we can draw an important conclu-
sion that the cross-term cannot affect the performance of the
proposed algorithm and can be ignored. This conclusion can
be proved by the following simulation. The radar parameters
and the target motion parameters are given in Table 2. The
constant delay h is 1s. The simulation results are shown
in Fig. 4.

TABLE 1. Parameters of the simulations.

Fig. 4 (a) gives the PC result of the received signal where
five targets appear. As shown in Fig. 4 (b), due to the same
velocity and acceleration, a cross-term generated by Target A
and B occurs in TDCI domain. Consistent with the theoretical
analysis, the velocity and acceleration can be accurately esti-
mated by the integrated cross-term. As displayed in Fig. 4 (c),
compensating off the RCM and DFM, Target A and B are
integrated and detected in range-Doppler frequency domain
simultaneously. According to the proposed algorithm, the two
targets are removed by CLEAN algorithm after detection.
Fig. 4 (d) to (i) show the detection procedures of Target C
to E. The processes are the same as those of Target A and B.
Likewise, they are detected successfully one after another in
range-Doppler frequency domain. Particularly, in Fig. 4 (b),
due to the low SNR, Target E is submerged by the cross-term
and noise, that is shadow effect. From the simulation, it is
observed that all the targets are detected without the influ-
ences of shadow effect and cross-term, which proves the
correctness of the analysis and the validity of the proposed
algorithm.

C. RESOLUTION ANALYSIS
In Section III, we give the theory of the proposed algorithm.
For the finite-time signal, (21) should be written as

TDCINk
(
t ′, ftm, fτm

)
= A6k exp

(
−j2π

4R0k
λ

)
×

∫
exp

[
j2π

(
f + fc
fc

)(
τm +

h
2

)2 (
fτm −

2ak
λ

)]
dτm

× sin c
[
T
2

(
ftm −

4v0k
λ

)]
sin c

[
B
(
t ′ −

4R0k
c

)]
+TDCINk−others

(
t ′, ftm, fτm

)
+

K∑
i=1

K∑
j=i+1

TDCINk−cross,i,j
(
t ′, ftm, fτm

)
(30)

where T denotes the integration time.
The finite-time TDCI cannot be given in a closed analyt-

ical form due to the Fresnel integration transform along τm.
Fortunately, according to the analysis in [35], the theoretical
resolution of acceleration can be acquired. The theoretical
resolutions of velocity and acceleration are calculated based
on the formula given in (30), expressed as

Rv =
λ

2T
(31)
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FIGURE 4. Simulation results of Section IV-B. (a) Received radar signal after PC. (b) Integrated cross-term in TDCI domain. (c) Integrated Target A and
Target B in range-Doppler frequency domain. (d) Integrated Target C in TDCI domain. (e) Integrated Target C in range-Doppler frequency domain.
(f) Integrated Target D in TDCI domain. (g) Integrated Target D in range-Doppler frequency domain. (h) Integrated Target E in TDCI domain. (i) Integrated
Target E in range-Doppler frequency domain.

TABLE 2. Radar parameters and target motion parameters.

Ra =
4λ

(T + h)2
(32)

As illustrated in Section IV-B, affected by the cross-term,
targets with the same velocity and acceleration should be
distinguished in range-Doppler frequency domain where the
range resolution is expressed as

Rr =
c
2B

(33)

Below, four point targets denoted as Target 1 to 4 are simu-
lated. The radar parameters are listed in Table 3. The constant
delay h is 1s. According to the parameters, the theoretical

TABLE 3. Radar parameters and target motion parameters.

resolutions of range, velocity, and acceleration are 5 m,
0.15 m/s, and 0.3 m/s2, respectively. Based on these values,
the target motion parameters are set. As shown in Fig. 5,
Target 2 to 4 can be effectively distinguished with Target 1,
which verifies the correctness of the analysis and the effec-
tiveness of the proposed algorithm.

