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ABSTRACT In this paper, two noniterative direction-of-arrival (DOA) estimation algorithms of noncircular
signals in nonuniform noise environment are proposed. Different from the mainstream nonuniform iterative
algorithm, the algorithms we proposed in this paper could attain DOA estimation effectively in nonuniform
noise environment without iterative and convex optimization processing. In the direct removal of nonuniform
noise (DRONN) method, the noise subspace is estimated by using special processing of the array output
covariance matrix, moreover, it does not require to estimate the noise covariance matrix. On the other hand,
the piecewise estimation of nonuniform noise (PEONN) method first estimates the noise covariance matrix,
and the noise subspace used in this process is estimated by using the DRONN method, then the generalized
eigendecomposition (GED) is used to estimate the noise covariancematrix. The above two proposedmethods
are able to suppress the interference of nonuniform noise effectively, and accurately estimate DOA without
iterative processing. In addition, the two proposedmethods use the reduced-dimensional noncircular multiple
signal classification (RD-NC-MUSIC) algorithm to estimate DOAwithout complex two-dimensional spatial
search, and they can effectively reduce the computational complexity. The effectiveness of the two proposed
methods are proved via the simulation results.

INDEX TERMS Direction-of-arrival (DOA) estimation, noncircular signal, nonuniform noise, noniterative
estimation.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation has become an essen-
tial and indispensable branch of array signal process-
ing [1]–[13], which is extensively applied in detections,
underwater acoustics, wireless communications, locations,
tracking [5] and assistant vehicle localizations [6]. With
the rapid development of array signal processing, a num-
ber of classical DOA estimation algorithms have been pro-
posed, such as parametric subspace-based method [7], sparse
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representation-based approaches [8] and beamforming-based
algorithm [9]. Subspace-based algorithms are an important
milestone of DOA estimation algorithm, which has been
deeply studied by many scholars, and many innovative meth-
ods have been proposed, such as multiple signal classification
(MUSIC) [10], estimation of signal parameters via rotational
invariance techniques (ESPRIT) [11], Capon [12] and max-
imum likelihood (ML) [13]. In recent years, sparse signal
recovery (SSR) techniques have developed rapidly, and a lot
of SSR-based DOA estimation methods have been proposed.
For example, a reweighted regularized sparse recovery algo-
rithm has been proposed in [14], which optimizes the DOA
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estimation in the case of unknown mutual coupling. In addi-
tion, a robust weighted subspace fittingDOA estimation algo-
rithm has been proposed in [15], which transforms the DOA
estimation problem into a block sparse recovery problem and
effectively avoids the problem of mutual coupling. These
algorithms mentioned above assume that signal sources are
circular signals, inwhich its corresponding elliptic covariance
matrix tends to zero. However, for the noncircular signals,
its elliptical covariance matrix o is not zero, which makes it
possible to utilize of the information to achieve accurate DOA
estimation.

Many complex noncircular signals are applied to practical
communication and radar systems, such as BPSK, MSK, and
UQPSK signals [16]. With further studying the property of
noncircular signal, noncircular signals have occupied a more
and more essential position in DOA estimation. The noncir-
cular multiple signal classification (NC-MUSIC) algorithm
has been proposed in [17], and it takes advantage of the
noncircularity of the signals to expand the array aperture
and improve the estimation accuracy. However, large-scale
spectral peak search results in extremely high computational
complexity of the algorithm. To address the problem, the
noncircular root MUSIC (NC-Root-MUSIC) algorithm has
been proposed in [18], which does not require a large-scale
spectral peak search. As a result, the computational complex-
ity is reduced remarkably. On the other hand. The reduced
dimensional NC-MUSIC (RD-NC-MUSIC) algorithm has
been proposed in [19], which can estimate DOA without
two-dimensional search, thus has lower computational com-
plexity. In recent years, many excellent algorithms have
been proposed. An improved noncircular rotational invari-
ance propagator method (NC-RI-PM) algorithm has been
proposed in [20], which optimizes the insufficient angle esti-
mation of NC-RI-PM algorithm, and realizes the automatic
pairing between the elevation and noncircular phase. How-
ever, the algorithm still has high computational complexity.
In [21], a noncircular signal angle estimation algorithm based
on PM and Euler transform is proposed to further reduce the
computational complexity. It uses Euler transform to convert
complex numbers into real numbers, and reconstructs the out-
put of the extended array. Then the computational complexity
is greatly reduced, and the performance is similar to that of
the improved NC-RI-PM algorithm. In addition, in order to
address the issue of DOA estimation of noncircular signals
in MIMO system, a combined spatial spectrum method has
been proposed in [22]. However, all the methods introduced
above only consider the uniform noise. In the environment
of nonuniform noise, the above subspace-based algorithms
cannot correctly separate the noise subspace from the signal
subspace. Consequently, the DOA estimation algorithms are
invalid.

