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ABSTRACT Braking control, especially in an emergency, is a key technology that is needed to ensure safety
in vehicle platoons. However, delays in vehicle platoons can severely affect braking control. This paper
proposes an optimized braking control to reduce the standstill spacing and braking duration during delays so
that a platoon will stop within a short time frame with a reduced length, thus improving road utilization while
ensuring both inter-vehicle and in-vehicle safety. However, two challenges need to be addressed. First, due
to the delay in car-following interactions and the nonlinearity of the control law, an analysis model is needed
to quantize the duration and distance during an emergency braking with delays. Second, the optimization
of these control parameters is an NP-hard problem. Therefore, delay differential equations are introduced to
model the braking process, and a crossing criterion is introduced to establish the relationship between the
control law and the braking process. The propositions of standstill spacing and braking duration are then
derived based on the Runge-Kutta method. According to these criteria, a particle swarm optimization (PSO)
based on a lexicographic method with a penalty function is introduced to provide a solution framework with
polynomial complexity. Simulation results verify the accuracy of the braking modeling process. Moreover,
the results verify the performance of the proposed algorithm and provide a reference for platoon control.

INDEX TERMS Braking control, delay, standstill spacing, duration.

I. INTRODUCTION
As an important component of intelligent transport systems
(ITSs), platoon-based driving patterns have attracted signifi-
cant attention and are characterized by advantages including
increased road safety, improved road capacity, and the reduc-
tion of energy consumption [1].Many communities are aimed
at furthering this work, such as the SARTRE program, PATH
research, the Grand Cooperative Driving Challenge (GCDC),
Energy ITS, and SCANIA platooning [2].

Braking control, especially in an emergency, is a key
technology in vehicle platoons and is critical to ensuring
both inter-vehicle and in-vehicle safety. Regarding the for-
mer, to avoid rear-end collisions, vehicles must be kept at a
safe distance from each other during braking. Regarding the
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approving it for publication was Yan-Jun Liu.

latter, to avoid an overloaded braking capacity and injuries
to passengers [3]–[5], deceleration must be limited under the
permissible maximum value.

There are various types of delays existing in practical
platoon systems, which can be divided into two categories
according to the execution stages of the braking control pro-
cess: signal acquisition delays and control parameter calcu-
lation delays. The first category mainly includes communi-
cation delays [6] and sensor delays [7], [8]. Communica-
tion delays are caused by information transmission and the
queuing of data packets, which are restricted by wireless
channel quality and spectrum bandwidth; this type of delay
ranges from a few milliseconds to tens of milliseconds. Sen-
sor delays are caused by measurement, data sampling, obsta-
cle detection, ego-positioning, environmental perception, and
classification factors. For visionmeasurement systems in par-
ticular, image processing also takes time. This type of delay
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can range from tens of milliseconds to hundreds of millisec-
onds. Delays due to the calculation of control parameters can
range from a few milliseconds to hundreds of milliseconds.

Delays have a negative impact on vehicle driving control.
For an individual vehicle, delayed information can impair
its ability to maintain a desired velocity and position [9].
For a platoon, without a proper driving control design, the
delayed information will spread from the leader to the fol-
lowers, threatening stability and creating deviations from the
desired control target [10]. For emergency braking control in
particular, the urgent timing and reduced spacing can lead to
a greater risk of collision, which calls for a more rigorous
design to overcome delays.

To ensure braking safety for platoons experiencing delays,
it is beneficial to increase the inter-vehicle distance and
decrease the velocity, as these measures can provide ade-
quate spacing and time. However, these adjustments will
reduce road utilization. Therefore, this paper proposes an
optimized braking control to reduce standstill spacing and
braking duration during delays while guaranteeing safety.
The platoon must stop within a short time frame when an
emergency occurs, and the length of the platoon must be
shortened after the platoon stops to improve road utilization.
However, the distances between vehicles must be greater than
a safe distance during the braking process to avoid collisions,
and the vehicle decelerations must be less than the maxi-
mum permissible value to minimize the damage to cars and
the impact on passengers, thus ensuring both inter-vehicle
and in-vehicle safety. However, two challenges need to be
addressed. First, due to the delay in car-following interactions
and the nonlinearity of the control law, an analysis model
is needed to quantize the duration and the decreasing dis-
tance during the elapsed braking control time frame with
delays. Second, the optimization of these control parameters
is an NP-hard problem. To address these challenges, the
standstill spacing and duration are theoretically analyzed by
delay differential equations (DDEs), and a multiobjective and
multivariable particle swarm optimization (PSO) algorithm is
designed.

The main contributions of this paper are summarized as
follows:

1) An analytical expression of the braking process is first
modeled using DDEs to embed the effect of delays;

2) A crossing criterion is introduced to establish the rela-
tionship between the control law and the braking pro-
cess and to classify various braking scenarios;

3) The propositions of standstill spacing and brak-
ing duration are derived based on the Runge-Kutta
method;

4) When considering delays, the standstill spacing and
braking duration of the platoon are shortened during
emergency braking to improve road utilization while
ensuring both inter-vehicle and in-vehicle safety, and
a solution framework with polynomial complexity is
provided.

The remainder of this paper is organized as follows.
Section II introduces related research. Section III presents the
system model and the optimization problem. Section IV ana-
lyzes the standstill spacing and duration via the DDEmethod.
Section V proposes a multiobjective and multivariable PSO
to solve the optimization problem. Section VI reports the
results of simulations to verify the performance improvement
of the proposed algorithm. Finally, Section VII concludes this
paper.

II. RELATED WORKS
Delays in vehicle platoons have recently attracted substan-
tial research attention. Various control policies have been
designed for diverse objectives under certain delays, such
as the achievement of consensus [11], the robustness for
formation changes and control [12], [13], the consensus of
vehicles and their consistency with traffic flow theory [14],
coping with the curves and slopes of roads [15], [16], and
spacing [17]. There have also been several studies concerning
the combination of control and delay bounds under stable
conditions [6], [18]–[20].