D. NUFFT & CHIRP-Z BASED IMPLEMENTATION
The discrete form of R (f , tm, τm) is expressed as

R (n,m, l)=sf

[
n,m+

(
l +

h
2
FP

)]
sf

[
n,m−

(
l +

h
2
Fp

)]
(34)
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FIGURE 5. Simulation results of Section IV-C. (a) Simulation results of Target 1 and Target 2. (b) Simulation results of Target 1 and Target 3.
(c) Simulation results of Target 1 and Target 4.

where

n = [−N/2] , [−N/2]+ 1 . . . [N/2]− 1,

m = [−M/2] , [−M/2]+ 1 . . . [M/2]− 1,

l = [−M/2] , [−M/2]+ 1 . . . [M/2]− 1

where FP denotes the pulse repetition frequency.
By performing the 1st coherent integration, we obtain

C1 (n,m, r)=
∑
l

R (n,m, l) exp

[
j2πr

nFsN +fc
fc

(
l
FP
+
h
2

)2
]

(35)

where Fs denotes the sampling frequency.
This process can be effectively implemented and sped up

via non-uniform fast FT (NUFFT) [31], [32], which can be
expressed as

C1 (n,m, r) = NUFFTl [R (n,m, l)] (36)

where NUFFTl denotes the NUFFT operation with respect
to l.

The discrete decoupling matrix and matched filtering
matrix are given as follow,

D = exp

[
j2πr

nFsN + fc
fc

(
m
FP

)2
]

(37)

HNk = exp
[
j2πn

Fs
N

4Nkvab
c

(
m
FP

)]
(38)

Compensating off C1 (n,m, r) by D and HNk , we obtain,

C∗1−Nk (n,m, r) = C1 (n,m, r)DHNk (39)

Afterwards, the 2nd coherent integration can be achieved,
expressed as

C2−Nk (n, p, r)

=

∑
m

C∗1−Nk (n,m, r) exp

[
j2πp

nFsN + fc
fc

(
m
FP

)]
(40)

This process can be effectively implemented and sped
up via chirp-z transform (CZT) [31], [32], which can be
expressed as

C2−Nk (n, p, r) = CZTm
[
C∗1−Nk (n,m, r)

]
(41)

where CZTm denotes the CZT operation with respect to m.
Finally, performing inverse fast FT (IFFT), we obtain

TDCI

TDCINk (q, p, r) = IFFTn
[
C2−Nk (n, p, r)

]
(42)

where IFFTn denotes the IFFT operation with respect to n.
Basing on (34)-(42), we give the brief expression of

NUFFT & chirp-z based implementation for TDCI.

TDCINk (q, p, r)

= IFFTn
[
CZTm

[
NUFFTl [R (n,m, l)]DHNk

]]
(43)

E. COMPUTATION COMPLEXITY
Denote the numbers of range gates, echo pulses, searching
autocorrelation fold factors by N , M , and Ns, respectively.
As to the proposed algorithm, the main procedure includes:
AF with its computation cost being [O(M2N )], 1st coher-
ent integration by NUFFT [O(M2Nlog2M )], decoupling
operation [O(M2N )], velocity compensation [O(NsM2N )],
2nd coherent integration by CZT [O(NsM2Nlog2M )], final
coherent integration by IFFT [O(NsM2Nlog2N )], parame-
ters compensation and coherent integration in range-Doppler
frequency domain (O[MN + MN(log2N + log2M )]). Thus,
the overall computation cost of the proposed algorithm
can be approximately calculated in the order of O[M2NNs
(log2M + log2N )].
In this subsection, the computation complexities of GRFT

and TDST are given for comparison. In order to achieve
a reasonable comparison, we consider the same parameter
range and estimation accuracy for the three algorithms. Under
this circumstance, the numbers of searching velocity and
acceleration by GRFT should be setMNs andM , respectively.
According to [27] and [28], the computation complexity
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TABLE 4. Computation complexities.

FIGURE 6. Detection probability curves.

TABLE 5. Radar parameters and target motion parameters.

of GRFT can be approximately calculated in the order of
O(M3NNs). Considering the same parameter range and esti-
mation accuracy, the size of the domain by TDST algorithm
should be expanded to MNs (velocity)×M (acceleration)×
M (baseband velocity). According to [30], the computation
complexity of TDST can be approximately calculated in the
order of O[M3Ns(log2MNs + log2M )].
Table 4 lists the computation complexities of the three

algorithms. It can be observed that under the same condition,
the proposed algorithm requires the least computation cost.

V. NUMERICAL EXPERIMENTS
This section is devoted to evaluate the performance of the pro-
posed algorithm where simulated and real data are processed.
Moreover, several comparisons are carried out.

