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ABSTRACT White matter hyperintensities (WMHs) are associated with various neurological and aging
diseases, and morphological analysis plays a crucial role in the assessment of disease progression. In this
article, a novel hybrid attention densely connected ensemble framework is deployed for WMH segmentation
from multi-modality magnetic resonance imaging (MRI). On the one hand, hybrid attention densely
convolutional network (HA-DCN) is designed with a novel hybrid attention module embedded. The hybrid
attention module can further improve the precision of lesion localization by extracting the complementary
information of high-level features and low-level features from the spatial domain and channel domain.
On the other hand, the focal Tversky loss function and generalized dice loss function derived from dice
similarity coefficient are ensembled into the proposed framework, which achieves a trade-off between
specificity and sensitivity. As a result, the volume of automation lesion segmentation is more agreeable
to the manual lesion segmentation by experts. The proposed framework was evaluated online and offline in
the MICCAI 2017 WMH segmentation challenge. A quantitative experiment has further demonstrated the
effect of multi-modality and the effectiveness of the proposed hybrid attention densely connected ensemble
framework. Furthermore, the challenge dataset consists of three scanners, reflecting the flexibility and
robustness of the model. It also exhibits its potential for real-world clinical practice.

INDEX TERMS White matter hyperintensities, segmentation, magnetic resonance imagings, hybrid atten-
tion densely convolutional networks, ensembles.

I. INTRODUCTION
White matter hyperintensities (WMHs) are one of the main
consequences of small blood vessel disease, which plays a
vital role in the assessment of dementia, stroke, and aging [1].
Clinically, conventional magnetic resonance imaging (MRI)
scans behave as the most prevalent technique for structural
analysis in the brain [2]. It not only provides images with
high spatial resolution and high contrast for brain tissue but
also exhibits the morphology of lesions well [2]. As shown
in Fig.1, WMHs are visible as hyperintense regions on the
fluid attenuated inversion recovery (FLAIR) modality and
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hypointense regions on the T1-weighted (T1)modality within
the white matter.

Nowadays, manual annotation of WMH regions remains
the gold standard for lesion annotation [3], which is an
observer-dependent and time-consuming procedure. Espe-
cially, spatial multipleness is a typical property of WMH
lesions, which poses a significant challenge to quantize
WMH. With the development of three-dimensional imag-
ing technique and the functional and physiological imaging
increasing, manual segmentationmethodswill face enormous
challenges.

The development of machine learning technology pro-
vides an explorable space for the automatic diagnosis of
disease through medical imaging [4]. Especially, the machine
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FIGURE 1. A sample of MRI slice from FLAIR modality (a), T1 modality (b) and its corresponding
manual annotation of WMH by a neuroradiologist (c).

learning method autonomously mines association rules
between images and lesions based on indicated character-
istics of imaging, which is a representative algorithmic of
data-driven technique. Anbeek et al. [5] built a probability
feature space for WMH lesion segmentation, extracting
characteristics from signal intensities and spatial infor-
mation based on the k-nearest neighbour (KNN) method.
Geremia et al. [6], [7] presented a discriminative random
decision forest framework for multiple sclerosis lesion seg-
mentation. It is a voxel-level probabilistic classification
with context-rich, local spatial and symmetry characteristics.
Tomas et al. [8] achieved lesion segmentation by estimating
the spatially over-all intra-subject intensity distribution and
spatial local intensity distribution obtained from a healthy
reference population simultaneously. However, the superior-
ity of these methods depends on the extraction of imaging
indicated features, resulting in limited versatility.

A. RELATED WORK
Convolutional neural networks (CNNs) express flexibility
by autonomously learning the features from the available
dataset. In medical image segmentation, CNNs achieve
impressive achievements as well as demonstrate the gener-
alizability by training available medical images [12], [13],
especially in three-dimensional space. It can be divided into
the following three types generally.