As a key component of platoon management, braking
can be classified into two categories: target stopping posi-
tion (TSP) and emergency braking. Regarding the first cate-
gory, Li et al. proposed an integral sliding-mode control, and
Liu et al. utilized the force approach to achieve cooperative
TSP braking control [21]–[23]; however, the restriction of
deceleration was only considered in one of these works [21].
Although delay was not considered in these TSP problems,
the requirements induced by the attainable deceleration and
the negative effect of delays could be resolved by increas-
ing the braking distance because the stopping position was
given before braking. However, regarding the second cat-
egory of braking, namely, emergency braking, delays will
greatly increase urgency. In a previous study, an experimental
platform and an actual-vehicle experiment were set up to
evaluate emergency braking [24], but delay was not consid-
ered. Several works have considered delays in emergency
braking [25]–[27]. For instance, Flores et al. [25] presented
a cooperative collision avoidance system based on pedes-
trian prediction, in which delay was considered merely in
the correction of velocity, and in-vehicle safety was ignored.
Xu et al. [26] compared different communication information
structures and contents to analyze the intrinsic relationships
between coordination and communication in platoons and
enhance platoon safety, including during slow and fast brak-
ing. Thunberg et al. [27] analyzed the platoon dynamics
during emergency braking via packet loss probabilities and
packet transmission delays. While the limitation of deceler-
ation to guarantee in-vehicle safety was considered in these
works, the effect of delays on braking was solely reflected
in deriving the delay bounds to ensure safety [26], [27].
Unlike in the existing literature, in this paper, the control
parameters are optimized to improve road utilization while
guaranteeing safety, and delays in car-following interactions
during braking control are considered.
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FIGURE 1. Predecessor-follower platoon model.

III. SYSTEM MODEL
A. PLATOON DESCRIPTION
As illustrated in Fig. 1, this paper considers a homogeneous
platoon that includes a platoon leader (PL) and N platoon
members (PMs). The length of each vehicle is denoted as L,
the time variable is denoted as t , and the position of the i-
th vehicle at time t is denoted as xi(t), where i = 0 is the
PL and i = {1, 2, . . . ,N } represents the PMs. It should be
noted that the position of each vehicle is set as its center; thus,
the distance between the centers of the (i-1)-th vehicle and i-
th vehicle at time t , denoted as di−1,i(t), can be obtained as
di−1,i(t) = xi−1(t)− xi(t). In addition, the velocity of the i-th
vehicle at time t is denoted as vi(t), where vi(t) = x ′i (t).

In this paper, the information topology of platoon control
is considered to be a predecessor-follower topology, in which
each vehicle obtains the information from its predecessor,
including the predecessor’s velocity and position. The delay
from the (i− 1)-th vehicle to the i-th vehicle is denoted as τ .
Here, delay τ is assumed to be time-invariant in this paper.

B. CONTROL MODEL
The optimal velocity model (OVM) is used in this paper,
in which the acceleration or deceleration of the vehicle is
determined by two aspects of the velocity difference, namely,
the difference between the headway-dependent velocity and
the actual velocity and the difference between the velocity of
a given vehicle and the preceding vehicle [6], [28]. As a result,
the control input (acceleration or deceleration) of the i-th PM,
which is denoted as ui(t), is determined by the following
control scheme [29]:

ui(t) = a
[
V (di−1,i(t − τ ))− vi(t)

]
+ b [vi−1(t − τ )−vi(t)]

(1)

where a and b denote the associated gains of the aforemen-
tioned two aspects of the velocity difference. In addition,
the headway-dependent velocity V (d) is determined as fol-
lows [6], [28]:

V (d)=



0 if d < ddense (2a)
vmax

×

(
d−ddense

dsparse−ddense

)
, if ddense≤d≤dsparse (2b)

vmax if dsparse < d (2c)

In a dense scenario, the vehicle will stop for the distance
d < ddense. In contrast, in a sparse scenario, the vehicle
will travel with the maximum velocity, denoted as vmax,

when d > dsparse. For ddense ≤ d ≤ dsparse, the desired
velocity will increase linearly with d . The expression of ui(t)
is nonlinear due to the nonlinearity of V (d).

Assume that the maximum velocity vmax is a constant,
and the original state of the platoon before braking is stable,
i.e., ui(t) = 0, vi(t) = vstable, and di−1,i(t) = dstable. The
relationship between dstable and vstable can be derived from
Eqs. (1) and (2) as follows:

dstable = vstable
dsparse − ddense

vmax
+ ddense (3)

From an analysis of Eqs. (1) and (2), it can be found
that, even for the same delay and the aforementioned two
aspects of the velocity difference, different control parame-
ters, including a, b, ddense and dsparse, will result in different
braking processes. Hence, the control parameters must be
optimized to improve road utilization while ensuring safety.

C. OPTIMIZATION PROBLEM STATEMENT
Consider a scenario in which the PL detects an emergency
directly in front of the platoon, such as the crossing of a pedes-
trian or an obstacle on the highway. To obtain the theoretical
mathematic expression, the braking of the PL is simplified
as v0(tstart) = 0, where tstart is the moment at which the
PL stops immediately. It is reasonable to regard this as the
most urgent case in braking. In addition, the string stability
must be ensured so that the optimized parameters of PM1
can be extended to other following PMs [13], [30]. Thus,
in the following description, d0,1(t) = d(t), v1(t) = v(t),
u1(t) = u(t), s1(t) = s(t), v0(t) = vstable if t < tstart, and
v0(t) = 0 if t ≥ tstart, and s(t) = −u(t), i.e., s(t) represents
deceleration and s(t) ≥ 0.
Considering the effect of delay, to reduce the standstill

spacing and the duration of braking while ensuring safety
and string stability, the optimization problem is modeled as
follows:

P: min
a,b,ddense,dsparse

dend

min
a,b,ddense,dsparse

tend

s.t.



d(t) ≥ dsafe (a)
s(t) ≤ smax (b)
a+ 2b− 2 ≥ 0 (c)
a2 + b22ab− 4a ≥ 0 (d)
(a+ 2b)

(
dsparse−ddense

)
−2vmax

2vmax(a+ b)
≥ τ (e)

(4)

where dend is denoted as the standstill spacing, i.e., the final
distance at the end of braking, tend is the entire duration
of braking, dsafe is the safe distance to avoid a rear-end
collision, and smax is the safe permissible maximum value
of deceleration to avoid damage to the vehicle structures
and endangering passenger safety. In the optimization prob-
lem P, there are two optimization objectives for reducing
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the standstill spacing and the braking duration. Constraints
(a) and (b) ensure inter-vehicle safety and in-vehicle safety,
respectively. Constraints (c), (d), and (e) ensure the string
stability of the platoon, where (a+2b)(dsparse−ddense)−2vmax

2vmax(a+b)
=

τstring is the maximum permissible delay to ensure the string
stability of a platoon with the control law in Eq. (1) [6]. Thus,
the optimization of P is based on the string stability of the
platoon, which is guaranteed by constraints (c-e).