A. DETECTION CAPABILITY
In this subsection, the detection probabilities of a point target
by GRFT, the proposed algorithm, TDST, and SAF-SFT are
compared via 500 Monte Carlo runs. The radar parameters

FIGURE 7. RMSE curves. (a) RMSEs of velocity estimates. (b) RMSEs of
acceleration estimates. (c) RMSEs of range unit estimates.

and target motion parameters are listed in Table 5. The con-
stant delay h is set as 1s. The false alarm probability is set as
10−6. The detection probability curves are shown in Fig. 6.
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FIGURE 8. Processing results of the real data. (a) Received data after PC. (b) Integrated Target I in TDCI domain. (c) Integrated Target I in range-Doppler
frequency domain. (d) Integrated Target II in TDCI domain. (e) Integrated Target II in range-Doppler frequency domain. (f) Integration results of Target I
by the proposed algorithm and MTD. (g) Integration results of Target II by the proposed algorithm and MTD.

For the detection probability Pd = 0.9, the required SNR
of the proposed algorithm is about 3 dB higher than that of
GRFT, which is induced by the AF. Accordingly, it asks for
much lower computation cost as illustrated in Section IV-E.
It can be observed that the proposed algorithm has almost
the same detection performance as TDST. However, its
computation burden is much lighter. SAF-SFT algorithm can-
not perform as well as the other three algorithms. That is due
to the application of SAF.

B. PARAMETER ESTIMATION ACCURACY
In this subsection, the parameter estimation accuracy of a
point target by GRFT, the proposed algorithm, TDST, and
SAF-SFT are compared via 500 Monte Carlo runs. The root
mean square error (RMSE) is introduced as an evaluation cri-
terion. The radar parameters and the target motion parameters
are the same as those of the simulation in Section V-A. The
RMSE curves are shown in Fig. 7.

Obviously, thanks to the 3-D searching process, GRFT
has the most superior performance. Accordingly, it requires
the highest computation complexity as illustrated in
Section IV-E. The performances of TDST and the proposed
algorithm are approximately the same. The difference is
that the proposed algorithm asks for much lower compu-
tation complexity. Compared with the proposed algorithm,

SAF-SFT algorithm suffers from 4 dB SNR loss. That is
brought about by the SAF operation.

Combining the results of SectionV-A, B, and Section IV-E,
we conclude that the proposed algorithm can strike a good
balance between computation complexity and anti-noise per-
formance. It can be a good candidate for maneuvering target
detection and parameter estimation.

C. REAL DATA
In this subsection, a set of real measured data is processed to
verify the validity of the proposed algorithm. The real data is
obtained by an outfield experiment near the airport in Xi’an,
China. The data is recorded by an airborne X-band radar
whose parameters are listed in Table 6. Two cooperative cars
denoted as Target I and Target II are tested. The processing
results are shown in Fig. 8.

As shown in Fig. 8 (a), after clutter suppression, one bright
band appears covering the two targets. 500 pulses are selected
for target detection in this experiment. The constant delay h
is 0.5s. As described in Fig. 8 (b) to (e), by the proposed
algorithm, the two targets are detected successfully one by
one with their parameters estimated accurately. Comparing
with the motion parameters given by the vehicle satellite
navigation receivers, we confirm correctness of the detection.

Fig. 8 (f) and (g) show the integration results of the two
targets in range-Doppler frequency domain by the proposed
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TABLE 6. Radar parameters of the real data.

TABLE 7. Output SNRs by the proposed algorithm and GRFT.

algorithm and MTD. Obviously, the proposed algorithm out-
performs MTD. The difference between the peaks is caused
by the uncompensated DFM. Besides, the output SNRs by
the proposed algorithm and GRFT are listed in Table 7.
It can be observed that for these data, the proposed algorithm
reaches the same detection performance as GRFT with lower
computation cost. The processing and result analysis above
demonstrate the validity of the proposed algorithm. And it is
appropriate for the maneuvering target detection and param-
eter estimation.

VI. CONCLUSION
In this article, a novel TDCI based algorithm is proposed for
the maneuvering target detection and parameter estimation.
Based on mathematical analyses and numerical simulations,
the advantages of the proposed algorithm are summarized as
follow: 1) it can effectively eliminate RCM and DFM; 2) it
can effectively cope with the problems of velocity ambigu-
ity, shadow effect, and cross-term with superior resolution;
3) comparedwith several existing algorithms, it strikes a good
balance between computation complexity and anti-noise per-
formance. Moreover, real data processing and result analysis
further verify the effectiveness of the proposed algorithm.

