
Received October 6, 2020, accepted October 7, 2020, date of publication October 14, 2020, date of current version October 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031055

CNN Acceleration With Hardware-Efficient
Dataflow for Super-Resolution
SUMIN LEE , (Graduate Student Member, IEEE),
SUNGHWAN JOO , (Graduate Student Member, IEEE),
HONG KEUN AHN , (Graduate Student Member, IEEE),
AND SEONG-OOK JUNG , (Senior Member, IEEE)
School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea

Corresponding author: Seong-Ook Jung (sjung@yonsei.ac.kr)

This work was supported by the Samsung Research Funding and Incubation Center for Future Technology under Grant SRFC-IT1802-06.

ABSTRACT The convolutional neural network (CNN)-based super-resolution (SR) has shown outstanding
performance in the field of computer vision. The implementation of inference hardware for CNN-based
SR has suffered from the intensive computation with severely unbalanced computation load among layers.
Various light-weighted SR networks have been researched with little performance degradation. However,
the hardware-efficient dataflow is also required to efficiently accelerate inference hardware within limited
resources. In this article, we propose the hardware-efficient dataflow of CNN-based SR that reduces
computation load by increasing data reuse and increases process element (PE) utilization by balancing
the computation load among layers for high throughput. In the proposed dataflow, row-wise pixels in the
receptive field are computed by circularly shifting memory addresses to maximize data reuse. The partial
convolution is exploited in a layer-based pipeline architecture to relieve intensive computation in a single
pipeline stage. The delay-balancing with adjusting parallelism is employed for balancing computations
precisely in the overall layers. Furthermore, the inference hardware of CNN-based SR is implemented
for 4K ultrahigh definition at 60 fps on a field-programmable gate array (FPGA). For hardware-friendly
computation, the quantization of activation and weight is adopted. The proposed hardware shows an average
peak signal-to-noise ratio of 36.42 dB in the Set-5 dataset with a memory usage of 53 KB and an average
PE utilization of 76.7% in the overall layers. Thus, it achieves the lowest memory usage and highest PE
utilization compared with other inference hardware for CNN-based SR.

INDEX TERMS Convolutional neural network, dataflow, field-programmable gate array, inference hard-
ware, 4K ultrahigh definition, process element utilization, super-resolution.

I. INTRODUCTION
Ultrahigh definition (UHD) video resolution has recently
been supported byUHD television (TV), internet protocol TV
(IPTV), and high-end smartphones. Although UHD resolu-
tion (3840 × 2160) provides more immersive visualization
than full high-definition (FHD), the use of UHD contents
is still limited because legacy contents have already been
produced at low resolution (LR), and most video contents are
still produced at FHD resolution (1920 × 1080). Therefore,
a real-time-based up-scaling technique from FHD resolution
or lower resolutions to UHD resolution is required in edge
devices [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

The conventional up-scaling technique is bicubic interpo-
lation, which generates high-resolution (HR) images using
adjacent pixel data. In this technique, the empty pixel is
filled by the estimated values using the weights of the dis-
tance between adjacent pixels. The conventional technique
is simple and can be easily implemented using hardware.
However, its performance is low because it is vulnerable to
the noise occurring in the up-scaling process. Hence, artificial
intelligence (AI) has been adopted in the up-scaling technique
to resolve this problem.

Several deep learning architectures based on AI algo-
rithms have recently been developed in the field of com-
puter vision. Especially, the convolutional neural network
(CNN) has demonstrated outstanding performance in com-
puter vision processing areas, such as super resolution (SR),

187754
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6782-7457
https://orcid.org/0000-0003-0535-7853
https://orcid.org/0000-0001-6101-5386
https://orcid.org/0000-0003-0757-2581
https://orcid.org/0000-0003-3181-4480


S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

image classification, and object detection. In particular,
CNN-based SR has shown better performance than bicubic
interpolation for up-scaling from LR to HR images because
it is pre-trained through machine learning with several train-
ing sets for performance improvement [3]–[8]. However,
its real-time implementation with hardware has limitations
because excessive computation and memory capacity are
required [28], [29]. Consequently, several lightweight ver-
sions of CNN-based SR such as fast super-resolution CNN
(FSRCNN) and FSRCNN-s (a small model size version of
FSRCNN) have been proposed to reduce data process com-
plexity [3], [7], [8]. These SR networks have shorter layers
and fewer weight parameters, which are suitable for hardware
implementation. However, it is still difficult to implement
FSRCNN and FSRCNN-s with hardware because a large
number of frame buffers that store feature map data and
excessive computations with complex dataflow are required.
In addition, the computation load is severely unbalanced
among the layers, which degrades the process element (PE)
utilization in the pipeline architecture [29], [32].

Thus, inference hardware for CNN-based SR requires
highly efficient dataflow as well as the lightweight SR net-
work to mitigate these restrictions on hardware implemen-
tation. Highly efficient dataflow increases data reuse and
PE utilization, leading to the achievement of the target sys-
tem throughput with fewer hardware resources [9]–[15],
[30]. Therefore, the research on dataflow optimization is
demanded for hardware-efficient acceleration.

This article aims to implement the inference hardware
of CNN-based SR with hardware-efficient dataflow. The
dataflow is optimized in the layer-based pipeline architecture.
A circularly shifted dataflow in the row-wise receptive field is
proposed for reducing the required memory capacity. In addi-
tion, a partial convolution in the compute-intensive layer and
delay balancing in the overall layers using parallel computing
factors are proposed for maximizing the PE utilization.

The remainder of this article is organized as follows:
The proposed CNN-based SR networks and suitable archi-
tectures for hardware implementation are introduced in
Section II. The memory-efficient dataflow with high PE uti-
lization is proposed for the layer-based pipeline architecture
in Section III. Section IV describes the proposed hardware
architecture composed of multiply–accumulate (MAC) cores
and dual-port memory. The experimental results for bit pre-
cision analysis, SR performance, and hardware architecture
are presented in Section V. Finally, this article is concluded
in Section VI.