It is difficult to solve this optimization problem. On the one
hand, due to the delay in the car-following interactions and the
nonlinearity of the control law, there is no analysis model that
can quantize the duration and the decreasing distance in the
elapsed time of braking control. On the other hand, the opti-
mization of these control parameters is an NP-hard problem,
and a solution framework with low computational complexity
must be provided. These two challenges are addressed in
Sections IV and V.

IV. ANALYSIS OF STANDSTILL SPACING AND BRAKING
DURATION BY DDEs
To analyze the final standstill spacing dend and braking dura-
tion tend, an overview analysis of two braking scenarios and
the reason for their existence are presented in subsection IV-
A. Then, subsection IV-B proposes a crossing criterion for
judging to which scenario the braking process belongs. Then,
in subsection IV-C, the time functions d(t) and v(t) are
analyzed. Finally, the final standstill spacing dend and braking
duration tend are derived in subsection IV-D.

A. ANALYSIS OF THE BRAKING PROCESS
Beginning at tstart, PM1 will continue driving at vstable until
t = tstart+τ due to the existence of the delay τ , and this phase
is defined as Delay phase. Then, PM1 starts to enter Braking
phase, during which its starting moment is denoted as tbrake,
i.e., tbrake = tstart+ τ . Here, tbrake = 0 for the convenience of
the analysis of the DDE in subsection IV-B; thus, tstart = −τ .
During Braking phase, v(t) and d(t) decrease continuously
from vstable and dstable with t until v(t) = 0. In addition, the
range of dstable can be derived as ddense ≤ dstable ≤ dsparse
from Eqs. (1) and (2). Thus, there are two types of braking
stages based on Eq. (2), and their control laws are as follows.

Braking stage 1:

u(t) = a [V (d(t − τ ))− v(t)]+ b [v(t − τ )− v(t)]

V (d(t − τ )) = vmax ×

(
d(t − τ )− ddense
dsparse − ddense

)
,

if ddense ≤ d(t − τ ) ≤ dstable (5)

Braking stage 2:

u(t) = a [V (d(t − τ ))− v(t)]+ b [v(t − τ )− v(t)]

V (d(t − τ )) = 0, if d(t − τ ) < ddense (6)

Based on whether v(t) has reduced to 0 in Braking stage 1,
the braking process can be classified into Braking sce-
nario 1 and Braking scenario 2.

FIGURE 2. Braking scenario 1.

1) BRAKING SCENARIO 1
As presented in Fig. 2, in Braking scenario 1, PM1 experi-
ences Delay phase and Braking stage 1 and finally stops in
Braking stage 1.

First, the expressions of d(t) and v(t) in Delay phase are as
follows.

d(t) = dstable − vstable(t + τ ), −τ ≤ t ≤ 0 (7a)

v(t) = vstable, −τ ≤ t ≤ 0 (7b)

Then, in Braking phase, PM1 will brake with the control
law of Braking stage 1. Thus, by substituting Eq. (2b) into
Eq. (1), the expressions of u(t) and d(t) can be derived as
follows.

u(t) = a
(
vmax

d(t − τ )− ddense
dsparse − ddense

)
− (a+ b)v(t)

⇒ d ′′(t)+
avmaxd(t − τ )
dsparse − ddense

+ (a+ b)d ′(t) =
avmaxddense

dsparse − ddense
,

if t > 0 and ddense ≤ d(t − τ ) ≤ dstable (8)

It can be seen that Eq. (8) is a DDE with delay τ . The
analysis of Eq. (8) is presented in subsection IV-C.
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FIGURE 3. Braking scenario 2.

2) BRAKING SCENARIO 2
As presented in Fig. 3, in Braking scenario 2, PM1 experi-
ences Delay phase, Braking stage 1, and Braking stage 2, and
it finally stops in Braking stage 2.

In Braking scenario 2, as shown in Fig. 3, the red dot
denotes that d(t) = ddense, and this moment is denoted as
tdense. Due to the existence of delay τ , the control law will
switch to Braking stage 2 at twsitch = tdense + τ . As Delay
phase and Braking stage 1 are the same as those in Braking
scenario 1, Braking stage 2 is subsequently analyzed.

The equation of d(t) in Braking stage 2 is derived by
substituting Eq. (2a) into Eq. (1), as follows:{

u(t) = −(a+ b)v(t)
⇒ d ′′(t)+ (a+ b)d ′(t) = 0,

if t ≥ tswitch. (9)

It can be seen that Eq. (9) is an ordinary differential equa-
tion (ODE) without any delay. Thus, the solution of Eq. (9)
is

d(t) = C1e−(a+b)t + C2. (10)

The initial conditions of Eq. (10) are d(twsitch) = dwsitch
and d ′(twsitch) = −vwsitch. It should be noted that the values
of dwsitch and vwsitch can be obtained as the final values of
Braking stage 1.

By substituting the initial conditions into Eq. (9), the
expressions of d(t) and v(t) in Braking stage 2 are derived
as:

d(t) =
(
vswitche(a+b)tswitch

a+ b

)
e−(a+b)t

+

(
dswitch −

vswitch
a+ b

)
, t ≥ tswitch, (11a)

v(t) = −d ′(t) = vswitche(a+b)(tswitch−t), t ≥ tswitch. (11b)

Based on the preceding analysis, the braking processes
for both braking scenarios are modeled. In subsection IV-
B, the crossing criterion for judging whether the braking
process belongs to Braking scenario 1 or Braking scenario 2 is
presented.