APPENDIX A
Motivated by the reference [38] to [40], we calculate the
output SNR by the discrete form of TDCI algorithm. For the
conciseness, we consider the mono-target scenario. Define
the discrete form of the received noisy target signal as
Sr (n,m) whose SNR is expressed as

SNRin =
A2r
σ 2
r

(44)

where Ar denotes the amplitude of the clean target signal, σ 2
r

denotes the variance of the noise.
By PC, we obtain the discrete form of the noisy signal in

range frequency domain, expressed as

Sf (n,m) = sf (n,m)+ x (n,m) (45)

where sf (n,m) denotes the clean target signal, x (n,m)
denotes the additive zero-mean Gauss white noise.

According to the stationary phase principle, in this domain,
the SNR is expressed as

SNRf =
A2

σ 2 =
Fsη
BN

SNRin (46)

where A denotes the amplitude of the clean target signal, σ 2

denotes the variance of the noise, Fs denotes the sampling
frequency, η denotes the sampling number in the pulse width,
B denotes the bandwidth, N denotes the range gate number.
According to Section IV-D, regardless of the velocity com-

pensation, the discrete noisy target signal by TDCI can be
expressed as

TDCI (q, p, r)

=

∑
n

∑
m

∑
l

Sf

[
n,m+

(
l +

h
2
FP

)]
Sf

[
n,m−

(
l+

h
2
Fp

)]

×exp

{
j2π

nFsN +fc
fc

[
r

((
l
FP
+
h
2

)2

+

(
m
FP

)2
)
+p
(
m
FP

)]}

× exp
(
j2πqn

Fs
N

)
(47)

Suppose the target signal is theoretically integrated at (qr ,
pv, ra) in TDCI domain, the output SNR can be defined as

SNRout =
|TDCIc(qr , pv, ra)|2

var[TDCI (qr , pv, ra)]
(48)

where TDCIc(qr , pv, ra) and TDCI (qr , pv, ra) denote the
clean target signal and the noisy target signal by TDCI algo-
rithm, respectively.
TDCIc(qr , pv, ra) in (48) can be easily calculated, repre-

sented as

TDCIc(qr , pv, ra) =
BM2A2N

2Fs
(49)

whereM denotes the pulse number.
var[TDCI (qr , pv, ra)] in (48) can be obtained by the fol-

lowing relationship, expressed as

var[TDCI (qr , pv, ra)]

= E[TDCI (qr , pv, ra)2]− E[TDCI (qr , pv, ra)]2 (50)

Similar to (49), E[TDCI (qr , pv, ra)] in (50) can be easily
acquired, expressed as

E[TDCI (qr , pv, ra)] =
BM2A2N

2Fs
(51)

Let

s1 = sf (n1,m1 + l1 + 0.5 hFp),

s2 = sf (n1,m1 − l1 − 0.5 hFp),

s3 = sf (n2,m2 + l2 + 0.5 hFp),

s4 = sf (n2,m2 − l2 − 0.5 hFp),

x1 = x(n1,m1 + l1 + 0.5 hFp),

x2 = x(n1,m1 − l1 − 0.5 hFp),

x3 = x(n2,m2 + l2 + 0.5 hFp),
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x4 = x(n2,m2 − l2 − 0.5 hFp),

and

ϕ(n1,m1, l1, n2,m2, l2)

=
ra
fc


(
n1 FsN + fc

) [( l1
FP
+

h
2

)2
+

(
m1
FP

)2]
−
(
n2 FsN + fc

) [( l2
FP
+

h
2

)2
+

(
m2
FP

)2]


+
pv
fc

[(
n1
Fs
N
+ fc

)
m1

FP
−

(
n2
Fs
N
+ fc

)
m2

FP

]
+ qr

Fs
N
(n1 − n2)

Then, the second-order moment E[TDCI (qr , pv, ra)2]
in (50) can be calculated as

E[TDCI (qr , pv, ra)2]

= E{
∑
n2

∑
m2

∑
l2

∑
n1

∑
m1

∑
l1

(s1 + x1)(s2 + x2)

