IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 20, 2020, accepted October 1, 2020, date of publication October 14, 2020, date of current version October 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3031191

Neural-Network-Based Traffic Sign Detection and
Recognition in High-Definition Images Using
Region Focusing and Parallelization

ALEKSEJ AVRAMOVIC', DAVOR SLUGA 2, DOMEN TABERNIK 2,
DANUEL SKOCAJ“2, (Member, IEEE), VLADAN STOJNIC!, (Member, IEEE),
AND NEJC ILC2, (Member, IEEE)

!Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
ZFaculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia

Corresponding author: Nejc Ilc (nejc.ilc @fri.uni-lj.si)

This work was supported in part by the Ministry of Scientific and Technological Development, Higher Education and Information Society
of Republic of Srpska, under Contract 07.051/68-14/18 and Contract 19/6-020/961-144/18, in part by the Bilateral Academic and
Technological Cooperation between Bosnia and Herzegovina and Slovenia under Contract 19-6-020/964-25-1/18, and in part by the
Slovenian Research Agency through the Bilateral Collaboration Project Grant BI-BA/19-20-047 and under Grant P2-0241.

ABSTRACT Recent trends in the development of autonomous vehicles focus on real-time processing of vast
amounts of data from various sensors. The data can be acquired using multiple cameras, lidars, ultrasonic
sensors, and radars to collect useful information about the state of the traffic and the surroundings. Significant
computational power is required to process the data fast enough, and this is even more pronounced in vehicles
that not only assist the driver but are capable of fully autonomous driving. This article proposes speed
and accuracy improvement of traffic sign detection and recognition in high-definition images, based on
focusing on different regions of interest in traffic images. These regions are determined with efficient and
parallelized preprocessing of every traffic image, after which convolutional neural network is applied for
detection and recognition in parallel on graphics processing units. We employed different ““You Only Look
Once” (YOLO) architectures as baseline detectors, due to their speed, straightforward architecture, and
high accuracy in general object detection tasks. Several preprocessing procedures were proposed, to achieve
real-time performance requirement. Our experiments using a large-scale traffic sign dataset show that we
can achieve real-time detection in high-definition images with high recognition accuracy.

INDEX TERMS Traffic sign detection, traffic sign recognition, CUDA, CNN, deep learning, high-definition

images, GPU.

I. INTRODUCTION

Modern vehicles are getting smarter. Equipped with various
sensors, powerful computers, and state-of-the-art algorithms
for traffic estimation, they provide reliable driving and park-
ing assistance. Furthermore, the latest achievements in the
car industry allow autonomous vehicles to safely partici-
pate in everyday traffic without human interference, only
relying on information extracted from multiple visual and
motion sensors. Vehicles must be equipped with hardware
able to process vast amounts of data from different types
of sensors in real-time. Usually, these are custom-tailored

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Igbal

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

computers capable of tackling large computational loads
reliably. Such special hardware packages make autonomous
vehicles much more expensive in comparison to non-
autonomous ones. Upcoming versions of modern vehicles
will inevitably include even more sensors requiring even
more computational power. We can expect future car com-
puters will provide us with more advanced driving assis-
tance soon. For example, the car can use front and rear
cameras for traffic jam prediction, estimation of safe dis-
tance from other vehicles, blind spots monitoring, warning
on fast-approaching vehicles, or the sudden appearance of
cyclists and pedestrians on the road. Also, it can utilize front
cameras for real-time detection and recognition of multiple
objects, i.e., traffic signs, street names and numbers, and more

189855

https://orcid.org/0000-0002-9727-4176
https://orcid.org/0000-0002-5613-5882
https://orcid.org/0000-0002-5290-4736
https://orcid.org/0000-0002-3866-6751
https://orcid.org/0000-0003-0513-3665

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

accurate estimation of local orientation. The integration of the
collected data may further lead to speed correction assistance
to avoid traffic jams. Additionally, vehicles can be equipped
with sensor systems capable of real-time traffic sign inventory
maintenance and observation of near-road objects. In most of
the mentioned scenarios, a fast and accurate object detection
on images is crucial.

It is well-known that deep learning techniques, e.g., con-
volutional neural network (CNN), offer the best performance
for object detection and recognition in images. Considering
practical applications described above, it is essential to con-
sider the processing time of an individual image and object
detection accuracy (objects can be of traffic signs and other
traffic-related items). The processing time is correlated with
the network architecture: generally, more time is required
when more layers are used and the number of generated fea-
tures grows with the input image size along with the needed
computational power and memory. Modern deep learning
algorithms often rely on the computational performance of
powerful graphic processing units (GPUs) capable of per-
forming a large number of simple operations in parallel.
Propagation of a single image through a deep convolutional
network may take only several milliseconds using the latest
GPU hardware. Also, CNN can be implemented on embedded
hardware devices with limited computation power, which
negatively affects the processing time or/and the recognition
performance. The ongoing improvements of GPUs are mak-
ing them more powerful, cheaper, and more accessible, so it
is reasonable to expect that similar hardware will appear in
vehicles as an extension to the car’s computers shortly. For
example, GPU-like NVIDIA Drive AGX is a computationally
powerful card customized for processing data from multiple
devices such as cameras, sensors, lidars, and radars.

This article examines the possibilities of implementing
real-time and large-scale traffic sign detection (TSD) and
traffic sign recognition (TSR) based on the processing of
high-definition (HD) traffic images. The proposed approach
could be adapted for general traffic object detection and
recognition. Experiments were done to examine the impact of
the number of features on detection and recognition accuracy
and processing time.

We propose efficient and parallel preprocessing of HD
traffic images to detect regions-of-interest (ROI) that contain
traffic signs with high probability. These ROIs can be then
sent to one or multiple GPUs for processing, thus paral-
lelizing TSD/TSR for one particular traffic image. This way
the backbone network can focus on one particular region in
an image, neglecting background features. Of course, one
traffic image can contain traffic signs in different places.
The proposed algorithm detects up to three ROIs. If mul-
tiple GPUs are available, each ROI can be processed in
parallel, thus significantly increasing processing speed for
one particular traffic image. Among several single-shot
detection networks, we used the different ‘“You only look
once” (YOLO) architectures as the basis due to the low
propagation latency and excellent detection performance.

189856

We experimented with simple architecture Tiny YOLO, inter-
mediate architecture YOLOV3, and more complex YOLOv4.
We compared TSD/TSR performance in the case when ROIs
are fixed on predefined positions, based on a priori knowl-
edge of traffic sign positions, with the case when the ROIs’
positions are adjusted using an estimation of traffic signs
positions in each frame. The method for positioning the ROIs
is a simplified salience detection algorithm, which slightly
adjusts the predefined position of ROIs so that we achieve
better coverage of traffic sign instances.

The paper is organized as follows. Section II gives an
overview of the related work, Section III describes the
dataset used in this research, while Section IV presents
the most important characteristics of the YOLO algorithm.
In Section V, initial experimental results are given, showing
the performance of our proposed image processing pipeline,
which we describe in Section VI. Detailed analysis of exper-
imental results is given in Section VII, while Section VIII
gives conclusion remarks.

Il. RELATED WORK

According to the accepted terminology, images captured from
the cameras mounted on cars in traffic (containing traffic
signs) will be referred to as traffic sign images and term
traffic sign instances refers to physical, real-world traffic
signs. Detection and recognition of traffic sign instances
received notable attention from the computer-vision commu-
nity in the past decade. Early research included low-level
feature extraction to detect and recognize the most important
traffic signs, namely mandatory and prohibitory signs (cir-
cles, squares, and triangles), using primary color and shape
features. Besides using low-level features, these solutions
were limited to a small number of different traffic sign
categories. These methods relied on time-consuming algo-
rithms for determining the location of traffic sign instances
in images, or they concentrated only on the classification
of pre-cropped traffic sign instances. Initially, the research
on TSR was inspired by the necessity for automatic traffic
sign inventory management [1]—[3], and later to provide more
reliable driving assistance [4]-[7].