Firstly, the voxel-based lesion segmentation framework
simplifies the segmentation problem into classification.
It predicts whether the central voxel belongs to lesions, and
then determines the region of lesions. Valverde et al. [14]
designed a creative framework for multiple sclerosis lesions
segmentation based on a cascade of two 6-layers CNN. Its
first network was used to screen possible candidate lesion
voxels, behaving sensitively to lesions. The second net-
work was designed to reduce the number of misclassified
voxels, decreasing the false positive rate [15]. Secondly,
the patch-based lesion segmentation framework restores
the input resolution through upsampling operation, thereby
reduce data redundancy. Ghafoorian et al. [16] integrated a
variety of deep neural network architectures that considers

explicit location features or multi-scale patches for WMH
lesion segmentation. Kamnitsas et al. [17] proposed a dual
pathway, incorporating both local and more abundant con-
textual information and employing three-dimensional condi-
tional randomfield (CRF) to decrease the false positive rate in
the post-processing stage. Thirdly, the volume-based segmen-
tation framework represented by the encoder-decoder net-
work is proposed, which realizes an end-to-end output from
images to lesions. Brosch et al. [18] conducted a preliminary
study of deep 3D convolutional encoder networks based on
the pre-training of Boltzmann machine theory. Li et al. [19]
used deep fully convolutional networks and integrated them
to detect WMH using multi-modalities MRIs.

However, above convolutional neural networks are difficult
to further optimize owing to its poor interpretability [20]. It
is noteworthy that people pay more and more attention to
the transparency, accountability, and fairness of deep learning
models. Consequently, attention mechanism (AM) has been
vigorously promoted in the artificial intelligence commu-
nity drawing on the selective attention mechanism of human
vision, which has been employed in text recognition [21], rec-
ommendation system [22], semantic segmentation [23] and
so on. AM allows the model to dynamically focus on certain
parts of inputs by incorporating the concept of correlation
[24], [25]. Generally, AM mainly calculates the association
from the spatial and channel domains to focus on characteris-
tics. In the spatial domain, Max Jaderberg et al. [26] proposed
a spatial transformer network (STN) that can transform the
spatial information in the original image into feature maps
as well as retain the critical characteristics. In the channel
domain, the characteristics of each channel are the com-
ponents of the image on different convolution kernels. It
presents the correlation between channels and the segmenta-
tion result by adding weights to the signals on each channel.
Squeeze-and-Excitation (SE) Network [27] explicitly model
the inter-dependence between feature channels and learn the
importance of each feature channel automatically by adopting
a ‘‘feature re-calibration’’ strategy. In summary, neural net-
works have the ability to focus on its input features and focus
more on the detailed information of the lesion area when AM
is embedded in neural networks.
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FIGURE 2. An overview of the proposed hybrid attention densely connected neural network.

B. CONTRIBUTIONS
In this article, a novel hybrid attention densely convolu-
tional network (HA-DCN) is deployed for WMH lesion seg-
mentation task. In this article, we designed an end-to-end
encoder-decoder framework. The framework designs encoder
including densely connections [28] and decoder including a
hybrid attention module.

In summary, the main contributions of this work are:
(1) A hybrid attention module is designed to exploit

the consistency of WMH lesion, combined with the spatial
domain attention and channel domain attention to produce
complementary weights on features.

(2) A multi-output architecture is constructed to increase
the transmission of network features and gradient.

(3) Ensemble models trained with two different loss func-
tion and random parameter initializations data are employed,
which trade-off in sensitivity and specificity.

II. METHODS
Recently, a large number of studies have proved that
U-net [29] is an effective architecture when tackling the
segmentation task [30]. In this article, we further deploy an
HA-DCN with 3D U-net as the backbone, as shown in Fig.2.