× (s∗3 + x
∗

3 )(s
∗

4 + x
∗

4 )

× exp[j2πϕ(n1,m1, l1, n2,m2, l2)]}

=

∑
n2

∑
m2

∑
l2

∑
n1

∑
m1

∑
l1

×


s1s2s∗3s

∗

4
+s1s∗3E

{
x2x∗4

}
+ s2s∗3E

{
x1x∗4

}
+s1s∗4E

{
x2x∗3

}
+ s2s∗4E

{
x1x∗3

}
+E

{
x1x∗3

}
E
{
x2x∗4

}
+ E

{
x1x∗4

}
E
{
x2x∗3

}


× exp[j2πϕ(n1,m1, l1, n2,m2, l2)]} (52)

The parts in the summation can be calculated by

s1s2s∗3s
∗

4 = A4

s1s∗3E
{
x2x∗4

}
= A2σ 2δ(n1 − n2)δ(m1 − l1 − m2 + l2)

s2s∗3E
{
x1x∗4

}
= A2σ 2δ(n1 − n2)δ(m1+l1 − m2 + l2 + hFP)

s1s∗4E
{
x2x∗3

}
= A2σ 2δ(n1 − n2)δ(m1−l1 − m2 − l2 − hFP)

s2s∗4E
{
x1x∗3

}
= A2σ 2δ(n1 − n2)δ(m1 + l1 − m2 − l2)

E
{
x1x∗3

}
E
{
x2x∗4

}
=σ 4δ(n1−n2)δ(m1+l1−m2−l2)δ(m1−l1−m2+l2)

E
{
x1x∗4

}
E
{
x2x∗3

}
=σ 4δ(n1−n2)δ(m1+l1−m2+l2+hFP)δ(m1−l1−m2−l2−hFP)

(53)

Substituting (53) into (52), yields

E[TDCI (qr , pv, ra)2]

=
B2M4A4N 2

4F2
s

+
BM3NA2σ 2

2Fs
+
BM2σ 4N

2Fs
(54)

Substituting (54) and (51) into (50), yields

var[TDCI (qr , pv, ra)] =
BM3NA2σ 2

+ BM2σ 4N
2Fs

(55)

Substituting (55) and (49) into (48), one has

SNRout =
NB
2Fs

M2SNR2f
MSNRf + 1

(56)

Substituting (46) into (56), one has

SNRout =
M2 Fsη2

BN SNR2in

2
(
M Fsη

BN SNRin + 1
) (57)

APPENDIX B
In order to clearly illustrate the effect of the cross-term, three
cases are discussed. Denote the autocorrelation fold factor
and autocorrelation base band velocity of vi by N i and v0i,
respectively.

Case 1: vi 6= vj or ai 6= aj
In this case,

C1−cross,i,j (f , tm, fτm)

= A3iA3jrect
(
f
B

)
× exp

[
−j2π

(
f + fc
fc

)
41R0 + 41vtm + 21at2m

λ

]
× [P1 (f , tm, fτm)+ P2 (f , tm, fτm)] (58)

where

P1 (f , tm, fτm)

=

∫
exp


j2π

f + fc
fc



(
fτm −

21a
λ

)(
τm +

h
2

)2

+
4∇v
λ

(
τm +

h
2

)
+

4∇a
λ

tm

(
τm +

h
2

)




dτm

(59)

P2 (f , tm, fτm)

=

∫
exp


j2π

f + fc
fc



(
fτm −

21a
λ

)(
τm +

h
2

)2

−
4∇v
λ

(
τm +

h
2

)
−

4∇a
λ

tm

(
τm +

h
2

)




dτm

(60)

Obviously, P1 (f , tm, fτm) and P2 (f , tm, fτm) cannot be
effectively integrated, making the whole cross-term spread in
TDCI domain.