In later years, the research focus was mostly on mid-level
features for traffic sign recognition to achieve light-, rotation-,
scale-, and distortion-invariance. In [8], [9], a systematic
benchmark TSR dataset was collected containing more than
fifty thousand images of traffic sign instances, manually
labeled into 43 different categories. An excellent performance
was demonstrated on the classification of image cutouts or
patches containing traffic sign instances using both mid-level
features and shallow depth networks. Another interesting
overview was presented in [10], where authors explored
the influence of different aspects such as visual sensors,
camera calibration, color model, and global illumination on
recognition of traffic sign instances. In [11], complementary
mid-level features were augmented and used for extreme
learning machine algorithms and demonstrated a remarkable
performance. Still, localization of traffic sign instances inside

VOLUME 8, 2020

A. Avramovic¢ et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

IEEE Access

an image remained an open issue. In [12] authors give a
complete overview of mid-level TSD algorithms with a com-
parison and discussion of different approaches to TSD.

Lately, researchers mostly used convolutional neural net-
work for TSR and TSD tasks. Much research was done
about using CNN for TSR (i.e., classification of pre-cropped
traffic sign instances), either as a feature extractor or as
a classifier [13]-[17]. The latest approach combines TSD
and TSR, as presented in [18]-[20], where excellent per-
formance was demonstrated on localization and recognition
of traffic sign instances. Since we focus on the utilization
of YOLO-architecture in TSD/TSR, we carefully evaluated
related references. An evaluation of the YOLOV2 version for
TSD/TSR was done in [21], where authors demonstrated high
precision and small latency. However, they used traffic sign
datasets with a limited number of different sign categories.
An example of YOLOv3-based TSD/TSR is given in [22],
where authors used their dataset with 22 categories from
the Vietnamese traffic sign dataset. However, they reported
a large number of misdetections, and there is no time con-
sumption analysis. To the best of our knowledge, no other
papers on YOLO-based methods for TSD/TSR have been
reported. Moreover, it is noticeable that although several
papers report real-time TSD/TSR [23]-[25], none of them
considered real-time detection and recognition in HD images
entirely based on CNN. In [17], [26], real-time detection is
reported, where detection is done by image filtering while
CNN is used for recognition only.

Most of the research is limited in the sense of the variety
of traffic sign instances, where the dataset contains only
a subset of real-world traffic signs. Most common traffic
signs were designed to vividly and instantly provide warn-
ings, prohibitory or mandatory restrictions. Their simple
design enables handcrafted image processing algorithms to
perform well. On the other hand, there are numerous cate-
gories of different traffic signs that are informative and much
harder to detect and recognize using handcrafted algorithms,
as explained in [20].

The latest report regarding real-time traffic sign recogni-
tion came from the NVIDIA developer center [27], which
developed a multi-level CNN for traffic lights and traffic sign
detection and recognition. In essence, traffic sign detection
and recognition is done using hierarchical convolutional deep
network model, where different key features are detected
separately and then combined into the final output class.
Their network can detect 300 different U.S. and more than
200 European traffic sign categories, but the dataset is not
publicly available, nor are there any detailed experiment
reports.

Ill. DFG TRAFFIC SIGN DATASET

Several traffic sign datasets were made publicly available
to enable benchmarking and testing of proposed algorithms.
Some of these datasets provided images for TSR only, while
others offered TSD as well. Although, some of them pro-
vide vast amounts of data, like the Tsinghua-Tencent 100k

VOLUME 8, 2020

dataset [19], the dataset with the highest number of different
traffic sign categories is The Belgium Traffic Signs (BTS)
dataset [28] that contains 62 different categories for detec-
tion and recognition. Also, several reports on TSD/TSR
results were given on private datasets [5], [29]. In [30]-[32],
an extended TSD dataset is introduced to enable bench-
marking of TSD under different real and simulated condi-
tions. Although this dataset includes many traffic images and
videos, there are only 14 different traffic sign categories.
An overview of these datasets, their specifics, and the number
of different traffic categories is given in [20]. The work
mentioned above also provided the first public large-scale
TSD/TSR dataset, called the DFG traffic sign dataset, con-
taining 200 different traffic sign categories. The majority of
the images are in full high-definition (FHD) format. More-
over, the authors extended the original dataset with numerous
artificially created traffic sign images. Among all available
traffic sign datasets, we focused on the DFG dataset, since it is
the only one with HD images and a large number of different
traffic sign categories.

DFG traffic sign dataset! introduced in [20] consist of
approximately seven thousand anonymized natural traffic
sign images captured on Slovenian roads, most of which
have full HD resolution of 1920 x 1080 pixels. Traffic sign
instances are given with more than thirteen thousand tight
annotations that describe the location and shape of instances
using polygons. The complete set of images is divided in the
training set (5254 images) and the test set (1703 images).
Also, images in the dataset were chosen so that every traffic
sign category has at least 20 annotations. In total, 200 differ-
ent sign categories are included.

There are different types of traffic signs, some of which
give warning, mandatory and prohibitive instructions on how
and where to drive. In contrast, others only give useful, but
not critical information. Concerning road safety, it is much
more important to recognize mandatory and prohibitive signs
accurately. Consequently, they are designed to have a specific
color and shape. In general, traffic sign categories within
one specific type share a similar shape and color features
and have specific meanings. For example, warning signs are
triangular with a red frame and give us information about the
curves on the road ahead, landslides, etc. (type I in Fig. 1),
prohibitory and mandatory signs are mostly round with a
white background and a red frame or with a blue background
only (type II in Fig. 1). Traffic signs of this type give infor-
mation about speed limits, priorities, and prohibitions. DFG
dataset also contains informative signs (type III in Fig. 1,
round or rectangular of different colors), supplementary signs
(type IV in Fig. 1, rectangular shape with different inscrip-
tions), road signs (some of type III categories and type VII
in Fig. 1, rectangular with different background colors, dif-
ferent inscriptions, different arrow directions), as well as
bumpers, mirrors and electric speed limits (type X in Fig. 1).

IDataset is publicly available at https://www.vicos.si/Downloads/DFGTSD

189857

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

AAAAAAAAAAAAAALAAAAAAAAA
AAAAAAAAAIYBOSOOC06EC

1-28 1-28

.QCQ@QOO.QCQ

11-30-30 11-30-40 113050 [1-30-60 11-30-70

1-19-4 Il 21 1-22 11-23 11-26 11-26.1 11-28 11-30-10

11-45.1 11452 146 11461 11462 [47 11471

111-10 1m-12 111-37 111-39 111-40 111-42 111-43

11-48 T-1 11-2 11-3 11-5

l

111-46 111-47 [II 50

111-29-30 m 29-40 111-30-30 11133 111-34 111-35 1-59 111-64

111-45

111-54

11-68

h-nm...lI.ﬁﬁ

M-105 M-105.1 MW-1053 ez weonr neioza2 w02 [1-120

1-14 1-25 127

OIS PrY

117 -8 50130 1393

1-13.1

-4 11 11-7 11-7.1 11-8 11-10.1 1-14

0.0@00@)0.

11-45

1-32 11-3 11-40 11-41 11-42 11-42.1 11-43

I‘I@‘ OC. 7 0@

TI1-8-1 m-16 11-18-40 [11-18-50 MI-18-60 II-18-70 III-21 111-23 111-25

11-6 1M1-25.1 III 27

=

111-74 11-77 111-85.1

m-112 m-113 MI-123 - 11-206-1

111-90 111-90.2

11-91

wabrese [Brsaorty (TR (CHEES) (((—

1I-15 11-86-1 1I1-86- 2 1-107.2:1 111-107.2-2

111-14

11-14.1

11-120.1 1-120-1 TI-124 q1202-5 111-203-2

" 3 VI]42
W (] e ﬁ—----{j}- o [N -e
V-Eaven V2 v VB2 qygg vas IS V-6 IV-10 IV-1T o IVAI2 W”P 'f«omm v1143
VSM"MM
VII-4 E 9
.r | 1 L\ﬁ:k .
= v IV-16 VI-3-1 V1311 Vl312 Vl?2 VI-8 V][A]

1V-20-1

lVl}l IV-13.1-2 1v-13.1-3 1V-13.1-4 IV132 1V-13-3 IV134 IV-13-5 IV136 IV-18

FIGURE 1. Categories in DFG traffic sign dataset.

Examples of every traffic sign instance from the DFG dataset
are given in Fig. 1.

We notice that some traffic sign instances of different
categories (even different types) can have very similar visual
characteristics. For example, we can compare the signs from
category [-39-3 and VI-3.1-1 and notice that they have the
same stripe pattern with a difference in thickness. Another
interesting example is that the difference between I1I-14 and
III-14.1 is an additional black frame in the latter category.
Some sub-categories differ in one particular feature, such as
the direction of the arrow.