The deployed architecture is a typical encoder-decoder
framework. In the stage of encoding, it consists of densely
connected block [31] and max pooling operations alternately.
In the decoding stage, a hybrid attention module is designed
to focus on the sensitive areas in which the lesions are located.
Besides, HA-DCN employs the dense block and deconvolu-
tional [32] to realize the restoration of feature maps.

Besides, a multiple output operation is also designed to
alleviate the gradient dispersion problem caused by the deep-
ening of the encoding-decoding network. As shown in Fig.2,
the probabilistic of various sizes is output via the softmax
layer. It can make full use of features as well as transfer
features and gradients within the architecture effectively.

A. HYBRID ATTENTION MODULE
In view of the correlation between convolutional feature
maps and the segmentation task, AM can effectively cap-
ture the distinguishable characteristics of lesions while sup-
pressing the indistinguishable characteristics. It enhances the
expression ability of feature maps [34]. Specifically, spatial
domain attention module (SAM) encodes global semantic
information into local receptive fields, strengthening the
representation capability of feature maps and aggregating
semantic information of whole brain images [26], [35]. Chan-
nel domain attention module (CAM) extracts global context
information as a guide to the underlying features by global
pooling and filters the detail information of WMH lesions
[36], [37]. Based on the above research, this article deploys
a hybrid attention module (HAM), whose composition is
shown in Fig.3.

As shown in Fig.3 (a), SAM pools the feature map along
channels and performs a 1 × 1 × 1 convolutional operation.
Then it realizes the nonlinear transformation in the spatial
voxel by employing the sigmoid activation function, which
computes the correlation WS reflecting where is the interest
on voxel-level. In Fig.3 (b), CAM performs a 1 × 1 × 1
convolutional operation following to global pooling on the
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FIGURE 3. Schematic diagram of main components of HA-DCN.

feature map. Then, the sigmoid function is used to calculate
the corresponding matrix WC that measures the impact of
each channel on labels.

Furthermore, we design hybrid attention as Fig.3 (c) by
combining the SAM and the CAM. Specifically, the number
of channels and the spatial dimension of high-level features
and low-level features are firstly matched to facilitate feature
summation. Secondly, HAM employs SAM and CAM on
the summed feature, making the obtained weights and the
summed feature multiply element by element. Finally, HAM
outputs the final hybrid attention EM by adding the two
attention results:

EM = WC � (FHD + FLC )+WS � (FHD + FLC ), (1)

where FHD and FLC represent the results of match-
ing high-level features and low-level feature respectively,
WC andWS denote the matrix calculated by CAM and SAM,
respectively, � is multiply element by element operation.

Benefiting from the hybrid attention module, HA-DCN
can automatically learn the comprehensive attention weight,
which captures the relevance between low-level features (in
the encoder stage) and high-level features (in the decoder
stage). These associations are then used to bulid a spatial
matrix EM that passes through encoding path to the decoding
path. Furthermore, high-level features with sufficient cate-
gory information can guide low-level information to select
precise resolution details.

B. LOSS FUNCTION
Dice similarity loss function is the most common loss
function that performs comprehensive evaluation for medi-
cal image segmentation tasks [38], [39]. It performs fairly
well when target voxels behave focus or the distribution of
target/background voxels is uniform. However, its perfor-
mance is not ideal for WMH segmentation task. On the one
hand, the number of non-lesion voxels is much higher than
that of lesion voxels. On the other hand, the distribution
of WMH lesions is relatively scattered. The dice similarity
coefficient (DSC) is decreased significantly once the small
target has a partial pixel prediction error. Accordingly, this
article adopts asymmetric similarity loss functions to alleviate
the above problem.