Nonidentical sensor noise powers will lead to nonuniform
noise, and the noise covariance matrix is with different diag-
onal elements [23], [24]. In recent years, in order to address
the problem of DOA estimation in nonuniform noise envi-
ronment, a variety of methods have been proposed [23]–[28].

A deterministic ML estimator has been proposed in [23], and
its implementation is based on iterative process. A stochastic
ML estimator has been proposed in [24], which used a sim-
ilar concept of stepwise concentration and iterative process.
It enriched the understanding of nonuniform ML estimator,
and expanded the scope of application of the estimator in [23].
However, due to the complexity of the iterative process, the
two algorithms are hard to use in hardware implementa-
tion. Then in order to reduce the computational complexity,
some optimized iterative algorithms are proposed, such as
the algorithms proposed in [25], [26], then the computa-
tional complexity is further reduced. Based on the principle
of least square (LS) minimization of signal subspace and
noise covariance matrix, a simple iterative process has been
proposed in [25]. It converges in a few iterations, and the
closed estimates of signal subspace and noise covariance
matrix could be obtained in each iteration. Two iterative
subspace estimation methods with low complexity have been
proposed in [26], which include iterative maximum likeli-
hood subspace estimation (IMLSE) and iterative least squares
subspace estimation (ILSSE). In the procedure of two algo-
rithm, the signal subspace and noise covariance matrix could
be calculated in closed form in each iteration. Compared
with the traditional iterative algorithms, they greatly reduce
the computational complexity through closed form calcula-
tion. However, the high computational complexity generated
by the iterative process has not been fundamentally solved.
Then a unitary matrix completion (UMC) method has been
proposed in [27], this method uses convex optimization to
estimate DOA. Its computational complexity is better than
that of iterative algorithm [26], but it is still on the high
side. In order to further reduce the computational complexity,
a noniterative subspace-based DOA estimation method has
been proposed in [28]. The algorithm removes the nonuni-
form noise through two stages. The first step is to estimate
the noise subspace through the GED of the appropriately
designed matrix, and the estimation is completed without
knowing the noise covariance matrix. In the next step, we use
the result of the first stage to calculate the noise covariance
matrix appropriately, then the noise subspace is estimated
by GED of the output array covariance matrix and the noise
covariance matrix. The algorithm has no iterative processes
and greatly reduces the computational complexity. However,
all of these algorithms mentioned above have not sufficiently
considered the noncircularity of noncircular signal.

In this paper, in order to address the issue of DOA
estimation of noncircular signals in nonuniform noise, two
noniterative DOA estimation methods are proposed. The pro-
posed methods do not need iterative and convex optimiza-
tion processes to achieve DOA estimation. In the DRONN
method, according to the noncircularity of the signal, we use
the received data matrix and its conjugation to extend the
received data matrix, and then the noise subspace is estimated
by removing the diagonal elements of the covariance matrix.
It can remove the effect of nonuniform noise on covariance,
but also lose some signal data. The PEONN method applies
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GED to the output covariance matrix and noise covariance
matrix for estimating the accurate noise covariance matrix,
then more accurate noise subspace is achieved. Two proposed
methods not only enlarge the virtual array aperture, but also
they do not need iterative and convex optimization processes.
The simulation results are used to verify that the proposed
methods have better performance and lower complexity over
the existing methods.