DFG dataset also contains an extension with artificially
created traffic sign images. This data augmentation is needed
to ensure that every category contains at least 200 instances.
Artificial images are created using traffic images without
traffic sign instances, where tightly cropped instances are
inserted into traffic images on random positions. Moreover,
the instances were edited so that their geometry, shape, and
brightness match the natural images. Overall, the extended
dataset contains more than 15k traffic sign images and more
than 43k different annotations. It is also important to empha-
size the fact that traffic sign instances in natural images
should be expected in regions where traffic signs are usually
located - right from, left from, or above the vehicle.

In our work, we focus on TSD/TSR performance com-
parison with the results reported in [20]. The best score is
achieved by using an adapted Mask R-CNN network trained
on the extended dataset. The reported mAP>? is 95.5% and the
processing of one single image takes approximately 500 ms
on an NVIDIA GeForce GTX 1080 Ti GPU.

189858

VII-4‘3-2

VII-4 4-1 VlI 4.4-2

VII-4.1-1

IV. FAST OBJECT DETECTION

The introduction of CNN made a significant breakthrough
in object detection and recognition in natural images. Most
prominent architectures that unify both detection and recog-
nition of objects are Mask R-CNN [33], Retina-Net [34], SSD
(Single Shot Detector) [35], YOLO [36]—-[39], and Efficcient-
Det [40]. Different anchor-free object detection approaches
were introduced: RepPoint network [41], where representa-
tive points are learned to arrange themselves in the manner of
object’s bounds; CenterNet [42], where triplets are detected
to improve localization; CornerNet [43], where keypoints are
detected; and FCOS [44] as a fully convolutional one-stage
detector. Most recently, Detection Transformer (DETR) [45]
method encodes prior knowledge about the object detection
task, removing the necessity for non-maxima suppression
or anchors. Above all, it was reported that Mask R-CNN
achieved an excellent performance in object detection, recog-
nition as well as segmentation. It uses a two-stage network
architecture as in Faster R-CNN [46], [47]: the first stage
is a network that proposes candidate objects’ regions, and
the second stage then performs classification and bounding
box regression. Faster R-CNN was extended to Mask R-CNN
so that pixel segmentation of proposed regions is done in par-
allel with the classification. The disadvantage of a two-stage
network architecture is long propagation time, making Mask
R-CNN fairly slow when dealing with large images. Although
presented as a single-stage detector, Retina-Net uses a net-
work pyramid structure for feature extraction and two subnets
for object classification and bounding box regression. It also
utilizes a modified loss function to improve performance

VOLUME 8, 2020

A. Avramovic¢ et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

IEEE Access

when there is a category imbalance in the training set. Single
Shot Detector [35] is an architecture designed to detect a
large number of objects within one image quickly. It uses
every generated feature map as input to the detector. The
main disadvantage is that only low-level features extracted
in the initial layer can be used for small object detection,
thus reducing the performance. EfficientDet [40] introduced
several optimizations (bi-directional feature pyramid network
and compound scaling) to improve computational efficiency
and improve performance.

In our experiments, we use three different YOLO architec-
tures [38], [39], since they are proven to be fast and accurate
one-stage detectors and capable of large-scale detections.
YOLOV3 [38] is a one-stage detector that has a fully con-
volutional architecture with three different detection layers
for small, medium, and large objects. All these detectors
are given features obtained as a combination of the output
of the initial and the later layers. It also separately predicts
objectness (the presence of an object at one specific point
in the image) and the conditional class of an object, which
successfully deals with category imbalance. YOLOV3 unifies
object detection and recognition into one propagation through
the neural network. It is based on Darknet-53, which con-
tains 53 convolutional layers for encoding. It also includes a
decoding part with upsampling layers, skip-connections, and
additional convolutions. One of the most exciting features
of YOLOV3 is the ability to use input images of different
sizes, as long as they are a multiple of 32. It means that the
network can be trained on one specific input image size but
used to detect objects in images of different sizes. In general,
YOLOV3 was reported to achieve outstanding detection and
recognition accuracy with shorter processing time in com-
parison to other network architectures dedicated to object
detection.

As a part of the same project, authors proposed a lite
version called TinyYOLO based on the same principle of
feature extraction and object detection as YOLOV3, but with
fewer layers and notably faster. TinyYOLO uses the same
techniques as YOLOV3, except it contains 10 convolutional
layers in the encoding part, does not use skip-connections,
and make detections on only two scales. It also accepts input
images of different sizes as long they sizes are multiples of 32.

Most recently, an upgraded and performance-tuned version
YOLOv4 [39] was introduced. YOLOV4 is a more complex
and deeper network architecture based on the same principles
as YOLOv3 and Tiny YOLO, but with incorporated improve-
ments. The authors examined the possibilities to combine
a large number of state-of-the-art improvements in neural-
network-based object detection with the YOLO-based back-
bone architecture. Among many, they decided to use: (a) cut-
ting edge techniques for model training, such as mosaic-based
data augmentation and self-adversarial training; (b) con-
tinuously differentiable activation function (Swish and
Mish) and function for self-normalizing networks (SELU);
(c) additional term for bounding box regression loss
(parametric IoU-based losses); (d) advanced regularization

VOLUME 8, 2020

methods; (e) state-of-the-art normalization methods (such as
Cross mini-batch normalization); (f) multi-input weighted
residual connections and cross-stage partial connections;
(g) hyper-parameter optimization based on genetic algorithm
and (h) cross-stage-partial-connections, which reduced com-
putational expenses. After additional modification and tun-
ing, the authors optimized the performance of YOLOv4 for
both CPU- and GPU- based processing and showed superior-
ity regarding both detection accuracy and time requirements
on general object detection dataset.

Any YOLO-based detector will try to find one object on
each central point in every grid cell. The grid is made by the
upright rectangular division of an input image. Each grid cell
is defined with a 32 x 32 pixel neighborhood, so the number
of grid cells depends on the size of an image. The vertical
and horizontal number of grid cells equal the image height
and width divided by 32, respectively. Therefore, the num-
ber of objects that can be detected depends on the input
image size. The larger the images are, the more grid cells
are used. Moreover, since the whole image context is used
for training, objects from nearby grid cells can overlap, and
each grid cell can be used to detect an object on different
scales. During the propagation process, the input image is
downsampled with the stride size equal to 32, so the first
detection layer is used to detect large objects. Succeeding lay-
ers include up-sampling convolution, skip-connections, and
feature concatenations. The second layer receives a feature
map that is downsampled with the stride size equal to 16 and
is used to detect medium-sized objects. Finally, the third
detection layer receives a feature map that is downsampled
with the stride size equal to 8 and is meant to detect small
objects. The described detection scheme is implemented in
both YOLOv3 and YOLOV4 architecture. Thus, we will eval-
uate the proposed preprocessing and parallelization method
for consistent improvement based on all three different
architectures.

V. TRAFFIC SIGN DETECTION AND RECOGNITION USING
YOLOv3, YOLOv4 AND TinyYOLO
In this section, we investigate the performance of YOLOV3,
YOLOv4, and TinyYOLO architectures on the DFG traffic
sign dataset on full HD (FHD) images. Two criteria are
relevant here: how accurate the detection and recognition is
and how fast one particular image can be processed. As a mea-
sure of TSD/TSR accuracy, we used mean average precision
mAP> over all categories,” which is usual for general object
detection and recognition [33], [35]-[39]. Processing time is
the average time needed for the processing of one image.
The question is: can HD traffic images be processed
fast enough for real-time applications? We often associate
real-time video processing with at least 25 frames per second
(FPS), i.e., 40 ms per frame. However, do we need to pursue
25 FPS also in the context of TSD/TSR? The data from visual

2True positive detection occurs when Intersection over Union of the
detected and ground truth boundary box is more then 50%, which is denoted
as IoU.5

189859

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

sensors are often combined with the GPS data (most often
with the precision around or above 1 m), and traffic signs
are often visible and recognizable from several dozens of
meters (and more on highways). Furthermore, the regulations
in the country of Slovenia (should be similar across the whole
European Union) state that the distance between road signs
should be at least 15 m when driving 50 km/h, 30 m at
90 km/h, and at least 100 m when driving more than 100 km/h.
If we want to capture a traffic sign in multiple consecutive
frames to improve the recognition accuracy, it is reasonable
to take an image every 2 m. Thus, if the vehicle speed is
50 km/h (& 14 m/s), the computer needs to process at least
seven frames per second to achieve this performance. If we
increase speed to 90 km/h or 130 km/h, the target frame rate
becomes 13 or 18 FPS, respectively.