Let R be the manual segmentation label for lesion over
m− th image elements rm and its contrary values rm, and P be

the predicted probabilistic map with voxel values pm and its
contrary value pm. Then, we define loss functions as follows:

1) FOCAL Tversky LOSS
Focal Tversky loss (FTL) achieves a flexible balance between
false positive (FP) and false negative (FN) by introducing the
balance factor α manually. Besides, a stable coefficient γ
is designed to solve the limitation that the small target is
insensitive to the loss function [40]. It takes the form:

LF = (1−

∑
m
rmpm+ε∑

m
rmpm+α

∑
m
rmpm+(1−α)

∑
m
rmpm+ε

)γ , (2)

where α is an adjustable hyper-parameter that improves recall
when the large class imbalance occurs, ε represents a random
small value to prevent the denominator of 0, γ denotes a
stable coefficient which varies in the range [0, 1]. In prac-
tice, the FTL function pays more attention to less accurate
predictions that have been misclassified. The smaller γ ,
the larger LF when the voxel is misclassified.

2) GENERALIZED DICE LOSS
Generalized dice loss (GDL) realizes the asymmetry loss
function by automatically calculating the balance fac-
torwl [41]. The correction is achieved by the reciprocal of the
category volume, thereby decreasing the correlation between
target size and DSC. It is defined as follows:

wl =
1

(
M∑
m=1

rlm)
2 , (3)

LG = 1− 2

2∑
l=1

wl
∑
m
rlmplm

2∑
l=1

wl
∑
m
rlm + plm

, (4)

where rlm is the manual annotation of the category l at the
m− th voxel, while plm is the corresponding predicted proba-
bility value, wl is used to provide invariance to different label
set properties,M denotes the total number of voxels.

C. AUTO-CONTEXT INFORMATION FUSION
Ensemble techniques achieve more accurate and robust
results than any single learning algorithm by combing
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FIGURE 4. Overall framework for the testing stage.

TABLE 1. Detailed information of WMH segmentation challenge. The training set includes 60 patient from 3 scanners while the test set from 3 scanners.

multiple models. In particular, most championship results of
various medical image analysis are derived from model inte-
gration. Tao Song et al. [42] won the ischemic stroke lesion
segmentation challenge (ISLES) 2018 by aggerating extrac-
tor, generator and segmentor. Isensee et al. [43] achieved
top performance in automatic cardiac segmentation challenge
(ACDC) and multi-atlas labeling beyond the cranial vault
challenge (abdomen) by ensembling several U-Nets.

In this article, an integrated approach is used to solve the
automated WMH segmentation problem, which combines
several models with the same architecture in a carefully
designed pipeline. The intention of adopting ensemble mod-
els includes two aspects: (i) The attributes of the training data
that the model can be learnt vary with different initialization
value; (ii) Different loss functions have a different empha-
sis on segmentation results, achieving a good specificity-
sensitivity balance. Specifically, LF performs excellently in
sensitivity while LG behaves universal that neutralizes the low
specificity of LF , thereby improving the accuracy of model
segmentation.

As shown in Fig.4, nHA-DCNs with the same architecture
are trained with random parameter initialization concerning
loss function LF and LG. A probability segmentation result
will be output by each of the n HA-DCN models with
LF and LG. Then, a final map is generated by averaging
2n maps. Finally, a threshold is set based on experience to
transform the probabilistic output into a binary segmentation
result. In this article, the threshold is set to 0.5.

III. EXPERIMENTS
A. DATASET
The MICCAI WMH2017 segmentation challenge [45] cap-
tured MR images with various degrees of vascular disease
related to ageing. It consists of a training dataset and an
unseen test dataset. The organizing committee provided a 3D
T1-weighted sequence and a 2D multi-slice FLAIR sequence
for each patient. Properties of the detailed information are
summarized in Table 1. It is worth mentioning that the
images of these patients were acquired from three hospitals.
Two experts annotated the pathological reslt concerning the
STandards for ReportIng Vascular changes on nEuroimaging
(STRIVE) criteria [2].

Furthermore, a pre-processed version was also provided,
including bias-corrected using statistical parametric mapping
12 (SPM12) [44], image registration using the Elastix tool-
box [46], and face removed manually. The detailed informa-
tion can be seen in https://wmh.isi.uu.nl/data/.