II. PREVIOUS WORKS
Several SR networks have been developed based on the
CNN structure. Although these networks have outstand-
ing performance with a deeper network and excessive
weight parameters, their implementation using hardware
is difficult, as described in Section I. Thus, several
studies have focused on reducing computational complex-
ity [3]–[8], [21]–[29]. In this section, we examine various

CNN-based SR algorithms and networks in terms of hardware
implementation.

Dong et al. proposed a deep learning network called super-
resolution CNN (SRCNN) that directly learns an end-to-end
mapping between LR and HR images for a single image
SR [3]. The network is composed of three layers: patch
extraction and representation, nonlinear mapping, and recon-
struction. Although the network has a lightweight structure,
its processing speed for large images is still unsatisfactory.
In an extended study, these authors proposed a fast and light
version of SRCNN, called FSRCNN [7]. The FSRCNN con-
sists of five layers. Shrinking and expanding layers are added,
and the reconstruction layer in SRCNN is changed to a decon-
volution layer for direct mapping. Although the FSRCNN
demonstrates improved computation speed, the deconvolu-
tion layer still has problems such as checkerboard artifacts
and a high computational cost [31].

Shi W et al. proposed an efficient sub-pixel CNN
(ESPCN) [8]. In the ESPCN, the deconvolution layer is
changed to an ESPCN layer that handles up-scaling via
periodic shuffling at the last layer of the network. As the
computational complexity is reduced and each operation is
independent, the ESPCN is a more suitable network for hard-
ware implementation.

Alwani et al. observed a fusing relationship between adja-
cent layers in the CNN inference [21]. In a conventional CNN
inference, all the intermediate feature maps are stored in an
external memory owing to the capacity limitation of the inter-
nal memory. Thus, massive external memory access (EMA)
occurs, which degrades the power and latency. In a fused-
layer network, intermediate feature maps are stored in the
internal memory by fusing two or more convolutional layers
into a single layer, leading to a reduction in the receptive field
to be stored.

Kim Y et al. implemented CNN-based SR hardware with
4K UHD resolution at 60 fps on a field-programmable gate
array (FPGA) [28]. They proposed a 1D horizontal convo-
lution that transforms a square receptive field into a rectan-
gular receptive field by revising the filters in the network.
A rectangular receptive field is more suitable for hardware
implementation because it reduces the line memory required
to store intermediate feature map data. They adopted a resid-
ual connection in their CNN that uses the result of bicubic
interpolation to fill up lost information due to a narrow
receptive field. In addition, they proposed the compression
of intermediate feature maps to reduce the required memory.
Although intermediate feature map memory is reduced by
compression and 1D horizontal convolution, a large internal
memory is still required.

Lee et al. implemented a CNN-based SR processor with
FHD resolution at 60 fps for mobile devices [29]. They
proposed a selective caching-based layer fusion method to
minimize EMA. They expanded the output patch size of the
final layer for reusing adjacent output pixels in the fused
layer. Consequently, although the EMA is slightly increased,
the required internal memory decreases because adjacent data

VOLUME 8, 2020 187755



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

FIGURE 1. Overall block diagrams of the proposed CNN-based SR network from input RGB data to output RGB data. The proposed CNN-based SR
network is based on FSRCNN-s, and the deconvolution layer is changed to ESPCN. The numbers in the block diagram at each layer indicate the filter
size: They indicate the length of the row, column, and channel and the number of filters, respectively.

are reused for the next operation. In addition, a memory
compaction scheme that decreases the window of the recep-
tive field toward the output layer is proposed. The processor
has a cyclic ring core architecture to maximize the PE uti-
lization for improving the performance for limited hardware
resources. However, the difference in the computation loads
in the CNN layers is not considered.

In summary, to implement hardware efficiently, recent
studies have focused on not only revising a CNN-based SR
network to accelerate inference but also decreasing feature
map memory and increasing PE utilization based on the
pipeline architecture [16]–[20].

III. PROPOSED MEMORY-EFFICIENT DATAFLOW WITH
HIGH PE UTILIZATION FOR CNN-BASED SR
In the inference process of the CNN, the LR image is passed
from the input layer to the output layer. All the pixels of the
intermediate layer have a data dependency between adjacent
layers, which negatively affects parallel processing. There-
fore, an efficient dataflow strategy is required for infer-
ence hardware with limited resources to perform real-time
operations.

A. OVERVIEW
SRCNN and FSRCNN have approximately 8K and 12K
parameters, respectively. Thus, they are too large to be
implemented with hardware for real-time operations. Hence,
a smaller version of FSRCNN, called FSRCNN-s, is used
in this study to reduce the number of parameters because
it has approximately 4K parameters with an insignificant
reduction in the peak signal-to-noise ratio (PSNR) compared
with that of the FSRCNN [7]. Although the parameters are
decreased from 12K to 4K, it is still challenging to imple-
ment FSRCNN-s using hardware for real-time operations.
The deconvolution layer is changed to ESPCN to reduce the
number of parameters further. Consequently, the number of
parameters in the proposed SR network becomes 2.575K,
indicating a reduction of approximately 36% compared with
that of FSRCNN-s.

In the proposed SR network, input LR RGB data are con-
verted to YCbCr data, which are another expression of color
space. The Y channel data are processed by the CNN because

FIGURE 2. Example of inference process in row-wise receptive field with
3× 3 filter stride.

the proposed SR network is pre-trained for the Y channel,
whereas the Cb and Cr channel data are processed by bicubic
interpolation with a scaling factor of 2 because they simply
need to be converted to RGB. Fig. 1 shows the overall process
of the proposed SR network with network information. Filter
information is indicated correspondingly in each layer: the
lengths of the rows, columns, and channels, and the number
of filters. As mentioned previously, the last layer is changed
from the deconvolution layer to the ESPCN layer. The Y
channel data that pass the ESPCN layer are combined with
the Cb and Cr channel data for converting YCbCr to RGB.