B. CROSSING CRITERION FOR DIFFERENTIATING
BRAKING SCENARIOS
As revealed by the analysis of the braking process based on
Figs. 2 and 3, d(t) = ddense is the condition for judging
which braking scenario the braking process belongs to. The
equivalence substitution is then conducted as follows:

r(t) = d(t)− ddense, (12a)

r(t − τ ) = d(t − τ )− ddense. (12b)

The judgment of d(t) = ddense can then be transformed into
the judgment of r(t) = 0. By deriving two sides of Eq. (12a),
the following can be obtained:

r ′(t) = d ′(t) (13)

Then, by substituting Eqs. (12b) and (13) into Eq. (5), the
following can be obtained:

r ′′(t)+
avmax

dsparse − ddense
r(t − τ )+ (a+ b)r ′(t) = 0,

if 0 ≤ r(t) ≤ dsparse − ddense and t > 0 (14)

Here, r(t) has the following form if the solution of Eq. (14)
is nonoscillatory and decreasing [31]:

r(t) = Ae−zt (15)

where z is a positive number greater than 0.
Substitute r(0) = d(0)−ddense = dstable− vstableτ −ddense

and dstable = vstable
dsparse−ddense

vmax
+ddense into Eq. (15) to obtain

the value of A. Then, by substituting the value of A into
Eq. (15) and Eq. (12a), the expressions of r(t) and d(t) are

r(t) = vstable

(
dsparse − ddense

vmax
− τ

)
e−zt (16)

d(t) = vstable

(
dsparse − ddense

vmax
− τ

)
e−zt + ddense (17)

If the solution to Eq. (14) is nonoscillatory and decreasing,
r(t) will never cross r = 0, i.e., this braking process will
belong to Braking scenario 1; otherwise, it will belong to
Braking scenario 2. Thus, the following crossing criterion is
defined.
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Crossing criterion: The braking process is Braking sce-
nario 1, i.e., the solution of Eq. (13) is nonoscillatory and
decreasing if the following inequality is satisfied:

f (z0) = z20 − (a+ b)z0 +
avmax

dsparse − ddense
e−z0τ ≤ 0, (18)

where z0 = (a+ b)/2+W (0, aτ 2vmaxe−(a+b)τ/2/2(dsparse −
ddense))/τ and W (.) denotes the inverse function of f (x) =
xex .
Proof: The following can be obtained by the first and

second derivatives of Eq. (15):

r ′(t) = −zAe−zt , (19)

r ′′(t) = z2Ae−zt . (20)

By substituting Eqs. (15), (19), and (20) into Eq. (14),
Eq. (14) is transformed by simplification as follows:

z2 − (a+ b)z+
avmax

dsparse − ddense
e−zτ = 0. (21)

As a result, the crossing criterion is transformed into the
existence of a positive z in Eq. (21) [31], [32].

However, Eq. (21) is a transcendental equation, and the
analytic solution of z cannot be obtained; therefore, the
proposition is transformed into the existence of a positive
zero-point of f (z), where

f (z) = z2 − (a+ b)z+
avmax

dsparse − ddense
e−zτ . (22)

The first derivative of f (z) is

f ′(z) = 2z− (a+ b)− τ
avmax

dsparse − ddense
e−zτ . (23)

Observably, f (0) > 0, f ′(0) < 0, and f ′(+∞)→+∞, and
f ′(z) increases monotonically, i.e., f ′(z) only has one positive
zero-point and f (z) has a minimum value for z > 0. Hence,
the positive zero-point z0 of f ′(z) is

z0 =
a+ b
2
+

W
(
0, aτ

2vmaxe
−
(a+b)τ

2

2(dsparse−ddense)

)
τ

, (24)

whereW (.) is the inverse function of f (x) = xex .
f (z0) is the minimum value of f (z) so that f (z)has one

positive zero-point only if f (z0) ≤ 0, i.e.,

f (z0) = z20 − (a+ b)z0 +
avmax

dsparse − ddense
e−z0τ ≤ 0. (25)

The conclusion can be drawn that the DDE (14) is
non-crossing and decreasing, i.e., the braking process is Brak-
ing scenario 1, if Eqs. (24) and (25) are satisfied.

The crossing criterion comprises a, b, vmax, ddense, and
dsparse, and is not related to vstable; in other words, a, b, vmax,
ddense, and dsparse determine whether the braking process
belongs to Braking scenario 1 or 2.

C. TIME FUNCTIONS OF DISTANCE AND VELOCITY IN THE
BRAKING PROCESS
In Sections IV-A and IV-B, it can be seen that there are two
types of braking scenarios, namely Braking scenario 1 and
Braking scenario 2, and both consist of Delay phase andBrak-
ing phase. The difference between the two braking scenarios
is the element of Braking phase; there exists only Braking
stage 1 for Braking scenario 1 while the additional Braking
stage 2 is included for Braking scenario 2. The time function
of distance (velocity) in Braking scenario 1 is a piecewise
function of two segments, while that for Braking scenario 2 is
a piecewise function of three segments, in which the former
two segments are the same as those in Braking scenario 1.
It should be noted that the value of the end-point of each
segment is the initial value of the following segment. The time
functions of all the segments are subsequently presented.

1) TIME FUNCTIONS OF DISTANCE AND VELOCITY IN DELAY
PHASE
For compactness of expression and the benefit of substitution
in the subsequent segments, d(t) and v(t) are equivalently
transformed into the matrix form based on Eqs. (7a) and (7b):

y = Pt +Q, −τ ≤ t ≤ 0 (26)

where

y =
[
d(t)
v(t)

]
, P =

[
−vstable

0

]
, Q =

[
dstable − vstableτ

vstable

]
2) TIME FUNCTIONS OF DISTANCE AND VELOCITY IN
BRAKING STAGE 1
Based on Eqs. (5) and (8), the expressions of d ′(t) and v′(t) in
Braking stage 1 can be transformed into the following matrix
form:

y′ = Ly+Ms+ N, t > 0, (27)

where

L =
[
0 −1
0 −(a+ b)

]
, M =

 0 0
avmax

dsparse − ddense
0

 ,
N =

 0

−a
ddensevmax

dsparse − ddense

 , S =
[
d(t − τ )
v(t − τ )

]
.