B. INPUT FEATURE
A further preprocessing based on the initial image processing
is of great help for invariance and robustness in the automated
lesion segmentation system. The input feature is constructed
using the following steps:

(i) BET toolbox [47] is employed to obtain a binary brain
mask that is multiplied the preprocessed images for skull
stripping.
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(ii) Each training image is subtracted firstly by its mean
and divided from its variance secondly, aiming to reduce the
variations of input data and speed-up training process.

(iii) For each provided sequence, all the axial slices are
cropped or padded to a uniform size p automatically.We com-
pute 3D axial volumes by stacking images as V= [n×p×p×
a×c], where n represents the number of volumes, a represents
the number of slices in the axial direction and c denotes the
number of the available input modality.

In order to overcome the limitations of high variance and
weak robustness caused by the limited amount of training
data, this article carries out three orientation flips for each
training volume, which achieves a data volume ratio of before
and after data enhancement as 1:3.

C. EVALUATION METRICS AND RANK METHOD
Challenge organizers introduce five different indicators to
compare the pros and cons of the submitted methods by
participants. We define the manual annotation as G and a
predicted segmentation result as P. Then the five evaluation
indicators are calculated on the per-voxel basis:

(i) Dice Similarity Coefficient (DSC) measures the overlap
percentage between G and P. It is defined as:

DSC =
2× |G ∩ P|
|G| + |P|

(5)

(ii) Hausdorff Distance (HD) measures the boundary distance
between the ground-truth G and automatic segmentation P,
which calculates the maximun degree of mismatch between
two sets. On the basis, the K − th ranked distance is used to
suppress the outlier, obtaining a robustified version by using
the 95th percentile instead of the maximun distance.

h95(G,P) = 95K th
g∈G min

p∈P
||p− g|| (6)

where 95K th
g∈G is the K − th ranked minimum euclidean dis-

tance with K/Ng = 95%, G and P represent the boundaries
set of manual annotation G and predicted result P, respec-
tively. The lower the HD, the higher the proximity between
ground truth and automatic segmentation. The HD is defined
as:

HD = max{h95(G,P), h95(P,G)} (7)

(iii) Average Volume Difference (AVD):

AVD =
||G| − |P||
|G|

(8)

In view of the spatial multipleness of WMH, individual
lesions are defined as 3D connected components within an
image. We define the 3D connected components within the
manual annotation as GI and the 3D connected components
within the predicted segmentation result as PI . On this basis,
NG is defined as the number of individual lesions in GI ,
NP and NF are the number of correctly detected individual
lesions and wrongly detected individual lesions in PI after
comparing to GI .

(iv) Sensitivity for individual lesions (Recall):

Recall =
NP
NG

(9)

(v) F1-score for individual lesions (F1):

Precision =
NP

NP + NF
(10)

F1 = 2.0×
Precision× Recall
Precision+ Recall

(11)

D. IMPLEMENTATION DETAILS
To optimize the model parameter, a five-fold cross-validation
method is employed to optimize the hyper-parameters and
validate the proposed architecture. The stochastic gradient
descent (SGD) with a learning rate of 0.01, the decay of 1E-6,
momentum of 0.9 in our experiments.

We implement the proposed architecture on Python based
on the deep learning library of Keras, utilizing Tensorflow
backend and two parallel GPU of NVIDIAGTX2080. It takes
around 6.5 hours to train a single model for 150 epochs on a
training set containing 400 volumes of size 196 × 196 × 48
each.

IV. EXPERIMENTAL RESULTS
The segmentation performances on the unseen test dataset
and public training dataset are demonstrated in this section.
Additionally, we also discuss the effectiveness of each mod-
ule in Section V.

