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ABSTRACT Motion planning plays an essential role in designing self-driving functions for connected and
autonomous vehicles. The methods need to provide a feasible trajectory for the vehicle to follow, fulfilling
different requirements, such as safety, efficiency, and passenger comfort. In this area, algorithms must also
meet strict real-time expectations, since, especially in an emergency, the decision time is limited, which raises
a trade-off for the feasibility requirements. This article proposes a hierarchical path planning solution for
evasive maneuvering, where a Twin Delayed DDPG reinforcement learning agent generates the parameters
of a geometric path consisting of chlotoids and straight sections, and an underlying model predictive control
loop fulfills the trajectory following tasks. The method is applied to the automotive double lane-change test,
a common emergency situation, comparing its results with human drivers’ performance using a dynamic
simulation environment. Besides the test’s standardized parameters, a broader range of topological layouts
is chosen, both for the training and performance evaluation. The results show that the proposed method
highly outperforms human drivers, especially in challenging situations, while meeting the computational
requirements, as the pre-trained neural network and path generation algorithm can provide a solution in an
instant, based on the experience gained during the training process.

INDEX TERMS Vehicle dynamics, advanced driver assistance systems, machine learning, artificial neural
networks, reinforcement learning.

I. INTRODUCTION
Trajectory and path planning methods play a significant role
in designing different autonomous vehicle functions. In the
last decades, industrial and academic participants made sub-
stantial efforts in developing different highly automated func-
tions as part of Advanced Driver Assistance Systems (ADAS)
as well as in the development of Connected and Automated
Vehicles (CAVs). As these systems aim to carry passengers,
they have to fulfill different requirements, from which the
most important is safety, though they must ensure passenger
comfort and customization capabilities also. As part of the
safety goals, such systems need to solve hazardous situations
in avoiding potential accidents, or at least minimize its casu-
alties. Moreover, under dangerous situations, the autonomous
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algorithms have to provide a feasible maneuver, i.e., tra-
jectory or path, in an instant, which raises the need for
real-time methods. Though it is not possible to define all
possible hazardous situations, standardization organizations
have a collection of previously described test cases to val-
idate the vehicles’ and algorithms’ performance, which are
tested on automotive proving grounds [1]. One is the double
lane-change test (DLC) defined in ISO-3888-2 [2]. Originally
known as the ‘‘Moose test’’, it aims to determine how well a
specific vehicle evades a suddenly appearing obstacle.

The ISO double lane-change test formulates as follows.
It starts with an entry lane with a length of 12m and ends with
an exit lane with the same size. Between these two, there is
a so-called side lane, with a lateral offset of 1m. The longi-
tudinal distance between the entry and side lanes is 13.5m,
while between the side and exit lanes is 12.5m. The test also
defines that 2 meters after entering the scene, the throttle has
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FIGURE 1. The double lane-change maneuver according to ISO-3888-2 [2].

to be released, and the rest of the test is carried out without any
throttle or brake actuation, solely with steering. The tests are
usually driven with and without Electronic Stability Program
(ESP). Fig. 1 shows the geometric layout of the test.

This article presents a solution based on Reinforcement
Learning for a point-free avoidance path generation for the
emergency double-lane change situation. A model predictive
control (MPC) based machine driver steers the underlying
dynamic vehicle model. The generated algorithm results are
compared to the performance of human drivers carried out in
a simulator environment.

The commonly used hierarchical structure of autonomous
driving starts with route planning. It follows with perception
and localization aided by Vehicle-to-X (V2X) communica-
tion if present. This defines the vehicle’s state and the posi-
tion and movement information on other traffic participants,
such as traffic topology, surrounding vehicles, pedestrians,
and other dynamic or static objects or obstacles. These add
together to a scene representation in which the automated
system needs to make decisions. In an underlying layer,
behavior and scene prediction could further help the process.
High-level actions are chosen on the strategic level, such
as lane-changing, car-following, avoidance maneuver, etc.
This provides the trajectory planner’s input, which has to
generate a feasible path for a short time interval. On the
lowest level, a trajectory following control loop provides the
actuator inputs, i.e., steering, throttle, and brake commands.
For an overview of the different levels of motion planning,
see [3], [4].