The activation occurs in the final operation at each layer,
which is the result of convolutional computations such as
MAC, rectified linear unit (ReLU), and bias. The fixed-point
representation of the activation and weight in the overall SR
network is determined by varying the word, integer, and frac-
tion lengths. The detailed results are presented in Section V.

B. CIRCULARLY SHIFTED DATAFLOW IN ROW-WISE
RECEPTIVE FIELD
The process of CNN inference involves generating the output
pixel data of the next layer through a convolutional operation
between the dataset and the filter decided by pre-training. The
next data are generated by the filter stride, which is composed
of a weight set.

Fig. 2 conceptually illustrates the process of CNN infer-
ence between two adjacent layers. The 3×3 filter strides to the
column direction in a row-wise receptive field. The column

187756 VOLUME 8, 2020



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

FIGURE 3. Row-wise data reuse method with layer pipeline architecture
between three adjacent layers from the pth to p+ 3th pipeline stage.

data indicated by green (Incoming Data) are newly generated
from the previous layer, whereas the others indicated by pink
(Overlapped Data) are reused to generate the output pixels
in the next layer. The overlapped area is proportional to the
row length of the receptive field and the number of strides
toward the column direction. The image size of FHD, which
is the input LR image, is 1, 920× 1.080. The column length
is greater than the row length. Thus, the reuse of row-wise
data is advantageous because of the large number of column
strides.

Fig. 3 shows a detailed illustration of the circularly shifted
dataflow with a 3 × 3 filter between three adjacent layers.
At the pth pipeline stage, r×3 data in the receptive field at
the nth layer are calculated to generate the column data of
the n+ 1th layer, where r is the row length in the receptive
field at the nth layer. The generated data are indicated in red
font. Simultaneously, the 4th column data at the nth layer are
generated from the n− 1th layer. As the data process is based
on a layer-based pipeline, the unknown data of the n+ 1th

layer are processed with a 3×3 filter. Note that the write and
read addresses do not overlap in the same receptive field to
prevent data conflicts. At the p+ 1th stage, all the filters at
each layer stride to the column direction to generate the next
data. Therefore, the data generated in the previous stage are
processed in the current stage. The column data in the n+ 2th

layer are still unknown because the data processed with the
filter at the n+ 1th layer are not yet filled up at the n+ 1th

layer. Consequently, the column data in the n+ 2th layer are
filled after three pipeline stages from the initial stage.

The proposed circularly shifted dataflow in the receptive
field has the advantage of reducing the computation load from
the matrix to the column vector at each layer. In addition,
unnecessary memory capacity is eliminated because only the
data in the receptive field need to be stored. The architecture
with memory address scheduling is described in detail in
Section IV.

FIGURE 4. Conceptual illustration for the proposed partial convolution:
(a) Conventional convolution and (b) proposed partial convolution.

C. PARTIAL CONVOLUTION IN A LAYER-BASED PIPELINE
The convolutional computation is dependent on the filter size.
When the filter size is extremely large, the computational
time increases linearly. Thus, a method for relieving the
filter dependency, called grouped convolution, is required.
The grouped convolution was introduced in AlexNet [33],
in which the channel dimension and the number of filters are
separated into several groups. The separated groups constitute
independent subdivided convolutions of a small size, leading
to parallelism. The computational cost is defined by the filter
size, the number of channels, and the filters at each layer.
In the grouped convolution, the entire computational cost
is inversely proportional to the number of groups. This is
because, as the number of groups increases, the reduced
number of channels and filters quadratically decreases the
computational cost, whereas the increased number of subdi-
vided convolutions linearly increases the computational cost.

However, the grouped convolution is known to yield a
low accuracy when used in regression problems such as SR.
Moreover, the accuracy degradation becomes severe when
the network has fewer parameters and shorter layers because
a small correlation in a lightweight network is also critical
to the accuracy. A residual connection is often adopted to
maintain the accuracy when grouped convolution is used.
Despite the residual connection, additional MAC process-
ing and memory capacity for bicubic interpolation are still
required.

Thus, a partial convolution is proposed to reduce the filter
dependency in the SR network. The proposed partial convo-
lution is conceptually illustrated in Fig. 4. The input feature
map and filter, indicated by blue and red blocks, are sepa-
rated into two parts. The separated parts individually form
independent convolutions, which enable separable pipeline
stages. The independent partial products, indicated by purple
blocks, are combined at the final stage. In contrast to conven-
tional grouped convolution, the proposed partial convolution
does not reduce the number of filters to maintain the full
connection between the feature maps and filters because this
could degrade the accuracy by losing some connections in
the SR network due to regression problems. As the network

VOLUME 8, 2020 187757



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

FIGURE 5. Timing diagram for partial convolution in the
compute-intensive layer: (a) Conventional convolution and (b) proposed
partial convolution.

is not revised in the proposed partial convolution, the compu-
tational cost is the same in both the conventional convolution
and the proposed grouped convolution. However, the sub-
divided convolutions are calculated along several pipeline
stages in the proposed partial convolution, leading to high
PE utilization by relieving the intensive computation load
without accuracy degradation. Although the proposed partial
convolution requires twice the partial output feature maps
compared with the conventional convolution, the increase in
memory is acceptable because the doubled partial products
are required for only a column vector of the receptive field
in the adopted circularly shifted dataflow. As the proposed
partial convolution has the flexibility to separate the pipeline
stages, the computation load can be balanced among the
layers, leading to an efficient dataflow for implementing
hardware.