The structure of this paper is shown as follows. The non-
circular signal model in nonuniform noise is manifested in
Section II. The DRONN method and PEONN method are
proposed in Section III. The simulation results are introduced
and analyzed in Section IV. The conclusion is manifested in
Section V.

Notation: E {.} denotes the mathematical expectation.
(.)T , (.)H , (.)−1 and (.)∗ denote the transpose, conjugate-
transpose, inverse and conjugate. diag {.} denotes the diago-
nal matrix. |.| denotes the absolute value operator. IK denotes
a K × K dimensional unit matrix.

II. SIGNAL MODEL
In this paper, we assume that there are M sensors to receive
L(L < M ) noncircular signals from the far field, and the
span between contiguous sensors is set to be one-half of the
wavelength. The signal observed by the array at time t could
be expressed as [23]

x(t) = As(t)+ n(t) (1)

where x(t) is the received data vector,A = [a(θ1), · · · , a(θL)]
∈ CM×L is the manifold matrix, and its column are manifold
vector a(θi) = [1, ejπ sin θi , · · · , ejπ (M−1) sin θi ]T i = 1, · · · ,L,
s(t) ∈ CL×1 is the signal vector and n(t) ∈ CM×1 is the
nonuniformGaussian noise vector. It is worthmentioning that
the noncircular signal vector satisfies with

s(t) = 8sR(t) (2)

where 8 = diag
{
e−jϕ1 , e−jϕ2 , · · · , e−jϕL

}
∈ CL×L is the

diagonal matrix containing the noncircularity phase ϕ =
[ϕ1, ϕ2 · · ·ϕL], and sR(t) ∈ RL×1 is the real part of noncir-
cular signal, then the received data in (1) can be rewritten as

X = AS+ N (3)

where X = [x(t1), · · · , x(tN )] ∈ CM×N is the received data
matrix, S = 8SR ∈ CL×N is the noncircular signal
matrix, where N is the number of snapshots, and SR =
[sR(t1), · · · , sR(tN )] ∈ CL×N , N = [n(t1), · · · ,n(tN )] ∈
CM×N is the nonuniform Gaussian noise matrix. Noncircular
signals have real components and their conjugations are equal
to themselves. Utilizing this property, we use the received
data matrix X and its conjugation X∗ to reconstruct the
received data vector as

Z =
[
X
X∗

]
=

[
A8
A∗8∗

]
SR +

[
N
N∗

]
(4)

The output covariance matrix is

R = E{ZZH } =
[
A8
A∗8∗

]
P
[
A8
A∗8∗

]H
+Q (5)

where R ∈ C2M×2M and P = E{SRSHR } ∈ CL×L is
the covariance matrix of the real-valued signal SR. The
signal model in this paper uses the property of noncir-
cular signals to expand the data model of array aper-
ture doubling, then the accuracy and performance of DOA

could be greatly improved. Q = E

{[
N
N∗

] [
N
N∗

]H}
=

diag
{
σ 2
1 , · · · , σ

2
M , σ

2
1 , · · · , σ

2
M

}
∈ C2M×2M is the noise

covariance matrix, where σ 2
1 , · · · , σ

2
M are different noise

powers of the sensors. Different from the covariancematrix of
uniform noise, the diagonal elements of the covariancematrix
of nonuniform noise are different, which greatly increases the
difficulty of removing noise interference. In order to facilitate

calculation, we assume B =
[
A8
A∗8∗

]
∈ C2M×L, then (5)

can be written as

R = BPBH +Q (6)

III. NEW PROPOSED ALGORITHMS
In this part, the DRONN algorithm is introduced in Section A,
then the PEONN algorithm is introduced in Section B.
The RD-NC-MUSIC for DOA estimation is introduced in
Section C and the summary is given in Section D.