A. RELATED WORK
Path planning generates a curve or a set of points for a
vehicle to follow, while trajectory planning gives additional
speed information along the path. These methods can be
categorized into four main classes: geometry-based methods,
heuristic solutions, and algorithms based on optimal control
or nonlinear programming. Finally, in recent years, machine
learning based solutions also emerge. Geometric methods
use curve fitting based on the given start and end states
and avoidable obstacles as inputs and generate the path as

a combination of straight lines, circular arcs, or splines [5].
Though such methods are computationally fast, the generated
path’s dynamical feasibility is not guaranteed; hence, it has to
be evaluated afterwards [6].

Several artificial intelligence based methods can be found
among the heuristics-based approaches that use search
or random sampling algorithms. Contrary to the geomet-
ric methods, these can be computationally expensive. For
search-based methods, different extensions of the A∗ algo-
rithm are applied. To reduce complexity, The authors of [7]
used sample time based refining, while in [8], the authors
use adaptive refining for the same purpose. As A∗ provides
a discrete solution, which is not directly applicable for path
planning of nonholonomic vehicle dynamics, several exten-
sions, such as the Hybrid A∗ algorithm is used to asso-
ciate a continuous state to the discrete representation, and
hence, generating a path, that is easier to follow [9]. Ran-
dom sampling methods on the field are usually based on the
Rapidly-exploring Random Tree (RRT) algorithm, which is a
generic heuristics for searching non-convex spaces with a tree
structure, guided by random samples. Such methods take the
vehicle’s initial state and build a tree from feasible branches
based on the dynamics constraints. As the tree reaches the
desired end state, the corresponding set of branches define
the path [10], [11].

To ensure both dynamical feasibility nonlinear optimiza-
tion based methods define the problem as a nonlinear opti-
mization problem (NLP), where the technique generates a
path, generally based on some geometric method, and estab-
lishes a value function, how well the vehicle can travel along
the path [12], [13]. This generates a constrainedminimization
problem that can be solved through different techniques.
Though dynamical feasibility always raises the trade-off
for computational complexity [14]. Using linear parame-
ter varying (LPV) models and modern model predictive
control (MPC) techniques can provide near-optimal solu-
tions, though this trade-off still remains in this application
domain [15].

Machine learning based solutions can mitigate this
trade-off by training an agent to generate feasible paths.
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One possible solution is the utilization of supervised learn-
ing. The mentioned NLP solver can generate many feasible
paths for different constraints and goals and use these as a
training dataset of a neural network, which can generalize the
problem and create trajectories in real-time. Such a solution
can be found in [16]. However, it is not always possible to
generate datasets that are large enough for training. To solve
this problem, reinforcement learning-based techniques use
self-play with trial-and-error and trains the agent based on
the experiments gained from performing a large amount of
trials [17]. One subset of RL is the behavior cloning based
methods, or inverse RL, where the agents try to generalize
from demonstrations by learning amapping between observa-
tions and actions. An overview of methods based on imitation
learning for vehicle motion planning can be found in [18].
Reinforcement learning (RL) based methods usually use an
end-to-end approach, trying to generate the direct steering,
throttle, and brake commands based on the environmental
information available. These researches use a various set of
sensor models, such as grid-based topological [19], lidar-like
beam sensors [20], camera information [21] or the high-level
ground truth position information [22]. Another group of
researches focus on strategic decisions, where the agent deter-
mines high-level actions, such as lane-change, follow, etc.
These researches usually use microscopic simulations for the
environment, such as Vissim [23], Udacity, [24], SUMO [25],
or several self-made models [26]. Though hybrid solutions
exist, where the strategic and direct control meets [27], only
a few papers deal with defining a path by some geometric
approach an RL and then drive through it with a controller
[28], [29]. For further information on the topic, a good review
of the RL based approaches for vehicle motion planning can
be found in [30].