Case 2: vi = vj, ai = aj, n 6= Ni
In this case, 1v = vi,1a = ai, and

C2−n−cross,i,j(f , ftm, fτm)

= 2A3iA3jrect
(
f
B

)
exp

[
−j2π (f + fc)

41R0
c

]
× δ

(
fτm −

2ai
λ

)
× δ

(
f + fc
fc

(
4v0i
λ
− ftm

)
+ f

4 (Ni − n) vab
c

)
(61)

Similar to C2−Nk−others(f , ftm, fτm), due to the 2nd Dirac
delta function, the cross-term cannot be finally accumulated
along f- axis by IFT operation.
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Case 3: vi = vj, ai = aj, n = Ni
In this case, 1v = vi,1a = ai, and

TDCIn−cross,i,j
(
t ′, ftm, fτm

)
= 2A3iA3j exp

[
−j2π

41R0
λ

]
δ

(
fτm −

2ai
λ

)
× δ

(
ftm −

4v0i
λ

)
sin c

[
B
(
t ′ −

41R0
c

)]
(62)

Clearly, under this circumstance, the cross-term can be
accumulated in TDCI domain. Fortunately, both the inte-
grated auto-terms and cross-term reflect the velocity and
acceleration accurately, by which the RCM and DFM are
completely compensated. Afterwards, according to the pro-
cedure of the proposed algorithm, the two targets can be accu-
mulated and detected in range-Doppler frequency domain
simultaneously where no cross-term exists.

In conclusion, combing the three cases, the cross-term
cannot affect the performance of the proposed algorithm and
can be ignored.

REFERENCES
[1] J. Zheng, T. Su, W. Zhu, X. He, and Q. H. Liu, ‘‘Radar high-speed target

detection based on the scaled inverse Fourier transform,’’ IEEE J. Sel. Top.
Appl. Earth Observ. Remote Sens., vol. 8, no. 3, pp. 1108–1119,Mar. 2014.

[2] Z. Sun, X. Li,W.Yi, G. Cui, and L. Kong, ‘‘Detection of weakmaneuvering
target based on keystone transform and matched filtering process,’’ Signal
Process., vol. 140, pp. 127–138, Nov. 2017.

[3] J. Zheng, T. Su, H. Liu, G. Liao, Z. Liu, and Q. H. Liu, ‘‘Radar high-
speed target detection based on the frequency-domain deramp-keystone
transform,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9,
no. 1, pp. 285–294, Jan. 2016.

[4] J. Zhang, T. Su, J. Zheng, and X. He, ‘‘Novel fast coherent detection
algorithm for radar maneuvering target with jerk motion,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 5, pp. 1792–1803,
May 2017.

[5] X. Li, G. Cui, W. Yi, and L. Kong, ‘‘A fast maneuvering target motion
parameters estimation algorithm based on ACCF,’’ IEEE Signal Process.
Lett., vol. 22, no. 3, pp. 265–269, Mar. 2015.

[6] X. Rao, W. Li, J. Xie, J. Su, and H. Tao, ‘‘Long-time coherent integration
detection of weak manoeuvring target via integration algorithm, improved
axis rotation discrete chirp-Fourier transform,’’ IET Radar, Sonar Navigat.,
vol. 9, no. 7, pp. 917–926, Aug. 2015.

[7] P. Huang, G. Liao, Z. Yang, X.-G. Xia, J.-T. Ma, and J. Ma, ‘‘Long-time
coherent integration for weak maneuvering target detection and high-order
motion parameter estimation based on keystone transform,’’ IEEE Trans.
Signal Process., vol. 64, no. 15, pp. 4013–4026, Aug. 2016.

[8] B. D. Carlson, E. D. Evans, and S. L. Wilson, ‘‘Search radar detection and
track with the Hough transform. I. system concept,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 30, no. 1, pp. 102–108, Jan. 1994.

[9] B. D. Carlson, E. D. Evans, and S. L. Wilson, ‘‘Search radar detection
and track with the Hough transform. II. Detection statistics,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 30, no. 1, pp. 109–115, Jan. 1994.

[10] B. D. Carlson, E. D. Evans, and S. L. Wilson, ‘‘Search radar detection
and track with the Hough transform. III. Detection performance with
binary integration,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 1,
pp. 116–125, Jan. 1994.

[11] J. Carretero-Moya, J. Gismero-Menoyo, A. Asensio-Lopez, and
A. Blanco-del-Campo, ‘‘Application of the radon transform to detect
small-targets in sea clutter,’’ IET Radar, Sonar Navigat., vol. 3, no. 2,
pp. 155–166, Apr. 2009.

[12] S. Buzzi, M. Lops, and L. Venturino, ‘‘Track-before-detect procedures
for early detection of moving target from airborne radars,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 41, no. 3, pp. 937–954, Jul. 2005.