For the initial experiment, we used a publicly avail-
able official implementation of YOLOvV3, TinyYOLO [38],
and YOLOvV4 [39]. We initialized all three networks with
pre-trained weights obtained by training on the ImageNet
dataset. In order to make a fair comparison, we made two
restrictions: (a) no random image resizing is allowed, and
(b) no image flipping is allowed. Random image resizing
during the training can help to localize and recognize objects
on different scales more accurately, so in the first exper-
iment, we skip this option to evaluate the capabilities of
different architectures fairly. Image flipping is one option for
data augmentation, which means that images are randomly
flipped horizontally before propagating through the network.
This option can decrease the performance when dealing with
traffic signs since flipping can cause confusion (e.g., left
and right arrows from categories III-107-1 and III-107-2
in Fig. 1).

Pre-trained networks were fine-tuned on the DFG dataset
(without additional artificial examples) using a stochas-
tic gradient descent algorithm, with the initial learning
rate set at 0.001, decreasing after 40 thousand iterations.
Additionally, the data augmentation was done by mak-
ing random color transformations on the training images
for YOLOv3 and TinyYOLO and mosaicing for YOLOvV4.
We examined the processing time (FPS) and detection perfor-
mance, i.e., mAP, in cases when networks were fine-tuned
using different input image sizes. The processing time is the
average propagation time for one image on the GeForce GTX
1080 Ti GPU. Following the usual methodology for object
detection using YOLO, we resized images into a square shape
(608 x 608 pixels, 640 x 640 pixels, 672 x 672 pixels,
704 x 704 pixels), so the aspect ratios of traffic sign instances
were altered. We also tested the case when we reduced the
size of input images but preserved the original aspect ratio
(960 x 540 pixels). Image size reduction before network
training reduces memory requirements and decreases the
training time, but uses less input features. Since TinyYOLO
and YOLOV3 are less complex models, it is possible to train
them with FHD images (reduced to 1920 x 1056 pixels to
obtain image size that is a multiple of 32) using the GeForce
GTX 1080 Ti. That is not possible for YOLOv4, at least not

189860

with the amount of memory available on the 1080 Ti graphic
card.

Considering the results given in Tab. 1, we notice that more
features (larger input) result in larger mAP>°, although there
were some deviations for TinyYOLO and YOLOV3 archi-
tectures. Reasons for these deviations can be geometry dis-
tortions caused by aspect ratio change, unequal amount of
training traffic sign instances in each category, or inadequate
training. Also, we assume that in these cases, we lost some
features useful for accurate detection and recognition. For
example, YOLOv3 with images in FHD (1920 x 1056 pixels)
achieves at least 1.4 percentage points (p.p.) better mAP>°
compared to images that were downsampled by a factor more
than two (704 x 704 pixels and below).

TABLE 1. Comparison of the performance of different approaches for
TSD/TSR using YOLO architectures in terms of mAP50 and frame
rate (FPS).

architecture size mAPS0 FPS
TinyYOLO 608 x 608 78.76 94
TinyYOLO 640 x 640 79.48 93
TinyYOLO 672 x 672 81.68 90
TinyYOLO 704 x 704 81.28 88
TinyYOLO 960 x 544 82.75 81

TinyYOLO 1920 x 1056 88.70 40
YOLOvV3 608 x 608 87.33 34
YOLOV3 640 x 640 87.58 32
YOLOV3 672 x 672 89.08 29
YOLOV3 704 x 704 88.99 28
YOLOV3 960 x 540 89.11 27
YOLOV3 1920 x 1056 90.44 8

YOLOv4 608 x 608 91.90 35
YOLOv4 640 x 640 92.43 33
YOLOv4 672 x 672 92.49 30
YOLOv4 704 x 704 92.65 29
YOLOv4 960 x 540 92.68 28

It is interesting to notice that the detection performance
when using TinyYOLO architecture and FHD images is com-
parable to the case when we use YOLOv3 with downsampled
images, but is faster. The reason can be the larger number
of features present in the original FHD image than in the
downsampled images.

The most complex architecture YOLOvV4 further improves
mAP>° and achieves the best performance for downsam-
pled images. Although YOLOV3 based detection with FHD
images uses more features than YOLOv4, the latter can
extract more discriminative features and propagate them
approximately at the same speed as YOLOvV3. On the other
hand, the YOLOvV4 model consumes much more memory.
To fit into GPU’s memory, original images were downsam-
pled accordingly.

The best mAP was achieved using the YOLOv4 archi-
tecture and input image size of 960 x 540 pixels when it

VOLUME 8, 2020

A. Avramovic¢ et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

IEEE Access

reaches 92.68%. It is also interesting to notice the discrim-
inative capabilities of YOLOv4 architecture, even in cases
when fewer input features (smaller input image size) were
used. YOLOV4 achieves mAP>° over 92% even after con-
siderable image size reduction and modification of aspect
ratio. Based on these results, it is recommended to retain
as many original features as possible. As mentioned before,
the YOLOv4 model requires more memory than YOLOV3,
but the built-in optimizations made it at least as fast or even
faster compared to YOLOV3.

VI. THE PROPOSED METHOD

As mentioned above, we can find the motivation for
region-based traffic sign detection in the every-day-based
experience. On the road, drivers mainly focus on what hap-
pens in front and beside them (i.e., looking through the front
and side glasses) and what happens behind them (looking
on rear-view mirrors). When a driver notices a traffic sign
(or any other important traffic subject) in front of them, they
concentrate on recognizing the meaning of the traffic sign for
one short time interval, until the focus is back on the road
again. We implemented a similar concept in the proposed
solution. The traffic signs are located somewhere in a traffic
image: mostly on the right side of the road, in some cases
above the road, and rarely on the left side. In each case, they
are on standardized height, so they are more probable to be
found in specific regions of traffic images. Therefore, when
searching for traffic signs, there is no need to analyze the
complete traffic image. Instead, we can focus on one specific
region where a traffic sign instance is more likely to be found.
The proposed solution mimics the behavior of human drivers:
it inspects the whole traffic image briefly and concentrates
on one specific region if there is a necessity to recognize
any critical traffic object. This suggests that a traffic image
should be preprocessed to identify regions of interest (ROIs),
which will be processed further. By selecting ROIs, we reject
a large number of background features before traffic sign
detection takes place. Another motivation for using ROIs is
that the propagation of smaller images through the network
is considerably faster.

Moreover, the analysis of ROIs will preserve the original
aspect ratio of traffic sign instances and other essential objects
in the traffic image. Most importantly, multiple image regions
can be processed in parallel if multiple GPUs are available.
Instead of processing one HD image, we propose the process-
ing of a variable number of smaller ROIs in parallel. We intro-
duce a preprocessing step, which includes parallelized image
processing algorithms to detect regions where traffic sign
instances are more likely to be located. These regions are sent
separately to different GPUs for processing. The more GPUs
are available, the more ROISs can be processed in parallel, and
consequently, the more substantial speed-up can be achieved.

In the following experiments, we have exploited these facts
to improve detection performance using fixed and movable
ROIs. At first, we experiment with fixed regions, in which
case their position is determined according to a predefined

VOLUME 8, 2020

model. Later, we analyze the performance where movable
ROIs are positioned by the output of low-level-feature based
detection of traffic sign instances. We experimented with
regions of 704 x 704, 672 x 672, 640 x 640 and 608 x 608
pixels due to the following reasons: (a) YOLO requires each
region dimension to be a multiple of 32; (b) we wanted to
investigate a region size that is sufficient to cover all traffic
sign instances in every FHD image from the DFG dataset;
(c) each region can be propagated fast enough for real-time
performance for all four examined sizes.

A. DETECTION USING FIXED REGIONS

In Fig. 2, we present the heatmap generated from positional
data of traffic sign instances from training DFG set. We can
notice that most of the instances are located on the upper
right side of traffic images. Of course, due to the arbitrary
position of a car and the camera during driving, some signs
can appear in unpredictable image areas at a specific moment.
We propose cutting out fixed image regions based on the
analysis of exact traffic instances positions in the complete
training set, as shown in Fig. 3. This way, a priori knowledge
about traffic sign instances’ positions is used. Moreover, fixed
ROIs may intersect with traffic sign instances. These issues
are present while doing TSD/TSR on the DFG dataset since
the images were not taken in close succession. However,
it is much more probable that traffic signs will be present
in predefined ROISs in at least some successive images while
driving.