It can be seen that Eq. (27) is a set of DDEs, and the
Runge-Kutta method with four orders (RK4) is introduced
to obtain the approximate solution with high precision in this
paper, the time step of which is denoted as1t . It can be deter-
mined from Eq. (27) that as d(t) and v(t) are related to the
state of τ prior to t in Braking stage 1, the values of d(t) and
v(t) in Eq. (26) must be obtained at the steps in Delay phase.
Proposition 1: In Delay phase, the values of d(t) and v(t)

of each point in 1t of PM1 can be obtained as follows:

yn =
[
dn
vn

]
=

[
dstable − vstableτ − n1tvstable

vstable

]
,

tn = n1t, n = −
τ

1t
, . . . , 0 (28)

202450 VOLUME 8, 2020



Y. Meng, Z. Wang: Reducing the Standstill Spacing and Duration of Safe Braking Control in Vehicle Platoons

where tn denotes the n-th point of 1t , while yn, dn, and vn
respectively represent the approximate values of y, d(t), and
v(t) at tn.
The time functions of d(t) and v(t) in Braking stage 1 can

then be derived based on RK4 [33] by substitution in Eq. (27),
which is represented as Proposition 2.
Proposition 2: In Braking stage 1, the distance and veloc-

ity of PM1 are approximately obtained as follows:

yn+1 = yn +
1t
6
(kn,1 + 2kn,2 + 2kn,3 + kn,4)

kn,1 = Lyn +Myn−q + N

kn,2 = L
(
yn +

1t
2
kn,1

)
+M

(
yn−q +

1t
2
kn−q,1

)
+ N

kn,3 = L
(
yn +

1t
2
kn,2

)
+M

(
yn−q +

1t
2
kn−q,2

)
+ N

kn,4 = Ly(yn +1tkn,3)+M(yn−q +1tkn−q,3)+ N

tn = n1t,

q =
τ

1t
n = 0, 1, 2, . . . (29)

where kn,i denotes the i-th approximate growth rate of yn.
In addition, kn,i = d (P(n1t)+Q) /dt(n ≤ 0, i = 1, 2, 3)
and the value of yn(n ≤ 0) is obtained by Proposition 1.

Proof: Please see the proof for Proposition 2 in the
Appendix. �

3) TIME FUNCTIONS OF DISTANCE AND VELOCITY IN
BRAKING STAGE 2
For Braking scenario 2, Braking stage 2 followsBraking stage
1. Based on the preceding analysis of the time functions of
d(t) and v(t) in Braking stage 1, their values at the end of
Braking stage 1 can be obtained as dswitch and vswitch, respec-
tively. Then, by substituting them into Eqs. (11a) and (11b),
the time functions of d(t) and v(t) in Braking stage 2 can be
derived.

D. STANDSTILL SPACING AND BRAKING DURATION
Based on the time functions analyzed in Section IV-C, the
standstill spacing dend and braking duration tend, which are
the values of d(t) and t when PM1 stops, are obtained. In this
paper, PM1 is considered to stop if v(t) ≤ ε, where ε is
a relatively small constant. The values of dend and tend in
Braking scenarios 1 and 2 are then derived by Propositions 3
and 4, respectively.
Proposition 3: The values of dend and tend in Braking sce-

nario 1 are obtained as follows:

dend = ddense
tend = min

n:vn≤ε
n1t (30)

Proof: Please see the proof for Proposition 3 in the
Appendix. �

Proposition 4: The values of dend and tend in Braking sce-
nario 2 are obtained as follows:

dend = dswitch −
vswitch
a+ b

tend =

tswitch +
ln vswitch − ln ε

a+ b
, if vswitch ≥ ε

min
n:vn≤ε

n1t, if vswitch < ε
(31)

where

tswitch = min
n:dn−τ/1t≤ddense

n1t,

dswitch = dtswitch/1t , vswitch = vtswitch/1t .

Proof: Please see the proof for Proposition 4 in the
Appendix. �

V. THE RSD ALGORITHM: PSO BASED ON RESPONSE
FOR DOUBLE OBJECTIVES AND CONSTRAINTS
As per the analysis of dend and tend presented in Section IV,
the correspondences between these parameters (dend and tend)
and the optimization variables (a, b, ddense and dsparse) in P
are uniquely determined. To overcome the intractability of P,
a solution framework with low complexity must be designed
to obtain the approximate solution. PSO is a widely used opti-
mization algorithm proposed by Kennedy and Eberhart [34],
which can optimize multiple parameters simultaneously with
a fast convergence rate and low complexity [13], [35]. There-
fore, as P is an NP-hard problem comprising four optimiza-
tion variables, PSO is utilized in this paper. However, there
are two differences compared with traditional PSO problems.
First, there are two objectives, rather than one, in P. Second,
there are constraints existing in P. To address these differ-
ences, a particular fitness functionmust be properly designed.
Thus, the lexicographicmethod [36] is introduced, as it is able
to guarantee performance in a sequence of the importance of
objectives. Additionally, a penalty function [37] is introduced
to transform the constrained optimization problem P into an
unconstrained optimization problem so that each particle can
have a corresponding fitness value in PSO.

This section proposes a solution framework called the
reduction of standstill spacing and braking duration (RSD)
algorithm, which utilizes PSO combined with the lexico-
graphic method and penalty function. The design of the
fitness function in the proposed RSD algorithm to evaluate
particles is introduced in subsection V-A. Then, subsection V-
B presents the workflow of the proposed RSD algorithm.

A. FITNESS FUNCTION FOR DOUBLE OBJECTIVES AND
CONSTRAINTS
A fitness function is designed to address the multiple objec-
tives and constraints in P. First, x is set as the iteration
variable, and fv is set as the fitness value in the PSO fit-
ness function As there are four optimization variables in P,
including a, b, ddense and dsparse the form of vector x is x =
(a, b, ddense, dsparse).
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1) THE LEXICOGRAPHIC METHOD FOR SEQUENCE
OPTIMIZATION AND THE PENALTY FUNCTION FOR
TRANSFORMING THE CONSTRAINTS
As P is a double-objective optimization problem the lex-
icographic method [36] is introduced by optimizing two
single-objective subproblems in the sequence of importance.
In this paper, compared with tend, dend is closely related to
road utilization and safety insurance. Therefore, dend is taken
as the first objective, and tend is the second objective. Then,
P is optimized by solving two suboptimization problems in
sequence, named Sub-P1 and Sub-P2. For the former Sub-P1,
its objective is min dend, and its constraints correspond to the
constraints (a-e) in P, where constraint (a) is transformed into
dend ≥ dsafe. This is because d(t) decreases monotonically
and dend is the minimum value of d(t). Here, dopt represents
the minimal objective value in optimizing Sub-P1. For the
latter suboptimization problem Sub-P2, after the optimization
of Sub-P1, tend is optimized. To guarantee the performance
of the first objective dend in the subsequent optimization, the
constraint dend ≤ (1 + rel)dopt is added in Sub-P2, where
rel denotes a relaxation to guarantee that Sub-P2 is convex
and solved efficiently and within a suitable time frame [36].
Thus, the constraints of Sub-P2 correspond to constraints
(a-e), where constraint (a) is transformed into dsafe ≤ dend ≤
(1+rel)dopt. Based on the preceding analysis, an independent
variable flag is introduced as an indicator to indicate whether
dend in Sub-P1 (flag = 1) or tend in Sub-P2 (flag = 2) is
obtained.