A. THE DRONN ALGORITHM
Due to the interference of nonuniform noise, the signal
subspace and noise subspace cannot be separated correctly.
If the nonuniform noise interference is removed, the noise
subspace can be estimated. Based on the principle of remov-
ing the influence of nonuniform noise in [28], we extend it
to eliminate the interference of nonuniform noise in noncir-
cular signal model. First, the output data covariance matrix is
rewritten as

R = R1 + R2 (7)

where

[R1]i,k =

{
[R]i,k , i 6= k
0, i = k

(8)

and

R2 = diag
{
[R]1,1 , · · · [R]M ,M , [R]1,1 , · · · [R]M ,M

}
= diag

{
L∑
k=1

sk + σ 2
1 , · · ·

L∑
k=1

sk + σ 2
M ,

L∑
k=1

sk + σ 2
1

, · · ·

L∑
k=1

sk + σ 2
M

}
(9)

where sk is the received power of the k th source, because

B =
[
A8
A∗8∗

]
is an 2M × L matrix, and it is full rank, and
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there are 2M−L orthonormal vectors ul, l = 1, · · · , 2M−L
satisfying the following homogeneous equation

BHul = 0 (10)

where 0 is a zero vector. Applying this homogeneous equation
to (6), and multiplying ul to both sides on the right, we can
obtain

Rul = BPBHul+Qul= Qul l = 1, · · · , 2M − L (11)

substituting (7), (8), (9) and (10) into (11), we have

R1ul = (Q− R2)ul = −

(
L∑
k=1

sk

)
ul (12)

then we assume that there is an 2M×1 vector d and a constant
λ, and it satisfies the following conditions

BPBHd 6= 0,R1d = λd (13)

then we obtain

Rd = R1d+ R2d

= λd+ R2d (14)

then substituting (6) into (14), we could obtain

BPBHd = λd+ (R2 −Q)d

=

(
λ+

L∑
k=1

sk

)
d (15)

as shown in (15), d is proved to be the eigenvector of BPBH ,

and its corresponding eigenvalues are λ+
L∑
k=1

sk . In order to

satisfy the condition (13), the matrix BPBH has L positive
eigenvalues, we obtain

λ+

L∑
k=1

sk > 0⇒ λ > −

L∑
k=1

sk (16)

which indicates that the eigenvalues corresponding to ul,
l = 1, · · · , 2M − L are the lower bound on the smallest
eigenvalues. By using (12), the vectors ul, l = 1, · · · , 2M−L
is composed of the noise subspace. Then the noise subspace
is achieved by applying eigendecomposition to R1, which is
without the interferences of nonuniform noise.

B. THE PEONN ALGORITHM
The purpose of DRONN algorithm is to estimate the noise
subspace without estimating the noise covariance matrix.
Although the interference of nonuniform noise is removed,
due to the direct removal of the diagonal elements of R, part
of the signal data information are lost. In this part, referring
to [28], we extend the idea to estimate noise covariancematrix
in noncircular signal model. First, the noise covariancematrix
Q could be rewritten as

Q = σ 2I+Qnum (17)

where σ 2 is the common part of sensor noise power. Qnum
is a diagonal matrix and the rank of Qnum is 2M − 1, and
the position in Qnum corresponding to the smallest diagonal
element of R is 0. Then Qnum is estimated by using the
minimum diagonal element of R, we obtain

Qnum = diag
{
[R]1,1 − c, · · · , [R]M ,M − c

}
(18)

where c is equal to the smallest diagonal element of the output
covariance matrix, which is expressed as c1. The position of
c1 in R is k . Then we assume there is a 2M × 1 unit vector ek

[ek ]i =

{
0, i 6= k
1, i = k

(19)

where eTk Qnun = 0. Then multiplying eTk to both sides
of (11) on the left. By using (17), and expressing ul, l =
1, · · · , 2M − L in the form of a matrix as U, we obtain

eTk RU = eTk (σ
2I+Qnum)U

= σ 2eTk U (20)

by using the results of the DRONN method, σ 2 can be com-
puted as

σ 2
=

∣∣∣∣∣eTk RUUHek
eTk UU

Hek

∣∣∣∣∣ (21)

According to [25], it has been shown that the noise subspace
could be obtained by applying GED to R and Q. Then using
(18), (19) and (21), a more accurate Q can be estimated.