FIGURE 2. Probability heatmap of traffic sign instances coverage
estimated from training traffic images.

B. DETECTION USING MIOVABLE REGIONS
The second approach tries to increase detection performance
by adjusting the positions of ROIs based on individual image
analysis, Fig. 4. The goal is to address the images in which
traffic sign instances are not in the a priori positioned regions.
We estimate the best position of the ROIs, based on image
processing for salience detection. This scenario requires some
additional processing time, with the expected improvement of
detection performance.

During preliminary testing, we achieved the best
performance when we allowed ROIs to move freely along

189861

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

FIGURE 3. Fixed regions of interest shown as black squares. All three
ROIs are set to predefined positions.

FIGURE 4. Movable regions of interest. All three regions can be moved
from their initial positions depending on the predictions made by our
algorithm.

the vertical axis and constrained their movement along the
horizontal axis, as depicted in Fig. 4.

The proposed algorithm initially converts an image from
RGB to HSV color space. Then it enhances the con-
trast using contrast-limited adaptive histogram equalization
(CLAHE) [48], after-which thresholding is applied to obtain
seven binary masks that are then combined to four masks
that relate to red, blue, yellow and green color. Thresholds
are determined heuristically from the training set of the DFG
dataset and are given in Table 2. Each binary mask is then
processed separately using morphological filters [49] and
filtering of blobs detected by connected components analysis.

TABLE 2. Thresholds used for the extraction of binary masks from an
image in HSV color space.

thresholds
hue saturation value
red 0.915-0.030 0.450-1.000 0.100 - 1.000
red/brown 0.000-0.100 0.650-1.000 0.500 - 1.000
blue 0.520-0.700 0.620-1.000 0.250 - 1.000
dark yellow 0.050-0.130 0.600 - 1.000 0.300 - 1.000
light yellow 0.130-0.180 0.640-1.000 0.200 - 1.000
green 0.370-0.500 0.450-1.000 0.250 - 1.000
light green 0.170-0.260 0.630-1.000 0.500 - 1.000

189862

After filtering, we merge all masks and get a set of blobs.
Finally, we cover as many blobs’ pixels as possible using
greedy positioning of the three ROIs, defined as rectangles
of size 704 x 704 pixels.

Morphological filters applied to each binary mask
include image reconstruction, dilation, and erosion with a
square-shaped kernel. Then, we fill in holes and employ
connected components analysis on every mask individually.
The latter includes finding blobs and their filtering based
on different criteria (area, width, height, aspect ratio, extent,
and area-to-squared-perimeter ratio). We also considered the
context of traffic images and used different filtering thresh-
olds for the upper and lower part of the image. Moreover,
red blobs that touch image borders are filtered out as they
most probably represent red roofs or bike lanes. Similarly,
we removed the blue sky by ignoring large blue blobs in the
upper part of the image.

We implemented these steps in CUDA — an application
programming interface for GPUs, to achieve better perfor-
mance. Existing computer vision libraries like OpenCV [50]
offer CUDA implementations of some of the aforementioned
image processing methods, but are in most cases too general
and thus less efficient. By developing our own optimized par-
alle]l CUDA implementations for thresholding, blob filtering,
connected component labeling, morphological filtering, and
hole filling algorithms, we were able to reduce the execution
time significantly. We streamlined our algorithm for position-
ing the ROIs and took care to minimize memory transfers
between GPU and CPU memory, which are a bottleneck in
such situations. By doing this, we were able to reduce the exe-
cution time by a factor of 50 compared to an implementation
using only OpenCV functions, thus enabling us to achieve
real-time performance.

After blob filtering, we perform the ROI positioning with
a fast greedy algorithm that tries to cover as many blobs’
pixels as possible. This step is performed on the CPU as it is
inherently not parallel and already fast enough. The starting
coordinates are the same as for the fixed ROlIs, and the vertical
movement of all three ROIs is limited only by the edges of
the image. Considering horizontal movement: the left ROI
is allowed to move 50 pixels to the right at most; the right
ROI is allowed to move 50 pixels to the left at most, while
the central ROI is allowed to move mostly 96 pixels to the
left or right. We have discarded several bottom rows of the
image because it is highly unlikely that traffic sign instances
will appear there. We show an illustration of the described
constraints in Fig. 5. In Fig. 6 we show some examples of
movable ROIs estimation.

VIl. EXPERIMENTAL ANALYSIS AND DISCUSSION

A. METHODOLOGY

1) THE TRAINING SET

To properly train the network for detection using ROIs,
we built a new training set from the original DFG dataset.
We used a sliding window method to extract all regions of

VOLUME 8, 2020

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

IEEE Access

: 0 : L
' . ! .
; : ' '
' : : .
' ' central '
part S . ROl . right
ROl ! . ; . ROl
1] 1 ‘ !
L] 1 ‘ '
" . :
lower - g . .
part - : : :
I e ¥ e

*
cropped area

FIGURE 5. An illustration of the upper and lower part of an image and
possible positions of all three ROIs.

size 704 x 704, 672 x 672, 640 x 640, and 608 x 608
pixels that cover all traffic signs in an image, except those
that were already incomplete in original images. Among all
candidate regions, we select the one with the most traffic
signs instances, without considering the position of instances.
In other words, traffic sign instances can be found anywhere
in a region. If any traffic sign instances remain after selecting
the first region, the process is repeated several times, so one
original image can give more than one region for training.
This way, all instances from the original dataset are copied
into the new one.

2) FIXED ROIs

In this experiment, we examined the detection performance
of different YOLO architectures and region sizes when using
fixed ROIs. In all scenarios, we trained the neural network
on the new training set. The parameters for training (learning
rate and color-based data augmentation) are the same as in
the initial experiment presented in Section V. We analyzed
the performance using different input sizes: 704 x 704, 672 x
672, 640x 640, and 608 x 608. The positions of ROIs are fixed
for all four region sizes, i.e., the central pixel for each region
is the same for every region size. We show the positions of
regions of size 704 x 704 pixels in Fig. 3. The central ROI
is aligned horizontally on the center and vertically to the top
of the image. The left and right ROIs are vertically moved
down by 50 pixels. The detection is made on each ROI, and
all results are then merged.

3) MOVABLE ROIs

In this experiment, we replaced fixed ROIs with the proposed
movable ROIs. The goal is to examine the possibility of a
better coverage of traffic sign instances through conventional
image processing. We estimated movable ROIs using the
original FHD images and also their downsampled version
(960 x 540). The idea was to evaluate the impact of down-
sampling on the algorithm for ROI placement. This experi-
ment should show the benefits of movable ROIs in terms of

VOLUME 8, 2020

a) There are two entirely covered traffic sign instances and one partially.
Overall covered area is 79.6% out of the whole instances area.

b) There are four entirely covered traffic sign instances and one partially.
Overall covered area is 94.9% out of the whole instances area.

c) There are two entirely covered traffic sign instances and one partially.
Overall covered area is 99.8% out of the whole instances area.

d) All four traffic sign instances are fully covered.

FIGURE 6. The results of the proposed algorithm for the positioning of
movable ROIs. The movable ROIs are depicted as red, green, and blue
squares. The original images were processed so that the detected blobs
stand out from the rest of the image.

189863

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

detection accuracy. However, we expect additional time costs
for both original FHD and downsampled traffic images.

4) TRAINING ON EXTENDED DATASET AND USING
MOVABLE ROIs

The drawback of the original DFG dataset is that some of the
categories contain merely 20 instances, which may be insuf-
ficient for proper network training. As mentioned before,
artificial traffic images were created to extend the dataset so
that every category has at least 200 instances. However, traf-
fic sign instances were artificially put on random positions,
which means that our assumption about a priori sign position
is no longer valid. This can result in poor performance of the
proposed region-based approach. Thus, we did not include
these additional artificial images in the test set to remain in
line with real-world circumstances. To sum up, we trained
TinyYOLO, YOLOv3, and YOLOv4 architectures on the
extended dataset but evaluated them only on the original test
set using movable ROIs.