As constraints exist in Sub-P1 and Sub-P2, the itera-
tive process in PSO cannot be directly executed. Thus, the
penalty function is introduced to impart a large penalty value
λ to the particles that do not satisfy the constraints in Sub-
P1 and Sub-P2 [37] because both Sub-P1 and Sub-P2 are
minimization problems. This can transform the constrained P
into an unconstrained optimization problem for the execution
of PSO. In addition, combined with the subproblem indicator
flag, the fitness function F(.) is represented as follows:

fv=F(x, λ,flag)

=

{
dend(tend), if the constraints are satisfied
λ, if the constraints are not satisfied

(32)

2) THE DESIGNED FITNESS FUNCTION
As PM1 stops in Braking stage 1 in Braking scenario 1,
and it stops in Braking stage 2 in Braking scenario 2, the
determination of dend and tend in Braking scenario 1 is based
on Proposition 3, while that in Braking scenario 2 is based on
Proposition 4 by obtaining dswitch and vswitch based on Propo-
sition 2. Then, based on the above analysis, the determination
of fv in Braking scenarios 1 and 2 is designed in the rest of
this part.

First, the stability condition is judged for each particle by
constraints (c-e) in P. Next, for stable particles, the crossing
criterion is introduced to obtain fv in Braking scenarios 1 and
2, respectively.

Next, for the in-vehicle safety, the judgment corresponds
to constraint (b) in Sub-P1 and Sub-P2, i.e., s(t) ≤ smax.
Because vn can be obtained by the introduced RK4, the
deceleration at tn can be approximated and judged as

sn = −un = −
vn − vn−1
tn − tn−1

=
vn−1 − vn
1t

≤ smax, (33)

where sn represents the approximate value of s(tn).
Here, tn should be from−τ to tmax, tmax is an input denoted

as the maximum permissible time for braking, and L =
btmax/1tc.

For inter-vehicle safety, constraint (a) in Sub-P1 and Sub-
P2 must be judged as follows:

dsafe ≤ dend, if flag = 1 (34a)

dsafe ≤ dend ≤ (1+ rel)dopt, if flag = 2 (34b)

If the string stability is ensured, the in-vehicle and
inter-vehicle safety are satisfied, and we have fv =

dend, if flag = 1, and fv = tend, if flag = 2. Otherwise,
if any one of the constraints is not satisfied, fv = λ.
The determination of the fitness function is described in

Algorithm 1.

B. THE PROPOSED RSD ALGORITHM
The proposed RSD algorithm based on PSO is subsequently
presented in detail. The symbols used in PSO are listed in
Table 1. The procedures of the proposed RSD algorithm are
then presented.

TABLE 1. Summary of notations in the PSO algorithm.

Here, the complexity of the proposed RSD algorithm is
polynomial O(LNK ). Please see the proof of the complexity
computation in the Appendix.

VI. SIMULATION RESULTS
This section consists of three parts. Subsection VI-A demon-
strates the accuracy of the analysis of standstill spacing
and braking duration by the DDEs, including the crossing
criterion and the determination of dend and tend based on
RK4. Next, in subsection VI-B, the improved performance
of the proposed RSD algorithm is presented via comparison
with four related algorithms, namely, the car-following algo-
rithm [25], the feedback control algorithm [26], themaximum
braking algorithm [27], and the fixed setting algorithm using
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Algorithm 1 Construction of the Fitness Function fv =
F(x, λ,flag)
Inputs: x, λ,flag, vmax, vstable, dsafe, smax, ε,1t, τ, rel,L
Output: fv = F(x, λ,flag)
1: Initialize fv = λ
2: if the platoon is string stable based on constraints (c–e)

in P // ensure string stability then
3: Obtain dstable based on Eq. (3)
4: Obtain dn and vn for n = −τ/1t, . . . , 0 based on
Proposition 1

5: for each tn, n = 1, 2, 3, . . . ,L do
6: Obtain dn and vn based on Proposition 2
7: if Inequality (33) is satisfied // ensure in-vehicle

safety then
8: if the braking process belongs to Braking sce-

nario 1 based on crossing criterion then
9: if vn ≤ ε then

10: dend = ddense and tend = n1t
11: Goto Step 23
12: end if
13: else
14: if dn−τ /1t < ddense then
15: Obtain dend and tend based on Propo-

sition 4.
16: Goto Step 23
17: end if
18: end if
19: else
20: Goto Step 26
21: end if
22: end for
23: if Inequality (34) is satisfied // ensure inter-vehicle

safety then
24: Obtain fv based on flag
25: end if
26: end if

the same control laws [6]. Finally, in subsection VI-C, the
relationship among the limits of the stable velocity, the delay
and the stable distance is presented as a reference for platoon
control while ensuring safety.

A. THE ACCURACY OF MODELING THE BRAKING
PROCESS
1) CROSSING CRITERION
A crossing criterion defined in Section IV-B is proposed
to divide the braking process into Braking scenario 1 and
Braking scenario 2, and its accuracy is subsequently verified

Fig. 4 presents the actual results of the classification of
braking scenarios with different delays and stable veloci-
ties, in which it can be seen that the percent of braking in
Braking scenario 1 is greater with shorter delays and larger
values of vstable. In addition, the braking process tends to be
Braking scenario 1 when the delays are close to 0. This is

Algorithm 2 The Proposed RSD Algorithm
Inputs: N ,K , xmin, xmax, vmin, vmax, c1, c2, ω.
1: Conduct PSO where the fitness function is fv =

F(x, λ, 1) and the optimization objective is min dend.
2: After PSO in step 1, it can be obtained that dopt =
F(xgbest, λ, 1)

3: Conduct PSO where the fitness function is fv =

F(x, λ, 2) and the optimization objective is min tend.
Here, dopt is introduced in this step because constraint
(a) in fv = F(x, λ, 2) is dsafe ≤ dend ≤ (1 + rel)dopt
to illuminate particles that cannot guarantee the perfor-
mance of the first objective dend in step 1.