C. REDUCED-DIMENSIONAL NC-MUSIC
In this part, we use one-dimensional search to esti-
mate the DOA. Different from the NC-MUSIC algo-
rithm and 2D-NC-MUSIC algorithm commonly used in
noncircular signal DOA. RD-NC-MUSIC [19] only needs
one-dimensional search, and it does not need to estimate the
noncircular phase, which makes it achieve lower computa-
tional complexity, it can be expressed as

PRD−NC−MUSIC (θ ) = eH
(
CHUNUH

NC
)−1

e (22)

where C =

[
a 0M×1
0M×1 a

]
and e =

[
e−jϕ

ejϕ

]
.

As shown in [19], RD-NC-MUSIC algorithm has excellent
performance.

D. SUMMARY
The DRONN algorithm is summarized in TABLE 1 and the
PEONN algorithm is summarized in TABLE 2

IV. SIMULATION RESULTS
In this section, we have carried out all sorts of simulation
trails to evaluate the performance of the proposed methods
in this paper. The proposed methods are compared with
the NC-MUSIC method [17], the UMC method [27], and
the method in [28], and referring to [28], we re-derived
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TABLE 1. The key steps of the dronn method.

TABLE 2. The key steps of the peonn method.

FIGURE 1. The Spatial spectrum of comparative methods and proposed
methods (M = 8, θ1 = −3, θ2 = 6, SNR = −3, N = 400).

the Cramer-Rao bound (CRB) of noncircular sources in
nonuniform noise. We assume that sensors number of ULA is
M = 8, and the desired DOAs are θ1 = −3 and θ2 = 6. Then
the root mean square error (RMSE) is utilized to evaluate the
performance of the algorithm, and in this paper, its form is
defined as

RMSE =
1
K

K∑
k=1

√√√√ 1
100

100∑
i=1

(
θ̃i,k − θk

)2
(23)

where θ̃i,k is the ith Monte Carlo trial of the kth signal eleva-
tion θk estimated value. In these simulations, we choose 100
as the number of the Monte Carlo trials for both comparative
methods and proposed methods.

Fig. 1 shows the spatial spectrum of comparative methods
and proposed methods. From Fig.1, it can be observed that
the reference methods have poor performance in noncircular
signal model and nonuniform noise environment, because the

FIGURE 2. The RMSE versus SNRs for comparative methods and proposed
methods (M = 8, N = 400).

algorithm does not take advantage of the noncircularity of
the signal. The NC-MUSICmethod cannot correctly estimate
noise subspace in nonuniform noise environment; thus it is
unable to produce two distinct peaks. The proposed methods
improve the accuracy of angle estimation by taking advantage
of the noncircularity of signal, and solve the problem of
subspace estimation in nonuniform noise environment. Thus
the proposed methods have much sharper peaks and lower
sidelobe than comparative methods.

Fig. 2 shows the RMSE versus SNRs with comparative
methods and proposedmethods and the CRB, where the num-
ber of snapshot N is selected as 400, and the SNR increases
from−10dB to 8dB, and each step is 3dB. Fig. 2 depicts that
with the increasing of the SNR, the RMSE of all methods
decreases and the proposed methods are closer to the CRB
in the whole SNR range. The proposed methods have lower
RMSE in the whole SNR range than the UMC method, the
NC-MUSICmethod and the method in [28]. The main reason
is that the methods that we proposed exploit the noncircular
signal property and remove the interferences of nonuniform
noise. In addition, when the SNR>-1dB, the performance of
NC-MUSIC method is better than that of the UMC method.
When the SNR>4db, the performance of NC-MUSICmethod
is better than that of the method in [28]. The main reason is
that NC-MUSIC method has poor interference suppression
to noise. With the increasing of SNR and the weakening of
noise interference, the performance of NC-MUSIC method
becomes better, UMC method is an ESPRIT based method,
and the performance of ESPRIT based method is not as good
as that of MUSIC class method in the case of high SNR.