Fig. 5 shows the timing diagram of the partial convolu-
tion in a layer-based pipeline architecture. First, the input
channels are separated into two groups. The first group is
pre-processed at the next pipeline stage. Simultaneously,
the second group is bypassed. At the next pipeline stage,
the second group is post-processed and combined with the
first group. The pipeline stall, indicated by the red diago-
nal pattern, is significantly decreased in the proposed par-
tial convolution than in the conventional convolution. The
proposed partial convolution is a more suitable dataflow
because it halves the computation load in a single pipeline
stage at the compute-intensive layer without SR performance
degradation.

D. DELAY-BALANCING OPTIMIZATION
Asmentioned previously, the inference of CNN-based SR has
a significantly unbalanced computation load, which degrades
the PE utilization in a layer-based pipeline architecture. Thus,
the compute-intensive layer is balanced by the proposed par-
tial convolution, which relieves the unbalanced computation
load efficiently. However, a more precise balancing method is
still required. Therefore, delay-balancing optimization using
parallel calculating factors is proposed for maximizing the PE
utilization.

The output pixel of the n+ 1th layer is obtained as follows:

Y n+1 =
knx∑
x=1

kny∑
y=1

knz∑
z=1

Y n (x, y, z)W n(x, y, z)+ Bn (1)

where Y is the feature map data andW is the weight set with
data location. kx , ky, and kz are the filter lengths of the rows,
columns, and channels, respectively. B is the bias set and the
superscript indicates the number of layers. The time required
to generate a pixel at the n+ 1th layer with fully serial MAC
is expressed as

T n+1 =
knx k

n
y k

n
z

f
knn (2)

where T is the processing time, f is the operating frequency,
and kn is the number of filters. Notably, the receptive field
is not included because the data in the receptive field are
processed at once owing to the reuse of row-wise data. The
processing time is revised as follows because the memory and
reset latencies of the accumulator have to be considered.

T n+1 =

(
T nread + k

n
x k

n
y k

n
z + T

n+1
write + T

n
reset

)
f

knn (3)

where Tread and Twrite are the read and write latencies of the
feature mapmemory, respectively. Treset is the reset latency of
the accumulator in the MAC core. Parallel calculating factors
are considered to balance the processing delay at each layer.

T n+1 =

(
T nread +

knx
pnx

kny
pny

knz
pnz
+ T n+1write + T

n
reset

)
f

knn
pnn

(4)

where px , py, pz, and pn are the parallel calculating factors
of the rows, columns, channels, and the number of filters,
respectively. Here, px is the same as kx , and py is equal to
one because the circularly shifted dataflow in the row-wise
receptive field is applied.

T n+1 =

(
T nread + k

n
y
knz
pnz
+ T n+1write + T

n
reset

)
f

knn
pnn

(5)

The pipeline period is determined by the longest process-
ing time among the layers. As the memory throughput should
be the same in both the input and output at each layer,
the following constraint should be considered.

pnn = pn+1z (6)

The parallel calculating factors at each layer are separately
tuned to balance the processing delay among the layers,
which in turn maximizes the PE utilization. Fig. 6 shows the
delay-balancing effect when the parallel calculating factors
are properly chosen according to (5) and (6). The normalized
processing time among the layers is significantly unbalanced
without the delay-balancing optimization, as indicated by the
blue line in Fig. 6. TheMAC cores at the third layer should be
stalled for approximately 1.5 times longer than its normalized
processing time, which is approximately 0.4 because the
pipeline period is determined by the 1st and 4th layers, which
have the longest processing times. When the delay-balancing
optimization is adopted for the proposed architecture, as indi-
cated by the red line, the stall time at the third layer is reduced
by approximately 5 times, and the overall processing time is
balanced among the layers.

187758 VOLUME 8, 2020



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

FIGURE 6. Comparison of processing times between nonoptimization and
balancing optimization.

IV. PROPOSED ARCHITECTURE
The proposed architecture is composed ofMAC cores, single-
port random access memory (SPRAM), dual-port random
access memory (DPRAM), serial-in parallel-out (SIPO),
parallel-in serial-out (PISO), and controllers, as shown
in Fig. 7. The intermediate feature maps are stored in the
DPRAM because the processing of the feature maps requires
simultaneous read andwrite operations, whereas the weight is
stored in the SPRAM. In a pipeline stage, the feature maps in
the DPRAM are transferred to the MAC cores, and the MAC
operation results are written in the DPRAM of the next layer.

As the main limitation of the conventional inference accel-
eration technique for CNN-based SR is the shortage of I/O
interface to communicate with external memory, the SIPO
and PISO are exploited to enable serial communication with
external devices. The synchronized SIPO module serially
drives the input LR data. Simultaneously, the PISO modules
serially transfer the output HR data, which are four times in
size compared with the input LR data.

The MAC cores are composed of a multiplier, adders for
MAC and bias, a synchronized accumulator, and a ReLU
operator. The adders consist of overflow and underflow detec-
tors to prevent over-boundary representation. When multiple
multipliers are used in a MAC core, the adders are employed
in a tree structure to achieve high speed. The number of
multipliers and adders is determined by the row length of the
receptive field and the parallel calculating factors as shown
in Table 1. The synchronized accumulator is composed of an
adder and flip-flops with a synchronized reset. The ReLU
operator consists of a most significant bit (MSB) detector

TABLE 1. Detailed information of the proposed Architecture.

with several MUXs. After bias calculation, the ReLU oper-
ator identifies the MSB for clipping the negative values.