A. ONLINE RESULTS ON UNSEEN TEST DATASET
In the WMH 2017 segmentation challenge, each participant
packages the required code as a container through docker
and uploads the container to the organizing committee,
to compare the effectiveness of the proposed framework
fairly. Subsequently, the organizing committee evaluates the
unseen test dataset by running the uploaded container. The
performance of the proposed method on three test sets is
shown in TABLE 2.

TABLE 2. Mean index value when the proposed HA-DCN was tested with
the unseen test dataset.

Regarding the evaluation of the unseen test dataset, our
proposed method is also compared with state-of-the-art
methods in the competition. It includes that U-Net with a
highlighted foreground [48], ensembled U-Net [49], multi-
dimensional convolutional gated recurrent units [50], [52],
and an adjusted DeepMedic architecture proposed [51].
These methods are derived from deep learning and achieve
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FIGURE 5. The distribution of segmentation performance on public training dataset from three scanners in five-fold cross
validation.

the automatic WMH segmentation by incorporating comfort-
able pre-processing and post-processing. TABLE 2 summa-
rizes and compares the performance of topmethods forWMH
2017 segmentation challenge. It can be seen that the proposed
method achieves good performance in DSC and AVD, but it
has a low rate in terms of recall. Unfortunately, the proposed
method lags behind pgs and neuro in most metric values.
However, these two methods are based on two-dimensional
slice processing, which will be slightly more complicated in
pre-processing and post-processing. Overall, the integrated
HA-DCN method is competitive and performs well on the
test set, especially in AVD, which should benefit from the
integration of LF and LG.
In addition, The physical meaning of HD is the distance

of the edge matching. HD metric values in Table 2 are the
highest for the proposed method compared with other state-
of-the-art methods. It indicates that the proposed method per-
forms poorly in delineating the boundary of lesions. However,
the limitation of the preprocessing method mentioned lies in
the boundary. Hence, this phenomenon may be caused by the
pre-processing method that cropped volume mentioned in
Section III.B.

Nevertheless, the 3D nature of brain makes the analysis of
volumes the mainstream trend of current brain image anal-
ysis, promoting the development of 3D model. This article
provides new ideas for the 3D pre-processing of images of
different sizes.

B. OFFLINE RESULTS ON PUBLIC TRAINING DATASET
The public training dataset is also comprehensively eval-
uated in a random five-fold cross-validation, verfying the
generalization performance of our proposed method. Firstly,
the 60 training subjects from three scanners are randomly
divided into five groups (each group has 4 participants in
each scanner). Then, images from one of them are used
for validation, and other images from 4 remaining groups
are used for training. This procedure is repeated five times
until all of the 60 subjects from three scanners are used for
validation.

Fig.5 depicts the segmentation performance from three
scanners in the five-fold cross-validation. As one can see
that their performance varies although the same number of
the public training dataset is provided. Specifically, the per-
formance of GE3T scanner is best, followed by Singapore
and Utrecht worst. It manifested in two aspects: The distance
between the upper and lower edges of boxplot in the Utrecht
scanner is long, meaning a large variance; the discrete values
in the figure are mostly concentrated in the Utrecht scanner.

Furthermore, false positive volume function (FPVF) indi-
cates over-segmentation rate and false negative volume
function (FNVF) that indicate under-segmentation rate is
employed to indicate the over- and under-segmentation.
Specifically, FPVF = NFP/NG, FNVF = NFN /NG, where
NFP denotes the number of false positive voxels, NG repre-
sents the number of manual annotation WMH, NFN is the
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number of false negative voxels. Based on this, FPVF and
FNVF of 60 samples on public training dataset are plotted
in Fig.6. It can be seen that samples are more concentrated
below y = x, indicating that the proposed method tends to
over-segment samples.

FIGURE 6. Distribution of FPVF and FNVF of 60 samples on public training
dataset.