5) MIXED-PRECISION TRAINING

Further improvements in both TSD/TSR accuracy and speed
could be achieved by utilizing more sophisticated algorithms
for finding regions of interest, using more training data, and
using more computational power. In this experiment, we show
how a hardware-based approach to speeding up the com-
putations can be useful for TSD/TSR. New generations of
NVIDIA GPUs, like Volta and Turing include tensor cores
that work with mixed-precision arithmetic. Mixed-precision
allows us to utilize the 16-bit floating-point format, thus
reducing memory usage and speeding up the computation
where precision is not crucial. In this experiment, NVIDIA
GeForce RTX 2080 Ti card with tensor cores is used to
train the YOLOv4 network and run the proposed movable
ROI-based approach for traffic sign detection and recogni-
tion. The goal is to examine whether the training and detec-
tion based on mixed-precision calculations affect accuracy
and speed.

B. RESULTS

We display the results using fixed ROIs in Tab. 3. By exam-
ining and comparing the previous results, given in Tab. 1,
we can notice the following. TSD/TSR with fixed ROIs
improves mAP? by 1.45 p.p. when YOLOV?3 architecture is
used on FHD images. If three GPUs are available, TSD/TSR
using fixed ROIs achieves at least 29 FPS on FHD images;
when not using the region-based approach, we get only
8 FPS since we cannot utilize multiple GPUs. Although
region-based detection with Tiny YOLO architecture achieves
1.26 p.p. lower mAP*° in comparison to TinyYOLO on FHD
images, it is faster by 6 FPS if only one GPU is available
and by 98 FPS if we utilize three GPUs. TinyYOLO-ROI
performs reasonably good: it achieves a 4 p.p. lower mAP>°
score than YOLOv3-ROI with a much simpler architec-
ture yielding around five times more FPS. The proposed
region-based method with the YOLOv4 backbone improved

189864

TABLE 3. Comparison of processing time and mAP3? for different YOLO
architectures with fixed ROIs and with different number of GPUs. Labels
include network architecture type (TinyYOLO/YOLOv3/YOLOv4), method
abbreviation (fixed-ROI), and region size after resizing (608/640/672/
704). The table shows FPS when using one (FPS1) or three (FPS3) GPUs in
parallel.

architecture size mAP50 FPS1 FPS3
TinyYOLO-ROI 608 x 608 85.61 56 169
TinyYOLO-ROI 640 x 640 86.66 52 157
TinyYOLO-ROI 672x 672 86.89 49 147
TinyYOLO-ROI 704 x 704 87.44 46 138
YOLOV3-ROI 608 x 608 87.20 11 34
YOLOV3-ROI 640 x 640 90.15 10 32
YOLOV3-ROI 672x 672 90.54 10 32
YOLOV3-ROI 704 x 704 91.87 9 29
YOLOV4-ROI 608 x 608 92.87 12 36
YOLOV4-ROI 640 x 640 93.03 11 34
YOLOV4-ROI 672x 672 93.15 10 32
YOLOV4-ROI 704 x 704 93.44 9 29

mAP> by 0.74 p.p. compared to YOLOvV4 trained on
960 x 540 traffic images. In this experiment, all three architec-
tures (simple TinyYOLO, intermediate YOLOV3, and com-
plex YOLOv4) benefited from the ROI approach since many
background features are discarded. The best performance
was achieved for the region size of 704 x 704 for all
three different architectures. In this experiment, all networks
were fine-tuned on derived training datasets (as explained
in Sec. VI), which cover all traffic sign instances from the
original dataset. Thus, the only reason for the weaker per-
formance of methods with smaller region sizes is inadequate
coverage on test images. We decided to use a fixed region
size of 704 x 704 pixels in further experiments based on the
results so far.

We show the results obtained with movable ROIs in Tab. 4.
As we can see from the comparison to results in Tab. 3,
using movable ROIs increases mAP? by at least 0.4 p.p.,
depending on the method. Overall, the best result is achieved
by YOLOv4-mROI with a mAP*° of 93.87%. The addi-
tional processing time needed for adjusting the ROI posi-
tions is approximately 45 ms for the original FHD images
(1920 x 1054) and only 23 ms for the downsampled images
(960 x 540). Additional experiments indicated that there is no

TABLE 4. Comparison of processing time and mAP>? for different YOLO
architectures with movable ROIs and with different number of GPUs.
Labels include network architecture type (TinyYOLO/YOLOv3/YOLOv4),
method abbreviation (movable-ROI), and region size after resizing

(704 x 704). The table shows FPS when using one (FPS1) or three (FPS3)
GPUs in parallel.

architecture size mAP®0 FPS1 FPS3
TinyYOLO-mROI 704 x 704 88.02 22 33
YOLOv3-mROI 704 x 704 92.56 7 17
YOLOvV4-mROI 704 x 704 93.87 8 17

VOLUME 8, 2020

A. Avramovic¢ et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

IEEE Access

difference in ROI positions in these two cases. Thus, we opted
for the faster variant. In effect, every image needs an addi-
tional 23 ms of processing time before the three regions can
propagate through the network. If three GPUs are available,
TSD/TSR using YOLOv3 or YOLOv4 with movable ROIs
of size 704 x 704 achieves 17 FPS. Thus, using movable
ROIs reduces the frame rate by 12 FPS compared to the fixed
ROI approach. If using only one GPU (and sequential region
processing), the difference in FPS is negligible (1-2 FPS).
When using TinyYOLO, the improvement in mAP>? is simi-
lar to YOLOV3 or YOLOv4. However, the FPS improvement
is considerable — the FPS drops by a factor of 3 in the worst
case. Overall, all three architectures obtained better results
with movable regions compared to the case when we used
fixed regions. Movable regions helped to emphasize impor-
tant features further since fine tuning their position reduces
the number of partially covered traffic sign instances.

The results of training on extended dataset and using
movable ROIs are in Tab. 5. We can quickly notice fur-
ther improvement of mAP for all three architectures. The
expanded training set has a positive effect on the learning of
the neural network, with no additional frame rate penalties.
The highest score of 94.43% was achieved by YOLOV4,
although YOLOvV3 architecture performed very well and
achieved 93.71%, while Tiny YOLO stays behind. On the
other side, TinyYOLO is at least 2-3 times faster compared
to YOLOv3 and YOLOV4.

TABLE 5. Comparison of processing time and mAP3? for different YOLO
architectures with movable ROIs and with different number of GPU, when
trained with the extended dataset. Labels include network architecture
type (TinyYOLO/YOLOv3/YOLOv4), method abbreviation (movable-ROI-
extended), and region size after resizing (704 x 704). The table shows
FPS when using one (FPS1) or three (FPS3) GPUs in parallel.

architecture size mAP50 FPS1 FPS3
TinyYOLO-mROIe 704 x 704 88.75 22 33
YOLOv3-mROIle 704 x704 93.71 7 17
YOLOv4-mROle 704 x704 94.43 8 17

As we can see from Tab. 6, mixed-precision based detec-
tion speeds up the proposed fixed ROI-based approach by a
factor of approximately 1.5. When we use movable regions,
we can not avoid the additional preprocessing time; thus,
the speed-up factor is approximately 1.2. The difference in
FPS between RTX 2080 Ti and GTX 1080 Ti is negligible
when using only single-precision. In both cases, the achieved
mAP> is about the same as for single-precision detection.

TABLE 6. The effect of using mixed-precision on processing time and
mAP530 for the proposed fixed ROI and movable ROI algorithms based on
YOLOv4 architecture, when trained with the extended dataset. The table
shows FPS when using one (FPS1) or three (FPS3) GPUs in parallel.

architecture size mAP®0 FPS1 FPS3
YOLOvV4-ROIe 704 x 704 93.83 14 43
YOLOv4-mROIe 704 x 704 94.45 10 21

VOLUME 8, 2020

An overview of the best results is given in Table 7 and
includes the results of the TSD/TSR without using ROIs and
the YOLO networks trained on the extended training dataset.
For comparison, we added the modified Mask R-CNN results
on the same dataset [20].