Fig. 8 shows the detailed register-transfer level schematic
of the L1 MAC core. The thick lines indicate the local bus,
and thin lines show activation, weight, and bias signals.
At each L1 MAC core, the five multipliers and four adders
with tree structure are used because p1x is the same as k1x ,
and p1y is equal to one. The number of multipliers and adders
are different at each layer MAC cores. After DPRAM read,
the activations indicated by thin blue line are branched from
the bus to the individual multipliers in the L1 MAC core. The
row-wise activations are convolved during k1y × k

1
z

/
p1z clock

cycles.When the activation is transferred to the DPRAMwith
completion of the accumulation, the read-enable signal (RE)
of DPRAM and the reset signal (RST) of the accumulator are
simultaneously activated by the clock generated in the local
controller, leading to increase in PE utilization.

The address scheduling is used to control the memory
access sequence at the DPRAM for implementing the circu-
larly shifted dataflow. Fig. 9 shows an example of memory
address scheduling with a 3×3 filter. At the pth pipeline stage,
the write address starts from A0, which is the first address of
the DPRAM, indicated by the blue diagonal pattern. Simul-
taneously, the read address is from Ac−2 to Ac, indicated by
the red diagonal pattern. After a single pipeline period passes,
the starting addresses of both thewrite and read operations are
increased by one. Note that the memory address is circularly

FIGURE 7. Overall CNN-based SR hardware architecture based on a layer pipeline.

VOLUME 8, 2020 187759



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

FIGURE 8. Detailed RTL schematic of L1 MAC core.

FIGURE 9. Example of address scheduling with a 3× 3 filter.

FIGURE 10. Normalized computation load according to the length of
receptive field by expanding the output vector of the final layer.

rotated, and the read address is required to be ahead of the
write address consecutively. The address order is determined
by the priority of the filter direction, and it should be matched
with the SPRAM.

The partial convolution is adopted in the ESPCN layer in
this study. Fig. 10 shows the normalized computation load at
each layer when the 1 × 1 output pixel and 100 × 1 output
vector are generated at the final layer. The most compute-
intensive layer is the feature extraction layer, indicated by
the blue line, when generating an output pixel, whereas it
is changed to the ESPCN layer, indicated by the red line,
when generating the 100 × 1 output vector. Notably, as the
row length of the output vector increases, the ESPCN layer
becomes the most compute-intensive layer. As partial convo-
lution is adopted at the ESPCN layer, the DPRAM is divided
into two parts from the ESPCN layer, as shown in Fig. 7. The
first group at the expanding layer is transferred to the upper

DPRAM at the ESPCN layer, whereas the second group is
transferred to a lower DPRAM at the ESPCN layer.

Delay-balancing is considered in the proposed architec-
ture. The detailed information on the receptive field and par-
allel calculating factors in this study is presented in Table 1.
The number of MAC cores at each layer is calculated by
multiplying the row length of the receptive field with parallel
calculating factors. For example, the number of MAC cores
at L1 is 152 (76 times 2 cores). From the (5) and Table 1, the
processing time of L1 are calculated as 112 clocks. The active
processing time is calculated by removing read, write, and
reset latencies from (5); The active processing time of L1 is
80 clocks. The average PE utilization in the overall network
is calculated by multiplying the active processing time ratio
with the PE usage ratio at each layer, in which the active
processing time ratio and the PE usage ratio are defined as the
ratio of the active processing time to the pipeline period and
the ratio of the number of PEs at each layer to the total sum
PEs at overall layers, respectively. As a result, the proposed
architecture achieves the average PE utilization of 76.7%,
allowing higher system throughput with the same hardware
resources.

V. EXPERIMENTAL RESULTS
A. QUANTIZATION OF ACTIVATION AND WEIGHT
As the fixed-point number representation has a low complex-
ity in bitwise computation than the floating-point number rep-
resentation, it is more suitable for implementing the inference
hardware of CNN-based SR. The fixed-point representation
is defined as [IL, FL], where IL and FL are the integer and
fraction lengths, respectively. The word length (WL) of fixed-
point representation is calculated as 1+IL+FL when a sign
bit is used. Notably, determining IL and FL is important
to maintain the accuracy when fixed-point representation is
adopted.

Several CNNs are developed on CPU- or GPU-based
platforms such as MATLAB, PyTorch, and TensorFlow,
which use the 32-bit floating-point representation. Thus, the
floating-point representation should be converted to the fixed-
point representation for hardware-friendly computation at the
inference hardware. Two types of errors occur when floating-
point representation is converted to fixed-point representa-
tion. The first is the overflow or underflow error related to
the IL range of the fixed-point representation. The second is
the quantization error related to the FL range of the fixed-
point representation. The overflow or underflow error causes
more significant accuracy degradation than the quantization
error because the number of digits of the IL is larger than
that of the FL. In the CNN-based SR architecture, two types
of number representations should be determined. The first is
activation, which is the representation of intermediate feature
maps. The second is weight, which is composed of filters and
bias. The activation and weight are converted to fixed-point
representation as follows: First, the combination of WL, IL,
and FL of the activation is determined to maintain a PSNR
comparable to that of the baseline using the least number

187760 VOLUME 8, 2020



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

FIGURE 11. PSNR performance plot according to the WL and IL for
quantization in Set-5 dataset.

of bits without quantizing the weight. Then, the weight is
quantized to achieve an acceptable PSNR degradation using
the least number of bits.