Outputs: dend = F(xgbest, λ, 1), tend = F(xgbest, λ, 2),
results of optimization variables xgbest.

FIGURE 4. Actual distribution of Braking scenarios 1 and 2.

because when delays are close to 0, the DDE (8) of Braking
stage 1 tends to be an ODE, the solution of which is nonoscil-
latory and decreasing, i.e., the braking process belongs to
Braking scenario 1 when τ = 0.
As shown in Fig. 5, PM1 has a longer dstable to brake when

it drives with a higher value of vstable, and the braking process
tends to be Braking scenario 1. Therefore, a shorter time delay
and larger dstable make the braking process more relaxed.
Fig. 6 presents the accuracy of the crossing criterion with

different delays and stable velocities. For each point in Fig. 6,
the optimization variables including a, b, ddense, and dsparse,
are optimized by the proposed RSD algorithm. The accu-
racy of the crossing criterion is found to be 94.02%. The
distribution of inaccurate points of the crossing criterion is
close to a line (represented by blue dots) because the value
of f (z0) corresponding to this line is close to 0, leading to the
inaccuracy of the crossing criterion.

2) THE DETERMINATION OF dend AND tend
Fig. 7 presents the percentage of differences between the the-
oretical and simulated values for dend and tend. As presented
in Fig. 7(a), the percentage of differences for dend is less than
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FIGURE 5. PM1 braking with different values of vstable under the same
delay.

FIGURE 6. Accuracy of crossing criterion.

0.18%, while that for tend is less than 0.03%, as presented in
Fig. 7(b). Thus, the propositions for the determination of dend
and tend are highly accurate.

B. THE PERFORMANCE OF THE PROPOSED RSD
ALGORITHM
To evaluate the performance of the proposed RSD algo-
rithm, it is compared with four related algorithms, namely,
the car-following algorithm [25], the feedback control algo-
rithm [26] themaximumbraking algorithm [27], and the fixed
setting algorithm, which has the same control laws as the
RSD algorithm. The parameters are listed in Table 2, and
the parameters of the fixed setting algorithm are set as a =
4, b = 0.6, dsparse = 35 m, and ddense = 1.5dsafe/ddense =
2dsafe [6].

FIGURE 7. The percentage of differences between the theoretical and
simulated values.

TABLE 2. Simulation parameters.

PM1 starts to brake at tbrake; hence, s(0) can be derived as

s(0) = −u(0)

= −(a [V (d(tbrake − τ ))− v1(0)]

+ b[v0(tbrake − τ )− v1(0)])

= − (a [V (d(−τ ))− v1(0)]+ b [v0(−τ )− v1(0)])

= bvstable (35)
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FIGURE 8. Comparison of standstill spacing and braking duration.

For the constraint s(t) ≤ smax, it should be ensured that
bvstable ≤ smax. Therefore, b ≤ umax/vstable, and the maxi-
mum deceleration value for a vehicle is 10 m/s2 [38].
The maximum value of dsparse is 100 m because the max-

imum safe distance between vehicles for a platoon requires
dstable to be 100 m [39] when it drives at a speed of 30 m/s.
In addition, min dsparse ≥ max ddense, or the control law (2)
will not work if dsparse < ddense.
Furthermore, the control gains a and bmust be guaranteed

as a > 0 and b > 0 so that min a = min b = 0.
Fig. 8 illustrates the standstill spacing and braking duration

under different delays, which represent inter-vehicle safety
(Fig. 8(a)) and road utilization (Figs. 8(a) and 8(b)). It is
evident that the fixed setting algorithm and the feedback
control algorithm cannot guarantee inter-vehicle safety, i.e.,
dend < dsafe and the unsafe results are represented as hollow
points. For the fixed setting algorithm, it is found that dend
decreases with the increase of delays, and it finally induces
collision with a high delay (τ > 0.5 s for ddense = 1.5dsafe,
τ > 0.6 s for ddense = 2dsafe) because the fixed control
parameters in control laws (1) and (2) cannot cope with the
worsened delay condition. The feedback control algorithm

FIGURE 9. Comparison of deceleration and control input.

lacks both the offset of delay in distance estimation and
adequate deceleration.

Fig. 9 demonstrates the distribution of deceleration under
different delays and control input dependent on time when
τ = 0.4 s, which represents in-vehicle safety. It is noted that
deceleration is equal to the absolute value of control input,
so that deceleration is greater than 0 and control input is less
than 0. It is clear that the car-following algorithm cannot guar-
antee in-vehicle safety, i.e., s > smax and the unsafe results
are represented as hollow columns and dotted lines. This is
because the insurance of in-vehicle safety is not considered
in the car-following algorithm, which uses an overly large
deceleration in the decelerating phase. In addition, Fig. 8(b)
shows that the braking duration in the proposed RSD algo-
rithm is less than 4 s, while that in the car-following algorithm
ranges from 5.2 s to 7 s. In other words, it has a longer braking
duration compared with the proposed algorithm, even though
it exceeds the limit of deceleration in the decelerating phase.

It is evident in Figs. 8 and 9 that, aside from the proposed
RSD algorithm, only the maximum braking algorithm can
ensure safety, and it is found to have a shorter braking dura-
tion based on Fig. 8(b). However, the standstill spacing in

VOLUME 8, 2020 202455



Y. Meng, Z. Wang: Reducing the Standstill Spacing and Duration of Safe Braking Control in Vehicle Platoons

FIGURE 10. The minimum stable distance for ensuring safety
(dsafe = 6 m).

the maximum braking algorithm is greater than 8 m based
on Fig. 8(a), which is not beneficial for improving road
utilization. Moreover, under this algorithm, the vehicles will
continuously brake at the maximum deceleration based on
Fig. 9(a), and the control input will experience a sudden fall
and rise at the beginning and end of the braking process based
on Fig. 9(b), which will have a sharp and substantial impact
on passengers, who will be made to feel extremely uncom-
fortable. In summary, only the proposed RSD algorithm can
simultaneously improve road utilization and ensure the two
aspects of safety.

C. RESULTS FOR REFERENCE
The relationship among the limits of the stable velocity, the
delay, and the stable distance is presented for reference in
platoon control while ensuring safety.