C. DISCUSSION
Considering the results, a step-by-step improvement in per-
formance measured by mAP is notable throughout the
experiments. By processing only the regions of interest,
the key features of traffic sign instances are emphasized, and
the overall performance is improved. Our results show that
TSD/TSR based on YOLO architecture using movable ROIs
can compete with state-of-the-art solutions based on Mask
R-CNN. Our method based on YOLOv4 achieves ~1 p.p.
lower mAP* than the modified Mask R-CNN algorithm
but is 4 or 8.5 times faster when using one or three GPUs,
respectively. In Section V, we established that the target
frame rate to achieve real-time performance for TSD/TSR
is around 18 FPS. We showed that this is possible using our
approach. If a higher frame rate is needed, efficient process-
ing can be achieved either with fixed ROIs or simpler network
architecture (TinyYOLO) for the cost of reduced detection
performance.

Overall, we would like to emphasize the most notable
findings:

(a) retaining the features contained in high-definition
images can be beneficial for accurate traffic sign detec-
tion and recognition,

(b) feature selection through the implementation of a
region-of-interest approach retains the important fea-
tures from and around instances while speeding up the
inference,

(c) estimating the region positions through image prepro-
cessing improves the detection accuracy but requires
additional time,

(d) using YOLO architecture makes real-time large-scale
traffic sign detection and recognition in HD images
feasible,

(e) the YOLOvV4 architecture incorporates cutting-edge
machine learning algorithms, achieving better perfor-
mance with comparable or faster speed compared to
predecessor architecture YOLOv3, but for FHD images
YOLOV4 has memory consumption that is hard to sat-
isfy even with the latest GPUs,

(f) the proposed region-based TSD/TSR approach is a
compromise between speed and accuracy and can be
applied to different network architectures to improve
performance on FHD images,

(g) if sufficient computational power is available (multi-
ple GPUs), a real-time TSD/TSR with state-of-the-art
accuracy can be achieved,

(h) hardware-based computational simplification (i.e.,
using single-precision computation where compu-
tational accuracy is not critical) can further speed

189865

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

TABLE 7. The performance of different approaches for TSD/TSR using YOLO architectures in terms of mAPC and frame rate. For comparison, we display

the results achieved by Modified Mask R-CNN in the lower part of the table.

YOLOv4 YOLOvV3 TinyYOLO
mAP30 FPS1/FPS3 mAP50 FPS1/FPS3 mAP50 FPS1/FPS3
FHD images (basic dataset) - - 90.44 8/- 88.70 40/ -
fixed-ROIs (basic dataset) 93.44 9/29 91.89 9/29 87.44 46/ 138
movable-ROIs (basic dataset) 93.87 8/17 92.56 77117 88.02 22/33
movable-ROIs (extended dataset) 94.43 8/17 93.71 7/17 88.75 22/32

Modified Mask R-CNN [20]

mAP50 FPS1
FHD images (basic dataset) 93.00 2
FHD images (extended dataset) 95.50 2

up ROI-based TSD/TSR without affecting the
performance,

(i) an image preprocessing can be applied to improve
TSD/TSR performance further, but with the time delay
costs.

Depending on the practical TSD/TSR application require-
ments, it is possible to choose an optimal architecture. If fast
traffic image processing is required, with a modest detec-
tion/recognition accuracy, Tiny YOLO architecture should be
used. It is low memory- and computational-demanding and
fast architecture. TinyYOLO can achieve excellent detection
results on the most commonly used traffic signs. If there are
a bit more relaxed time- and memory-consumption limits
and high detection/recognition accuracy is recommended,
then YOLOV4 is the best choice. It achieves state-of-the-art
accuracy on large-scale traffic sign dataset with reasonable
processing time. However, it requires significant hardware
support to be used on FHD images. Somewhere between is
YOLOV3, which has lower memory demands compared to
YOLOV4 and comparable performance. Practical implemen-
tation of the proposed traffic sign detection and recognition
algorithm requires significant hardware capabilities installed
in vehicles, which means at least one GPU-like processing
unit.

VIIl. CONCLUSION

In this article, we examined the possibilities of speed-
ing up the processing of high-definition traffic images
to achieve real-time performance for automotive applica-
tions, including driving assistance, detection of near-road
objects, autonomous driving, and automatic traffic sign
inventory maintenance. We proposed a region-of-interest-
based approach combined with YOLO architecture to achieve
a favorable trade-off between detection accuracy and pro-
cessing time. Employing regions of interest increases overall
performance since less data is propagated through the net-
work. We can achieve real-time processing with the support
of appropriate hardware, e.g., a graphics processing unit.
Moreover, several regions can be processed in parallel if mul-
tiple graphic cards are available. We used a priori knowledge
on traffic sign instances position and image preprocessing

189866

for salience detection to focus on image areas where traffic
sign instances most probably are. Throughout the series of
experiments, we show a gradual improvement in detection
performance. The propagation time per image is reasonably
low, and in the domain of real-time. The detection accuracy
of traffic signs is comparable with state-of-the-art algorithms
when evaluated on DFG large-scale dataset while achieving
at least three times lower processing time.

Our work can be further improved by considering the fact
that the regions often do not contain any traffic sign instances.
It would be beneficial to assess the probability that no traffic
sign instances are present in a region; empty regions can be
discarded, thus saving time and hardware resources. Further-
more, there is still room for improvement in fine-tuning the
neural network to achieve better detection accuracy. It would
also be interesting to adapt our method for video sequences
of traffic imagery, where a traffic sign instance appears in
multiple consecutive frames. We could exploit this temporal
coherence to improve detection accuracy. Finally, our future
work will also focus on replacing the current algorithm for
ROI placement with a shallow neural network for region
proposal.

ACKNOWLEDGMENT
(Aleksej Avramovic and Davor Sluga contributed equally to
this work.)

REFERENCES

[1] K.C.P Wang, Z. Hou, and W. Gong, ‘‘Automated road sign inventory sys-
tem based on stereo vision and tracking,” Comput.-Aided Civil Infrastruct.
Eng., vol. 25, no. 6, pp. 468-477, Feb. 2010.

[2] S. Segvic, K. Brkic, Z. Kalafatic, V. Stanisavljevic, M. Sevrovic,

D. Budimir, and I. Dadic, “A computer vision assisted geoinformation

inventory for traffic infrastructure,” in Proc. 13th Int. IEEE Conf. Intell.

Transp. Syst., Sep. 2010, pp. 66-73.

V. Balali, A. Ashouri Rad, and M. Golparvar-Fard, “Detection, classifica-

tion, and mapping of U.S. Traffic signs using Google street view images for

roadway inventory management,” Vis. Eng., vol. 3, no. 1, p. 15, Nov. 2015.

J. Greenhalgh and M. Mirmehdi, “Traffic sign recognition using MSER

and random forests,” in Proc. 20th Eur. Signal Process. Conf. (EUSIPCO),

Aug. 2012, pp. 1935-1939.

[5] J. M. Lillo-Castellano, I. Mora-Jiménez, C. Figuera-Pozuelo, and
J. L. Rojo-Alvarez, “Traffic sign segmentation and classification using
statistical learning methods,” Neurocomputing, vol. 153, pp. 286-299,
Apr. 2015.

3

[t

[4

=

VOLUME 8, 2020

A. Avramovic¢ et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

IEEE Access

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Haloi, “A novel pLSA based traffic signs classification system,” 2015,
arXiv:1503.06643. [Online]. Available: http://arxiv.org/abs/1503.06643
A. Ellahyani, M. El, I. El, and S. Charfi, “Traffic sign detection and
recognition using features combination and random forests,” Int. J. Adv.
Comput. Sci. Appl., vol. 7, no. 1, pp. 686—693, 2016.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. Computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Netw., vol. 32, pp. 323-332, Aug. 2012.

F. Zaklouta and B. Stanciulescu, ‘“Real-time traffic sign recognition in
three stages,” Robot. Auto. Syst., vol. 62, no. 1, pp. 16-24, Jan. 2014.

D. Nandi, A. S. Saif, P. Paul, K. M. Zubair, and S. A. Shubho, “Traffic
sign detection based on color segmentation of obscure image candidates:
A comprehensive study,” Int. J. Mod. Educ. Comput. Sci., vol. 10, no. 6,
pp. 3546, Jun. 2018.

S. Aziz, E. A.Mohamed, and F. Youssef, ““Traffic sign recognition based on
multi-feature fusion and ELM classifier,” Procedia Comput. Sci., vol. 127,
pp. 146-153, Jan. 2018.

A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, ‘“Vision-based traffic
sign detection and analysis for intelligent driver assistance systems: Per-
spectives and survey,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4,
pp. 1484-1497, Dec. 2012.