Fig. 11 shows the PSNR performance according to the WL
and IL of the activation for the Set-5 dataset. The baseline is
the case without the quantization of the activation and weight.
As expected, the case with an inadequate IL shows a large
PSNR degradation compared with that of the baseline. An IL
of at least 10 is required to maintain the PSNR performance.
As the IL increases beyond IL = 10, the PSNR is slightly
degraded, as shown in the detailed view in Fig. 11 because
the increase in IL with a fixed WL indicates the shrinking
of FL, which increases the quantization error. In this study,
WL = 14, IL = 10, and FL = 3 are chosen for the acti-
vation. This is because this combination not only achieves
an acceptable PSNR but also uses a smaller number of bits
than the other combinations, which is more suitable for hard-
ware implementation. Fig. 12 shows the PSNR performance
according to the WL and IL of the weight when WL = 14,
IL = 10, and FL = 3 are used for the activation. A WL of at
least 10 is required to maintain a PSNR comparable to that
of the baseline. In all the cases, the highest PSNR is achieved
when a small number of bits are used for the IL. In this study,
WL = 10, IL = 1, and FL = 8 are chosen for the weight
because this combination uses the lowest WL while having a
comparable PSNR to that of the baseline. In short, the number
of bits is quantized from 32-bit to 14-bit for the activation and
32-bit to 10-bit for the weight. The inference hardware can
be easily implemented with a reduced-number presentation.
Moreover, the PSNR degradation can be insignificant when
the WL, IL, and FL are properly chosen. The PSNR degrada-
tion is discussed in detail in the next subsection.

B. COMPARISON OF THE SR NETWORKS
Table 2 compares various SR networks, such as the proposed
network, bicubic interpolation, SRCNN [3], SRCNN-Ex [4],
FSRCNN, and FSRCNN-s [7]. In comparison, the public
benchmark datasets are used. The datasets are constructed
with Set-5 [34], Set-14 [35], B100 [36], Urban100 [37], and

FIGURE 12. PSNR performance plot when the activation is fixed
according to the WL and IL of the weight in Set-5 dataset. The experiment
is based on WL = 14 and IL = 10 for activation.

General-100 [7], which are often used for SR benchmark.
All experiments are performed with a scaling factor of 2.
The PSNR and structural similarity index (SSIM) are used
as evaluation metrics.

As described in Section I, CNN-based SR networks show
better performances than the conventional bicubic interpola-
tion. The SRCNN [3] has a long processing time for a large
image [7], as described in Section II. While the SRCNN-
Ex [4] has a better PSNR than the SRCNN [3], it has toomany
parameters to be implemented with hardware. Although the
FSRCNN [7] shows the highest PSNR among these methods,
it still has more parameters than the proposed SR network.
Even though the FSRCNN-s [7] has a decent PSNR with
a reduced number of parameters, the deconvolution layer is
not suitable for hardware implementation. The baseline of
the proposed SR network has a similar SR performance as the
FSRCNN-s, but with an approximately 36% reduction in the
number of parameters. As mentioned previously, the activa-
tion and weight are quantized for hardware-friendly com-
putation. The average PSNR with quantization is 36.42 dB
in the Set-5 dataset, showing a degradation of only 0.07 dB
compared with the baseline PSNR of 36.49 dB. As the pro-
posed SR network has a smaller number of parameters with a
similar PSNR performance as the FSRCNN-s [7], it is a more
suitable SR network for implementationwith hardware. Thus,
although the proposed SR network has slightly low PSNR and
SSIM compared to the other networks, it is suitable for HW
implementation thanks to the smaller number of parameters
than other networks.

Fig. 13 shows the SR results with a scaling factor of 2 for
one of the Set-5 datasets, butterfly. In quantitative compar-
ison, the PSNR and SSIM of (c) is 32.21 dB and 0.9621,
while the PSNR and SSIM of (b) is 27.47 dB and 0.9146.
In qualitative comparison, the proposed hardware shows a
comparable image to the original HR image, whereas bicu-
bic interpolation generates a blurred image. In a detailed
view, the artifacts are significantly decreased in the proposed
SR hardware than in the bicubic interpolation hardware.
Fig. 14 shows the other SR results with a scaling factor of 2
for one of the Urban-100 datasets, img_072. The PSNR and

VOLUME 8, 2020 187761



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

TABLE 2. Comparison of various SR methods: Average PSNR and SSIM of three datasets with a scaling factor of 2.

FIGURE 13. SR result with a scaling factor of 2 from one of Set-5 images, butterfly.

FIGURE 14. SR result with a scaling factor of 2 from one of Urban-100 images, image_072.

SSIMof (c) is 22.36 dB and 0.8930, while PSNR and SSIMof
(b) is 20.39 dB and 0.8276. The result of proposed hardware
is more similar to the original HR image than the bicubic
interpolation.

C. COMPARISON OF HARDWARE ARCHITECTURES
Table 3 summarizes the detailed hardware implementations
for various SR networks. The hardware architectures of
Lee and Park [23] and Kim et al. [27] are based on the
interpolation method, whereas those of Yang et al. [26],
Lee et al. [29], Kim et al. [28], and the current study are based
on machine learning. Lee et al. [29] implemented inference
hardware for mobile devices using the FSRCNN. The hard-
ware supports scaling factors of 2 and 4 for FHD resolution
at 25 and 60 fps, respectively. Owing to the cyclic ring core

architecture, the hardware achieves a PE utilization of 71.8%.
Kim et al. [28] implemented two types of hardware on FPGA
with the FSRCNN-s: type-1 without the compression of inter-
mediate feature maps, and type-2 with compression. The
required memory of type-2 hardware is 194 KB, approxi-
mately half that of type-1 hardware. Furthermore, 110K slice
look-up tables (LUTs), 102K slice registers, and 151K slice
LUTs, 121K slice registers are used in type-1 and type-
2 hardware architectures, respectively. Moreover, 1,920 DSP
blocks are employed in both types of hardware architectures.
As the residual connection is adopted, the average PSNR is
higher than that of the others.

Fig. 15 shows the demonstration of the proposed
CNN-based SR inference architecture. The proposed archi-
tecture is implemented on an FPGA, which is the Xilinx

187762 VOLUME 8, 2020



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

TABLE 3. Comparison of hardware Architectures for various SR networks.

FIGURE 15. Demonstration of the proposed architecture of CNN-based SR
with FPGA implementation.