V. DISCUSSION
Quantification of WMH lesion has become an indispensable
step for diagnosing and assessing the progression of diseases,
whereby measures the morphology and location of lesions.
In this article, a novel HA-DCN ensemble framework is
deployed for WMH segmentation problem via a combination
of the core idea of the densely connected block and attention
mechanism. Additionally, a specificity-sensitivity trade-off is
achieved by ensembling focal Tversky loss function and gen-
eralized dice loss function. As a result, the deployed pipeline
is tested in the public challenge, and an intensive analysis is
also performed through five-fold cross-validation.

A. INFLUENCE OF IMAGING MULTI-MODALITIES
MRI generates multi-modality images reflecting different
information of the brain by adjusting imaging parameters.
T1 modality reflects brain anatomy by providing high con-
trast between tissues while FLAIR sequence behaves highly
sensitive to pathological changes, especially for white matter
lesion. Clinically, a combination of T1 and FLAIR is usually
used to extract their complementary information for lesion
annotation. Accordingly, this article adopts the combina-
tion of T1 and FLAIR modalities to improve the automatic
segmentation accuracy of WMH lesions. To further exam-
ine the influence of imaging multi-modalities, HA-DCN is
trained using FLAIR and FLAIR+T1 as input, respectively.
TABLE 3 demonstrates the mean index value when the pro-
posed HA-DCN is tested with different input modality on
the public training dataset. It can be seen that fusing T1 and
FLAIR modalities can improve the index value of the model
performance to a certain extent. In addition, Holm’s correc-
tion is used to calculate the statistical difference between
them.

TABLE 3. Mean index value when the proposed HA-DCN is tested with
different input modality with five-fold cross-validation evaluation.
P-value denotes the statistical difference using Holm’s correction.

The test results do not significantly improve the perfor-
mance of themethod onDSC, HD, andAVDwhile displaying
a significant difference in Recall and F1.

In Fig.7, the segmentation results of random samples from
three scanners are visualized. It can be observed that the
false negative rate decrease when T1 and FLAIR modality
are stacked as the input of the proposed HA-DCN. Indeed,
the blue voxels in the green dashed box will be reduced
significantly. This phenomenon suggests that T1 modality
provides complementary information of FLAIR modality on
focusing WMH lesions as well as shows high tissue contrast.

B. INFLUENCE OF LF AND LG ON VOLUME CORRELATION
Bland-Altman diagram can assess the consistency of two
technologies, which is a commonly used statistical analysis
method in clinical practice. Fig.8 plots the volume agreement
between the manual annotation and automatic lesion segmen-
tation for LF , LG and multi-target architecture. It can be per-
ceived that LF tends to overestimate lesion volume because
of the mean solid line below 0, that is, lesions are usually
estimated larger than they are. On the contrary, LG predicts
underestimated lesions. After the integration of LF and LG,
the multi-target architecture balances the estimated volume
and shows a smaller variance. In terms of volumetric corre-
lation, LF demonstrates the smallest mean value, while the
ensemble model shows a relatively small variance.

Fig.9 depicts fitted linear regression models between
the volumes of all ground truth lesions and corresponding
predicted WMH lesions for each loss function. For each
subgraph, 95% confidence interval areas also are provided
for comparison. With a quantitative evaluation, LF overes-
timates lesion volume because of the slope smaller than 1
while LG behaves the opposite. The multi-target architecture
(red circle) predicts the slope that is closest to y = x.
Consequently, multi-target architecture provides a stronger
global agreement between manual labeling and predicted
results, that is, the volume is the most agreeable to the manual
segmentation by experts.

C. EFFECTIVENESS OF THE HYBRID ATTENTION BLOCK
The composition of the attention mechanism module is cru-
cial for the coarse screening of lesions [56]. Recently, a rich
body of studies focused on designing models with attention
mechanisms to improve the performance of the segmenta-
tion task [53], [54]. The main innovation research can be
divided into the channel domain and the spatial domain.
In quest of the influence of different attention modules on
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FIGURE 7. Segmentation results from three scanners. A: FLAIR MR images, B: T1 MR images, C: segmentation results only using FLAIR modality,
D: segmentation results using FLAIR and T1 modalities, E: the associated ground truth. In the predicted result, the yellow area denotes true positives,
the red voxels are the false positives, and the blue voxels are the false negatives.