P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” in Proc. Int. Joint Conf. Neural Netw., Jul. 2011,
pp. 2809-2813.

D. Ciresan, U. Meier, and J. Schmidhuber, ‘“Multi-column deep neu-
ral networks for image classification,” 2012, arXiv:1202.2745. [Online].
Available: http://arxiv.org/abs/1202.2745

J. Jin, K. Fu, and C. Zhang, “Traffic sign recognition with hinge loss
trained convolutional neural networks,” IEEE Trans. Intell. Transp. Syst.,
vol. 15, no. 5, pp. 1991-2000, Oct. 2014.

L. Abdi and A. Meddeb, “Deep learning traffic sign detection, recognition
and augmentation,” in Proc. Symp. Appl. Comput. (SAC), New York, NY,
USA, 2017, pp. 131-136.

A. Shustanov and P. Yakimov, “CNN design for real-time traffic sign
recognition,” Procedia Eng., vol. 201, pp. 718-725, Jan. 2017.

Y. Zhu, C. Zhang, D. Zhou, X. Wang, X. Bai, and W. Liu, “Traffic
sign detection and recognition using fully convolutional network guided
proposals,” Neurocomputing, vol. 214, pp. 758-766, Nov. 2016.

Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-sign
detection and classification in the wild,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 2110-2118.

D. Tabernik and D. Skocaj, “Deep learning for large-scale traffic-sign
detection and recognition,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4,
pp. 1427-1440, Apr. 2020.

J. Zhang, M. Huang, X. Jin, and X. Li, “A real-time chinese traffic sign
detection algorithm based on modified YOLOV2,” Algorithms, vol. 10,
no. 4, p. 127, Nov. 2017.

A. Tran, D. Dien, H. Huynh, N. V. Long, and N. Tran, “A model for real-
time traffic signs recognition based on the YOLO algorithm—A case study
using vietnamese traffic signs,” in Future Data and Security Engineering
(Lecture Notes in Computer Science). Cham, Switzerland: Springer, 2019.
T. T. Le, S. T. Tran, S. Mita, and T. D. Nguyen, “Real time traffic sign
detection using color and shape-based features,” in Intelligent Information
and Database Systems. Berlin, Germany: Springer, 2010, pp. 268-278.
K. Kaplan, C. Kurtul, and H. Levent Akin, “‘Real-time traffic sign detection
and classification method for intelligent vehicles,” in Proc. IEEE Int. Conf.
Veh. Electron. Saf. (ICVES), Jul. 2012, pp. 448-453.

Y. Yang, H. Luo, H. Xu, and F. Wu, “Towards real-time traffic sign
detection and classification,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 7, pp. 2022-2031, Jul. 2016.

F. Shao, X. Wang, F. Meng, T. Rui, D. Wang, and J. Tang, ““Real-time traffic
sign detection and recognition method based on simplified Gabor wavelets
and CNNs,” Sensors, vol. 18, no. 10, p. 3192, Sep. 2018.

NVIDIA. (Aug. 2019). DRIVE Labs: Classifying Traffic Signs and
Traffic Lights With SignNet and LightNet DNNs. [Online]. Available:
https://news.developer.nvidia.com/drive-labs-signnet-and-lighnet-dnns/
R. Timofte, K. Zimmermann, and L. Van Gool, “Multi-view traffic sign
detection, recognition, and 3D localisation,” Mach. Vis. Appl., vol. 25,
no. 3, pp. 633-647, Apr. 2014.

S. Salti, A. Petrelli, F. Tombari, N. Fioraio, and L. Di Stefano, ““Traffic sign
detection via interest region extraction,” Pattern Recognit., vol. 48, no. 4,
pp. 1039-1049, Apr. 2015.

VOLUME 8, 2020

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

[40]

[41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

[49]

[50]

D. Temel, J. Lee, and G. Alregib, “CURE-OR: Challenging unreal and real
environments for object recognition,” in Proc. 17th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Dec. 2018, pp. 137-144.

D. Temel, M.-H. Chen, and G. AlRegib, “Traffic sign detection under
challenging conditions: A deeper look into performance variations and
spectral characteristics,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9,
pp. 3663-3673, Sep. 2020.

D. Temel, T. Alshawi, M.-H. Chen, and G. AlRegib, “Challenging
environments for traffic sign detection: Reliability assessment under
inclement conditions,” 2019, arXiv:1902.06857. [Online]. Available:
http://arxiv.org/abs/1902.06857

K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., Jan. 2017, pp. 2961-2969.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936-944.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot MultiBox detector,” in Computer Vision—
ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham,
Switzerland: Springer, 2016, pp. 21-37.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, *“You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7263-7271.

J. Redmon and A. Farhadi,
improvement,” 2018, arXiv:1804.02767.
http://arxiv.org/abs/1804.02767

A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, “YOLOv4: Opti-
mal speed and accuracy of object detection,” 2020, arXiv:2004.10934.
[Online]. Available: http://arxiv.org/abs/2004.10934

M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
objectdetection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10781-10790.

Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point set
representation for object detection,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9656-9665.

K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Keypoint triplets for object detection,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 6568-6577.

H. Law, Y. Teng, O. Russakovsky, and J. Deng, “CornerNet-lite: Effi-
cient keypoint based object detection,” 2019, arXiv:1904.08900. [Online].
Available: http://arxiv.org/abs/1904.08900

Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-
stage object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9626-9635.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-End object detection with transformers,” 2020,
arXiv:2005.12872. [Online]. Available: http://arxiv.org/abs/2005.12872
R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440-1448.

S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 91-99.

K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization.
New York, NY, USA: Academic, 1994, pp. 474-485.

P. Soille, Morphological Image Analysis: Principles and Applications,
2nd ed. New York, NY, USA: Springer-Verlag, 2003.

G. Bradski, “The OpenCV library,” Dr. Dobb’s J. Softw. Tools, vol. 25,
pp. 120-126, Nov. 2000.

“YOLOvV3: An
[Online].

incremental
Available:

ALEKSEJ AVRAMOVIC received the Ph.D. degree
in electrical engineering and computer sciences
from the University of Belgrade, Serbia, in 2016.
He is currently an Associate Professor with the
Faculty of Electrical Engineering, University of
Banja Luka, Bosnia and Herzegovina. He is the
Head of the Laboratory of Applied Electrical
Engineering. His main research interests include
machine learning, pattern recognition, circuit the-
ory, and measurements.

189867

IEEE Access

A. Avramovic et al.: Neural-Network-Based Traffic Sign Detection and Recognition in HD Images

189868

DAVOR SLUGA received the B.Sc. and Ph.D.
degrees in computer science from the Univer-
sity of Ljubljana, Slovenia, in 2010 and 2017,
respectively. He currently holds the position of
a Teaching Assistant at the Faculty of Computer
and Information Science, University of Ljubljana.
His research interests include high-performance
computing, general-purpose GPU computing, and
data mining.

DOMEN TABERNIK received the B.Sc. degree
in computer and information science, in 2010.
Since 2010, he has been working as a Computer
Vision Researcher with the Visual Cognitive Sys-
tems Laboratory, Faculty of Computer and Infor-
mation Science, University of Ljubljana. Since
2015, he has been enrolled with the Doctoral Pro-
gram of the Faculty of Computer and Information
Science, University of Ljubljana, where he is also
working on the topics of compositional hierarchies
and deep learning.

DANIEL SKOCAJ (Member, IEEE) is currently
an Associate Professor and the Head of the
Visual Cognitive Systems Laboratory, Faculty of
Computer and Information Science, University
of Ljubljana. His main research interests include
computer vision, pattern recognition, machine
learning, and cognitive robotics. He has led a num-
ber of research projects from these research areas
and facilitated the transfer of research findings into
practical applications.

VLADAN STOJNIC (Member, IEEE) received the
B.Sc. degree in electrical engineering from the
Faculty of Electrical Engineering, University of
Banja Luka, Bosnia and Herzegovina, in 2017,
where he is currently pursuing the master’s degree.
His research interests include machine learning,
computer vision, and self-supervised learning.

NEIJC ILC (Member, IEEE) received the B.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Ljubljana, Slovenia, in 2009 and 2016,
respectively. He currently holds the position of a
Teaching Assistant at the Faculty of Computer and
Information Science, University of Ljubljana. His
research interests include machine learning and
data mining.

VOLUME 8, 2020