Virtex UltraScale+ VCU118 evaluation board with HDMI
2.0 FMC interface card. The proposed architecture supports
a 4K UHD video stream at 60 fps and is implemented at a
maximum system operating frequency of 200 MHz. More-
over, 94K slice LUTs and 19K slice registers are used as
SIPO, PISO, and adders inMAC cores, and 2,146 DSP blocks
are employed as multipliers. Owing to the circularly shifted
dataflow, the memory capacity is only 53 KB, including both
DPRAM and SPRAM. As partial convolution and delay-
balancing optimization are applied, an average PE utilization
of 76.7% is achieved.

The proposed hardware achieves the lowest memory usage
and highest PE utilization compared with the previous meth-
ods. Furthermore, the proposed hardware shows an average
PSNR of 36.42 dB in the Set-5 dataset, which is satisfactory
considering that the residual connection is not adopted in this
study.

VI. CONCLUSION
The CNN-based SR shows more immersive visualiza-
tion than the conventional bicubic interpolation. However,

inefficient dataflow for hardware, excessive computations,
and huge memory usage limit its practical use. Therefore,
a memory-efficient dataflow with a high PE utilization is
proposed with the following characteristics. First, a circu-
larly shifted dataflow, implemented via address schedul-
ing on DPRAM, is proposed for efficient memory usage
with high parallelism in a layer-based pipeline architec-
ture. Second, a partial convolution is exploited for relieving
the filter dependency at the compute-intensive layer in a
layer-based pipeline architecture. The proposed partial con-
volution does not cause accuracy degradation because it is
irrelevant to the network training. Finally, delay-balancing
optimization is adopted in the overall layers. Parallel
calculating factors are employed to balance the processing
time among the layers, considering the constraint of memory
throughput.

Furthermore, the inference hardware of the CNN-based
SR is implemented on FPGA. The implemented hardware
supports up-scaling the video stream from FHD to 4K UHD
at 60 fps and shows an average PSNR of 36.42 dB in the Set-5
dataset. The implemented hardware uses the entire memory
capacity of 53 KB, which is decreased by approximately
72.7% compared with that of the previous method. In addi-
tion, the implemented hardware achieves an average PE uti-
lization of 76.7%,which is approximately 5%higher than that
of the previous method. In short, the hardware implemented
in this study achieves the lowest memory usage and highest
PE utilization comparedwith the state-of-the-art hardware for
CNN-based SR.

As future work, we will extend our study to support real-
time CNN-based SR for 8K resolution by fusing circularly
shifted dataflow in the row direction combined with multiple
clock domains.

VOLUME 8, 2020 187763



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

REFERENCES
[1] M. Sakurai, Y. Sakuta, M. Watanabe, T. Goto, and S. Hirano, ‘‘Super-

resolution through non-linear enhancement filters,’’ in Proc. IEEE Int.
Conf. Image Process., Sep. 2013, pp. 854–858.

[2] J.-S. Choi and M. Kim, ‘‘Single image super-resolution using global
regression based on multiple local linear mappings,’’ IEEE Trans. Image
Process., vol. 26, no. 3, pp. 1300–1314, Mar. 2017.

[3] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), Cham, Switzerland: Springer, 2014, pp. 184–199.

[4] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Image super-resolution using
deep convolutional networks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[5] J. Kim, J. K. Lee, and K. M. Lee, ‘‘Accurate image super-resolution using
very deep convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1646–1654.

[6] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep residual
networks for single image super-resolution,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 1132–1140.

[7] C. Dong, C. C. Loy, and X. Tang, ‘‘Accelerating the super-resolution
convolutional neural network,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Cham, Switzerland: Springer, 2016, pp. 391–407.

[8] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, ‘‘Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1874–1883.

[9] A. Shawahna, S. M. Sait, and A. El-Maleh, ‘‘FPGA-based accelerators of
deep learning networks for learning and classification: A review,’’ IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[10] M. T. Hailesellasie and S. R. Hasan, ‘‘MulNet: A flexible CNN processor
with higher resource utilization efficiency for constrained devices,’’ IEEE
Access, vol. 7, pp. 47509–47524, 2019.

[11] Y. Shen, T. Han, Q. Yang, X. Yang, Y.Wang, F. Li, and H.Wen, ‘‘CS-CNN:
Enabling robust and efficient convolutional neural networks inference for
Internet-of-Things applications,’’ IEEE Access, vol. 6, pp. 13439–13448,
2018.

[12] G. Shu, W. Liu, X. Zheng, and J. Li, ‘‘IF-CNN: Image-aware inference
framework for CNN with the collaboration of mobile devices and cloud,’’
IEEE Access, vol. 6, pp. 68621–68633, 2018.

[13] Y. Li and Y. Du, ‘‘A novel software-defined convolutional neural networks
accelerator,’’ IEEE Access, vol. 7, pp. 177922–177931, 2019.

[14] S. Li, Y. Luo, K. Sun, N. Yadav, and K. K. Choi, ‘‘A novel FPGA
accelerator design for real-time and ultra-low power deep convolutional
neural networks compared with titan X GPU,’’ IEEE Access, vol. 8,
pp. 105455–105471, 2020.

[15] W. G. Hatcher and W. Yu, ‘‘A survey of deep learning: Platforms,
applications and emerging research trends,’’ IEEE Access, vol. 6,
pp. 24411–24432, 2018.

[16] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, ‘‘FlexFlow: A flexible
dataflow accelerator architecture for convolutional neural networks,’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 553–564.

[17] S. I. Venieris and C.-S. Bouganis, ‘‘FpgaConvNet: A framework for map-
ping convolutional neural networks on FPGAs,’’ in Proc. IEEE 24th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2016,
pp. 40–47.