FIGURE 8. Bland-Altman plots for volumetric comparisons between lesion resulting from manual labeling versus the results of each objective function.

WMH segmentation, three additional neural networks are
designed with spatial attention (shown in Fig. 3a), with
channel attention (shown in Fig.3b) and without attention
embedded. Accordingly, SAM represents the model of
employing spatial attention module instead of HAM in
HA-DCN, CAM represents the model of using channel atten-
tion module instead of HAM in HA-DCN, and WAM rep-
resents the model without attention module. In this article,
the above networks are trained three times and averaged
their network output to eliminate the effects of random
initialization of parameters.

Fig.10 reveals the performance on the DSC, AVD,
HD, Recall, and F1 evaluation metrics obtained from the
above-mentioned different models on the public training
dataset. Among all the models, the performance of the neural
network will be slightly improved when the attention mech-
anism is embedded. When HAM is designed in a neural
network, its performance is superior in DSC, HD, AVD,
F1 compared with other models. Clinically, multiple com-
parison correction with the conservation Holm’s method is
commonly used for easily discovering statistical differences
between groups. Fig.10 depicts the statistically significant
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FIGURE 9. Correlation between manual lesion annotations volume and predicted WMH lesion volume for each objective function. The
solid lines represents the linear regression function along with confidence intervals at 95%.

FIGURE 10. Boxplots showing the performance of different model embeded various attention mechanism on the public
training data. Statistically significant differences p between HAM and other attention mechanism are assessed using
resampling statistics with multiple comparison correction.

differences between model performances for most metrics
when compared to HAM.

D. EFFECT ON THE SIZE OF ENSEMBLES
Ensemble learning boosts segmentation performance and
enhances the stability of the framework by aggregating dif-
ferent models. The characteristics of random initialization
of parameters and random batch gradient descent in model
training make each trained model unique. However, it may

make the segmentation performance closer to saturation as
the property of the training dataset is fully explored gradually.
Therefore, how many models in the ensemble learning are
needed is still an open issue. To this end, we further analyze
the effect of the size of the integrated model on the WMH
segmentation task.

Fig.11 illustrates the curves of segmentation performance
on five metrics with respect to different ensemble size.
Representing the mean and standard deviation of the data
in the same graph can compare the differences in data
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FIGURE 11. The errorbar graph as a function of the size of the ensemble.

distribution well. It could be seen that: (1) WMH segmen-
tation performance that the ensemble size n is 2 outperforms
the ensemble of only one model, especially in DSC and F1.
At this time, the improvement of the integrated model is
most obvious; (2)With the continual increase of the ensemble
size n, the segmentation performance tends to saturate and
feeble promotion in some of the indicators boost at the cost
of small decreased in others. Overall, when the size of the
ensemble is 3, the performance of the ensemble model tends
to be stable and saturated. Therefore, we choose the ensemble
size of n = 3 to obtain better segmentation performance.

VI. CONCLUSION
In this article, a novel automated lesion segmentation method
with application to WMH patients is deployed. Specifically,
a HAM that combines the advantages of the spatial domain
and the channel domain is designed to improve the overall
performance of segmentation task, increasing the inter-
pretability of deep learning and facilitating further optimiza-
tion. Comprehensive experimental analysis on the WMH
segmentation challenge demonstrates the effectiveness of
HAM and the robustness of HA-DCN. The obtained results
are encouraging, yielding our CNN architecture closer to
human expert inter-rater variability. However, we still make
an effort to analysis diseases with no obvious structural
changes on MRI in the clinical. In the future, we will con-
tinue to explore the application of HA-DCN to other lesion
segmentation tasks, such as focal cortical dysplasia.
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