Fig. 10 presents the minimum stable distance for ensuring
safety at different delays and stable velocities. If the stable
distance is shorter than the minimum value, the standstill
spacing may be less than the safe distance, or the deceleration
may be beyond the permissible value. In Fig. 10, it can be seen
that the minimum stable distance increases with the stable
velocity and delay because a longer distance is required to
safely brake when vehicles drive at higher speeds or under
longer delays.

VII. CONCLUSION
This paper proposes an optimized braking control under
delays in which road utilization is improved by reducing the
standstill spacing and braking duration while ensuring safety.
In particular, the braking process is modeled using DDEs to
embed the effect of delay. In addition, a crossing criterion is
introduced to classify the braking scenarios. Furthermore, the
time functions of the distance and velocity during braking are
derived, and propositions of the standstill spacing and braking
duration are made based on the Runge-Kutta method. Then,
under the consideration of ensuring safety with delays, the
road utilization is improved via the optimization of the control
parameters, and a solution framework with polynomial com-
plexityO(LNK ) is provided. The simulation results verify the
accuracy of the braking modeling process, demonstrate the

performance of the proposed algorithm, and provide results
as a reference for platoon control.

Furthermore, braking with time-variant delays, heteroge-
neous platoons and different information topologies can be
studied in the future. Moreover, the lateral behavior of a
platoon during the braking process will be considered in the
future

APPENDIX A
PROOF OF PROPOSITION 2

Proof: The initial value problem for the DDE (28) is as
follows:

y′(t) = Ly(t)+My(t − τ )+NNN

y(t) = Pt +Q, t ≤ 0 (36)

where y(t) = Pt +Q is the initial function of the DDE.
Here, (tn, yn) denotes the n-th value of (t, y), and this is

required to obtain the value of (tn, yn) for tn > 0, where t = 0
represents the initial moment of the equation.

The formula of the approximate solution of the DDE is as
follows [40]:

yn+1 = yn +1t
s∑
i=1

hifni (37a)

tn+1 = tn +1t (37b)

where fni denotes the i-th approximate growth rate of (tn, yn),
hi is the weight of fni, and s represents the order of themethod,
n = 0, 1, 2, . . ..
Then fni can be derived as follows [40].

fni = Lyni +MS(tni − τ )+NNN

tni = tn +1tci, i = 1, . . . , s

yni = yn +1t
i−1∑
j=1

aijfnj (38)

Note that S(tni−τ ) denotes the approximate, not the exact,
value of y(tni−τ ). Thus, S(tni−τ ) is different from y(tni−τ ).
Because 1t is a step factor of τ in the proposed algorithm,
i.e., q = τ/1t , and q is an integer, (tni − τ, y(tni − τ ))
is approximated by (tni−q, yni−q), n = 0, 1, 2, . . .. Hence,
S(tni − τ ) is equal to yni−q.
Based on the preceding analysis, the formula of RK4 can

be obtained as Proposition 2 [40].
It is noted that yn = P(n1t) + Q and kn,i = d(P(n1t) +

Q)/dt when n ≤ 0, i = 1, 2, 3, i.e., yn and kn,i are exact
values when n ≤ 0 because the initial function is given,
in which kn,i(n ≤ 0, i = 1, 2, 3) are equal. �

APPENDIX B
PROOF OF PROPOSITION 3

Proof: In Braking scenario 1, the forms of d(t) and v(t)
are obtained as follows based on Eqs. (12a) and (15):

d(t) = Ae−zt + ddense (39a)

v(t) = zAe−zt (39b)
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i.e., d(t) will decrease to ddense, v(t) will decrease to 0, and
dend = ddense.

Based on the analysis of Braking scenario 1 in
Section IV-C, the braking process ends if v(t) ≤ ε. Therefore,
tend = n1t when it enters vn ≤ ε, i.e., tend = min

n:vn≤ε
n1t ,

because v(t) decreases monotonously with time, i.e., vn > ε

if n < tend/1t and vn ≤ ε if n ≥ tend/1t . �

APPENDIX C
PROOF OF PROPOSITION 4

Proof: When t ≥ tswitch, the equations of d(t) and v(t)
are (11a) and (11b), respectively. Thus, d(t) and v(t) will be
uniquely identified after tswitch if tswitch, dswitch, and vswitch are
given.

Based on the analysis presented in Section IV-A, tdense is
the moment at which d(t) = ddense, i.e., d(t) > ddense if t <
tdense and d(t) < ddense if t > tdense. In other words, d(t) >
ddense if t < tswitch − τ and d(t) < ddense if t > tswitch −
τ , as tdense = tswitch − τ . Thus, tswitch = min

n:dn−τ/1t≤ddense
n1t

according to the proof of Proposition 3. In addition, vswitch =
vn and dswitch = dn at moment t = tswitch, i.e., n = tswitch/1t .
Therefore, tswitch, dswitch, and vswitch are obtained in Braking
stage 1 through Proposition 2.

Here, d(t) in Braking stage 2 decreases to dswitch −
vswitch
a+b

so that dend = dswitch −
vswitch
a+b according to the proof of

Proposition 3.
Because PM1 is considered to stop if v(t) ≤ ε, there are

two cases for the determination of tend, as v(t) ≤ ε will be in
Braking stage 1 or 2.

Case 1: v(t) ≤ ε is in Braking stage 1. In this case, vswitch <
ε because vswitch is the final velocity of Braking stage 1. Thus,
tend = min

n:vn≤ε
n1t based on the proof of Proposition 3.

Case 2: v(t) ≤ ε is in Braking stage 2. In this case,
vswitch ≥ ε because vswitch is the initial velocity of Braking
stage 2. Because v(t) is decreasing in Braking stage 2, tend is
obtained by solving the following equation:

vswitche(a+b)(tswitch−tend) = ε (40)

so that

tend = tswitch +
ln vswitch − ln ε

a+ b
(41)

�

APPENDIX D
PROOF OF COMPLEXITY COMPUTATION
When computing the complexity, the order of magnitude of
themost executed statements is equal to the complexity. In the
RSD algorithm, the innermost loop is the obtaining of dend or
tend in the fitness function, which should be executed at most
L times. Then, in the PSO process,N particles will be updated
K times, and one update contains the obtaining of dend or tend
at most L times.

Based on the above analysis, dend or tend will be obtained
at most LNK times; namely, the complexity is O(LNK ), and
it is polynomial complexity.
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