[18] W. Choi, K. Choi, and J. Park, ‘‘Low cost convolutional neural network
accelerator based on bi-directional filtering and bit-width reduction,’’ IEEE
Access, vol. 6, pp. 14734–14746, 2018.

[19] C. Park, S. Park, and C. S. Park, ‘‘Roofline-Model-Based design space
exploration for dataflow techniques of CNN accelerators,’’ IEEE Access,
vol. 8, pp. 172509–172523, 2020.

[20] X. Hu, Y. Zeng, Z. Li, X. Zheng, S. Cai, and X. Xiong, ‘‘A resources-
efficient configurable accelerator for deep convolutional neural networks,’’
IEEE Access, vol. 7, pp. 72113–72124, 2019.

[21] M. Alwani, H. Chen, M. Ferdman, and P. Milder, ‘‘Fused-layer CNN
accelerators,’’ inProc. 49th Annu. IEEE/ACM Int. Symp.Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[22] Y.-H. Chen, J. Emer, and V. Sze, ‘‘Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[23] J. Lee and I.-C. Park, ‘‘High-performance low-area video up-scaling archi-
tecture for 4-K UHD video,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 64, no. 4, pp. 437–441, Apr. 2017.

[24] E. Perez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn,
‘‘Accelerating super-resolution for 4K upscaling,’’ in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), Jan. 2015, pp. 317–320.

[25] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[26] M.-C. Yang, K.-L. Liu, and S.-Y. Chien, ‘‘A real-time FHD learning-based
super-resolution systemwithout a frame buffer,’’ IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 64, no. 12, pp. 1407–1411, Dec. 2017.

[27] Y. Kim, J.-S. Choi, and M. Kim, ‘‘2X super-resolution hardware using
edge-orientation-based linear mapping for real-time 4K UHD 60 fps video
applications,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 9,
pp. 1274–1278, Sep. 2018.

[28] Y. Kim, J.-S. Choi, and M. Kim, ‘‘A real-time convolutional neural net-
work for super-resolution on FPGA with applications to 4K UHD 60 fps
video services,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 8,
pp. 2521–2534, Aug. 2019.

[29] J. Lee, D. Shin, J. Lee, J. Lee, S. Kang, and H.-J. Yoo, ‘‘A full HD 60
fps CNN super resolution processor with selective caching based layer
fusion for mobile devices,’’ in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C302–C303.

[30] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ‘‘A dynam-
ically configurable coprocessor for convolutional neural networks,’’ in
Proc. 37th Annu. Int. Symp. Comput. Archit. (ISCA), Saint-Malo, France,
2010, pp. 247–257.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ Apr. 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[32] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘Optimizing the convolution
operation to accelerate deep neural networks on FPGA,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367, Jul. 2018.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), 2012, pp. 1097–1105.

[34] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L.-A. Morel, ‘‘Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,’’ in Proc. Brit. Mach. Vis. Conf. Swansea, U.K.: BMVA Press,
2012, p. 135.

[35] R. Zeyde, M. Elad, and M. Protter, ‘‘On single image scale-up using
sparse-representations,’’ in Proc. Int. Conf. Curves Surf. Berlin, Germany:
Springer, 2012, pp. 711–730.

[36] J.-B. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from
transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5197–5206.

[37] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ‘‘A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,’’ in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2, Jul. 2001, pp. 416–423.

SUMIN LEE (Graduate Student Member, IEEE)
was born in Seoul, South Korea, in 1991. He
received the B.S. degree in electronic engineer-
ing from Inha University, Incheon, South Korea,
in 2016. He is currently pursuing the Ph.D.
degree in electrical and electronic engineering
with Yonsei University, Seoul.

His current research interests include mixed-
mode, low-power circuit, and architecture design
for deep neural networks.

187764 VOLUME 8, 2020



S. Lee et al.: CNN Acceleration With Hardware-Efficient Dataflow for SR

SUNGHWAN JOO (Graduate Student Member,
IEEE) was born in Seoul, South Korea, in 1989.
He received the B.S. degree in electrical and elec-
tronic engineering from Korea Aerospace Univer-
sity, Seoul, in 2016. He is currently pursuing the
Ph.D. degree in electrical and electronic engineer-
ing with Yonsei University, Seoul.

His current research interests include deep
learning circuit and architecture design.

HONG KEUN AHN (Graduate Student Member,
IEEE) was born in Seoul, South Korea, in 1993.
He received the B.S. degree in electrical and
electronic engineering from Yonsei University,
Seoul, in 2017, where he is currently pursu-
ing the Ph.D. degree in electrical and electronic
engineering.

His current research interests include
computing-in-memory circuit design and deep
learning architecture.

SEONG-OOK JUNG (Senior Member, IEEE)
received the B.S. and M.S. degrees in electri-
cal and electronic engineering from Yonsei Uni-
versity, Seoul, South Korea, in 1987 and 1989,
respectively, and the Ph.D. degree in electrical
engineering from the University of Illinois at
Urbana–Champaign, Urbana, IL, USA, in 2002.

From 1989 to 1998, he was affiliated with
Samsung Electronics Company Ltd., Hwaseong,
South Korea, where he was involved in specialty

memories, such as video, graphic, and window RAM, and merged memory
logic. From 2001 to 2003, he was affiliated with T-RAM Inc., Mountain
View, CA, USA, where he was the Leader of the Thyristor Based Memory
Circuit Design Team. From 2003 to 2006, he was affiliated with Qualcomm
Inc., San Diego, CA, USA, where he was involved in high-performance
low-power embedded memories, process variation-tolerant circuit design,
and low-power circuit techniques. Since 2006, he has been a Professor with
Yonsei University. His current research interests include process variation-
tolerant, low-power, mixed-mode circuit design, and next-generation mem-
ory and technology.

VOLUME 8, 2020 187765