[13] P. Huang, G. Liao, Z. Yang, X.-G. Xia, J.-T. Ma, and X. Zhang, ‘‘A fast
SAR imaging method for ground moving target using a second-order
WVD transform,’’ IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4,
pp. 1940–1956, Apr. 2016.

[14] W. Yu, W. Su, and H. Gu, ‘‘Fast method for radar maneuvering target
detection and motion parameter estimation,’’ Multidimensional Syst. Sig-
nal Process., vol. 29, no. 4, pp. 1411–1425, Jul. 2017.

[15] D. Zhu, Y. Li, and Z. Zhu, ‘‘A keystone transform without interpolation for
SAR ground moving-target imaging,’’ IEEE Geosci. Remote Sens. Lett.,
vol. 4, no. 1, pp. 18–22, Jan. 2007.

[16] S.-S. Zhang, T. Zeng, T. Long, and H.-P. Yuan, ‘‘Dim target detection
based on keystone transform,’’ in Proc. IEEE Int. Radar Conf., May 2005,
pp. 889–894.

[17] X. Rao, H. Tao, J. Su, X. Guo, and J. Zhang, ‘‘Axis rotationMTD algorithm
for weak target detection,’’ Digit. Signal Process., vol. 26, pp. 81–86,
Mar. 2014.

[18] X. Rao, T. Zhong, H. Tao, J. Xie, and J. Su, ‘‘Improved axis rotation
MTD algorithm and its analysis,’’Multidimensional Syst. Signal Process.,
vol. 30, no. 2, pp. 885–902, Apr. 2019.

[19] J. Xu, J. Yu, Y.-N. Peng, and X.-G. Xia, ‘‘Radon-Fourier transform for
radar target detection, I: Generalized Doppler filter bank,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 47, no. 2, pp. 1186–1202, Apr. 2011.

[20] J. Xu, J. Yu, Y.-N. Peng, and X.-G. Xia, ‘‘Radon-Fourier transform for
radar target detection (II): Blind speed sidelobe suppression,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2473–2489, Oct. 2011.

[21] J. Yu, J. Xu, Y.-N. Peng, and X.-G. Xia, ‘‘Radon-Fourier transform for
radar target detection (III): Optimality and fast implementations,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 991–1004, Apr. 2012.

[22] X. L. Xiaolong Li, G. C. Guolong Cui, W. Y. Wei Yi, and L. K. L. Kong,
‘‘An efficient coherent integration method for maneuvering target detec-
tion,’’ in Proc. IET Int. Radar Conf., Hangzhou, China, 2015, pp. 1–6.

[23] X. Rao, H. Tao, J. Su, J. Xie, and X. Zhang, ‘‘Detection of constant radial
acceleration weak target via IAR-FRFT,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 51, no. 4, pp. 3242–3253, Oct. 2015.

[24] T. Abatzoglou and G. Gheen, ‘‘Range, radial velocity, and acceleration
MLE using radar LFM pulse train,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 34, no. 4, pp. 1070–1084, Oct. 1998.

[25] X. Chen, J. Guan, N. Liu, and Y. He, ‘‘Maneuvering target detection via
radon-fractional Fourier transform-based long-time coherent integration,’’
IEEE Trans. Signal Process., vol. 62, no. 4, pp. 939–953, Feb. 2014.

[26] X. Li, G. Cui, W. Yi, and L. Kong, ‘‘Coherent integration for maneuvering
target detection based on radon-Lv’s distribution,’’ IEEE Signal Process.
Lett., vol. 22, no. 9, pp. 1467–1471, Sep. 2015.

[27] M.-Q. Li, J. Xu, X. Zhou, L.-C. Qian, T. Long, and M.-M. Bian, ‘‘OTHR
highly maneuvering target detection via generalized randon-Fourier trans-
form,’’ in Proc. CIE Int. Conf. Radar (RADAR), Guangzhou, China,
Oct. 2016, pp. 1–4.

[28] J. Xu, X.-G. Xia, S.-B. Peng, J. Yu, Y.-N. Peng, and L.-C. Qian, ‘‘Radar
maneuvering target motion estimation based on generalized radon-Fourier
transform,’’ IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6190–6201,
Dec. 2012.