Fig. 3 shows the probability of successful detection (PSD)
versus the SNR with comparative methods and proposed

methods. The PSD could be expressed by
∣∣∣θk − θ̂k ∣∣∣ < 0.5

◦

,

where θk is the expected DOA, and θ̂ is the estimated DOA.
Then N is selected as 400, the SNR increases from -10dB
to 8dB, and each step is 3dB. Fig. 3 depicts that with the
increasing of the SNR, the PSD increases, it indicates that
the estimation performance of both comparative methods and
proposed methods tend to be ideal. It is proved from Fig. 3
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FIGURE 3. The PSD versus SNRs for comparative methods and proposed
methods (N = 400).

FIGURE 4. The RMSE versus the number of snapshots for comparative
methods and proposed methods (M = 8, SNR = −3dB).

that the proposed methods will obtain 100% PSD at a low
SNR, which proves that the proposed methods are excellent
in suppressing noise interference.

Fig. 4 draws the RMSE versus the number of snap-
shots with comparative methods and proposed methods and
the CRB. The SNR is selected as -3dB, and N increases
from 50 to 1100, and each step is 100. Fig. 4 depicts that
with the increasing of the number of snapshots, the RMSE
decreases and the proposed methods have lower RMSE in the
whole selected snapshots range. It proves that the proposed
methods have obvious advantages over other comparison
methods in estimation accuracy and performance, whether
in small or large number of snapshots, which is caused by
exploiting the extended array aperture.

Fig. 5 shows the PSD versus the number of snapshots. The
SNR is selected as -3dB, andN increases from 50 to 1100, and
each step is 100. Fig. 5 depicts that with the increasing of the
number of snapshots, the PSD increases. Since the proposed
methods extended array aperture, the PSD of the proposed
methods will achieve 100% at a low snapshot.

Fig. 6 draws the RMSE versus WNPRs with compara-
tive methods and proposed methods, where the WNPR =
σ 2
max
/
σ 2
min is the worst noise power ratios, and σ

2
max denotes

FIGURE 5. The PSD versus the number of snapshots for comparative
methods and proposed methods (SNR = −3dB).

FIGURE 6. The RMSE versus WNPRs for comparative methods and
proposed methods (SNR = −3dB, N = 400).

FIGURE 7. Simulation time versus Trial Number comparative methods
and proposed methods (SNR = −3dB, N = 400).

the maximal noise power and σ 2
min denotes the minimal noise

power. In this part, the WNPR is ranged from 20 to 40, and
the influence of nonuniform noise could be mitigated by the
UMC method, the method in [28] and the proposed methods.
We can see that the performance of the DRONNmethod is not
as good as that of the UMC method and the method in [28].
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FIGURE 8. Simulation time versus Trial Number for comparative methods
and proposed methods (SNR = −3dB, N = 400).

This is because that the DRONN method will lose part of the
signal data while removing the interference of nonuniform
noise. It is shown that the performance of the PEONNmethod
is better than that of comparison methods, which proves the
PEONN method has excellent ability to remove nonuniform
noise.

Fig. 7 and Fig. 8 show the simulation time versus Trial
Number with the proposed methods and the UMC method.
It is seen that the proposedmethods have lower computational
complexity. In order to expand the array aperture, the pro-
posed methods require a certain computational complexity,
but without iterative and convex optimization processes. The
proposed methods can achieve DOA estimation in a shorter
time.

V. CONCLUSION
In this paper, two DOA algorithms for noncircular signals
are proposed in nonuniform noise environment. The DRONN
method directly removes the diagonal elements of the data
covariance matrix including nonuniform noise interference,
and then calculates the noise subspace by GED. This method
does not need to estimate the nonuniform covariance matrix.
The PEONN method estimates the nonuniform covariance
matrix first, and then the noise subspace is solved by GED of
the output array covariance matrix and the noise covariance
matrix. Both of them are noniterative methods, which lead to
lower computational complexity. Simulation results have ver-
ified that the methods we proposed have better performance
than the existing methods.
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