[29] X. Li, Z. Sun, W. Yi, G. Cui, L. Kong, and X. Yang, ‘‘Computationally
efficient coherent detection and parameter estimation algorithm formaneu-
vering target,’’ Signal Process., vol. 155, pp. 130–142, Feb. 2019.

[30] J. Zheng, H. Liu, J. Liu, X. Du, and Q. H. Liu, ‘‘Radar high-speed maneu-
vering target detection based on three-dimensional scaled transform,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 8,
pp. 2821–2833, Aug. 2018.

[31] K. Jin, G. Li, T. Lai, T. Jin, and Y. Zhao, ‘‘A novel long-time coherent
integration algorithm for Doppler-ambiguous radar maneuvering target
detection,’’ IEEE Sensors J., vol. 20, no. 16, pp. 9394–9407, Aug. 2020.

[32] K. Jin, T. Lai, Y. Wang, G. Li, and Y. Zhao, ‘‘Radar coherent detection for
Doppler-ambiguous maneuvering target based on product scaled periodic
Lv’s distribution,’’ Signal Process., vol. 174, Sep. 2020, Art. no. 107617.

[33] J. Zheng, J. Zhang, S. Xu, H. Liu, and Q. H. Liu, ‘‘Radar detection and
motion parameters estimation of maneuvering target based on the extended
keystone transform (July 2018),’’ IEEE Access, vol. 6, pp. 76060–76074,
2018.

[34] J. Zheng, T. Yang, H. Liu, T. Su, and L. Wan, ‘‘Accurate detection and
localization of UAV swarms-enabled MEC system,’’ IEEE Trans. Ind.
Informat., early access, Aug. 11, 2020, doi: 10.1109/TII.2020.3015730.

[35] J. Zheng, H. Liu, and Q. H. Liu, ‘‘Parameterized centroid frequency-
chirp rate distribution for LFM signal analysis and mechanisms of con-
stant delay introduction,’’ IEEE Trans. Signal Process., vol. 65, no. 24,
pp. 6435–6447, Dec. 2017.

[36] X. Li, L. Kong, G. Cui, and W. Yi, ‘‘CLEAN-based coherent integration
method for high-speed multi-targets detection,’’ IET Radar, Sonar Navi-
gat., vol. 10, no. 9, pp. 1671–1682, Dec. 2016.

VOLUME 8, 2020 188333

http://dx.doi.org/10.1109/TII.2020.3015730


L. Zhao et al.: Maneuvering Target Detection Based on TDCI

[37] X. Lv, G. Bi, C. Wan, and M. Xing, ‘‘Lv’s distribution: Principle, imple-
mentation, properties, and performance,’’ IEEE Trans. Signal Process.,
vol. 59, no. 8, pp. 3576–3591, Aug. 2011.

[38] S. Barbarossa, ‘‘Analysis of multicomponent LFM signals by a combined
Wigner-Hough transform,’’ IEEE Trans. Signal Process., vol. 43, no. 6,
pp. 1511–1515, Jun. 1995.

[39] D. Li, M. Zhan, J. Su, H. Liu, X. Zhang, and G. Liao, ‘‘Performances
analysis of coherently integrated CPF for LFM signal under low SNR and
its application to ground moving target imaging,’’ IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 11, pp. 6402–6419, Nov. 2017.

[40] P.Wang, H. Li, I. Djurovic, andB.Himed, ‘‘Integrated cubic phase function
for linear FM signal analysis,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 46,
no. 3, pp. 963–977, Jul. 2010.

LANGXU ZHAO received the B.S. degree from the
School of Electronic Engineering, Xidian Univer-
sity, Xi’an, China, in 2015. He is currently pursu-
ing the Ph.D. degree with the National Laboratory
of Radar Signal Processing, Xidian University.

His research interests include maneuvering
target enhancement, detection, and parameters
estimation.

HAIHONG TAO received the M.S. and Ph.D.
degrees from the School of Electronic Engineer-
ing, Xidian University, Xi’an, China, in 2000 and
2004, respectively.

She is currently a Professor with the School
of Electronic Engineering, Xidian University. Her
research interests include radar signal processing
and array signal processing.

WEIJIA CHEN received the B.S. degree from
Xidian University, Xi’an, China, in 2018, where
he is currently pursuing the M.S. degree with the
National Laboratory of Radar Signal Processing.

His research interests include passive radar and
moving target detection.

188334 VOLUME 8, 2020