In recent years, many research focuses directly on the
double lane-change problem. The DLC problem is solved as
an optimal control problem in [31] considering a low degree-
of-freedom vehicle model. The authors of [32] formulates the
problem as a series of convex approximation, and an optimal
trajectory that minimizes yaw acceleration is calculated and
drives through it with an MPC controller. In [33], the authors
use black-box modeling of double lane-change maneu-
ver based on Adaptive Neuro-Fuzzy System (ANFIS) and
presents a simplified test with an actual vehicle at low speed
(30 km/h). In [34], the authors present an explicit MPC con-
troller to reduce the enormous computational complexity of
MPC by using anmp-QP technique and validates it in the Car-
Sim simulator. To perform this, they assume an LTI vehicle
model for the planning phase. Based on the investigation of
real drivers’ recorded maneuvers, the authors of [35] propose
a hyperbolic tangent lane-change trajectory model and veri-
fied it using both real data and simulation. A game-theoretic
approach is presented in [36], for a stochastic game-based
steering torque control framework for a driver–machine copi-
lot system described by an affine-LQ method based on
a 6-order stochastic driver–vehicle dynamic system. Also,
the Stackelberg-game-based shared control scheme for a

path-tracking is presented in [37]. For path tracking, [38]
propose a H∞ controller considering look-ahead informa-
tion, and validate it in CarSim. An indirect shared control
under double loop framework is proposed in [39], dividing
the driver and controller into two independent closed loops
to obtain the weighted steering angle through an authority
allocation system.

B. CONTRIBUTIONS OF THE PAPER
The paper presents a geometric emergency maneuver path
planning agent for the double lane-change problem, based
on a Deep Deterministic Policy Gradient (DDPG) variant,
namely Twin Delayed DDPG (TD3). The agent defines a path
from combined clothoid and straight sections using the TD3
algorithm. The path is evaluated by driving along with an
MPC controller. The results are compared to the performance
of human drivers.

Section II formulates the problem, and gives topologi-
cal information on the task. The RL agent and the design
structure is introduced in Section III-A, including the algo-
rithm used, the network architecture, the state and action
spaces, and the reward function used. In Section III-B,
the used dynamic vehicle model is briefly presented, after-
wards, Section III-C presents the path generation process,
and Section III-D provides information on the path following
MPC controller. Finally, Section IV provides information
on the test environment and the results of the training and
compares the agent’s and human driver’s performance in
simulation on different tracks.

II. PROBLEM DESCRIPTION
The study presented in this article aims to give a possible
implementation of a real-time optimal path planning of an
emergency double lane-change maneuver. At the beginning
of the research, the following simplifications have been intro-
duced to focus on the primary problem.
• The maneuver is performed on a straight section of the
road.

• The vehicle has ideal high-level sensor signals.
• Constant asphalt-wheel friction coefficient.

The goal is to plan an optimal path, from the initial state to
the desired end state, taking the given environmental, physical
constraints into account.

As mentioned before, The DLC test defines three lanes
that must be passed by the vehicle, as shown in Fig. 2.
The optimization condition is to maximize travel comfort
by minimizing lateral acceleration and jerk. The speed of
the vehicle in the initial state v0, the lane widths w1,w2,w3,
the lengths l1, l2, l3 and the positions (x2, y2), (x3, y3) of the
green lanes can vary within the limits of vehicle performance.
The vehicle’s center of gravity (CoG) and the coordinate
system’s origin is placed in the middle of the entry lane.
In addition to route planning, the goal is to provide a good
estimate of feasibility by finding the optimum.

Our previous studies have already dealt with the topic
of motion planning, as a spline-based route planner with
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FIGURE 2. The topological layout of the double lane-change problem, with the varying parameters used for the training.

FIGURE 3. The training and control loop used for the design of the agent.

reinforcement learning [40] having tested on an actual vehicle
[29]. Fig. 3 provides an overview of the agent used in this
article. The research neglects the sensing part of the problem
and starts with the extracted physical constraints as an input
state space for the actor-network of the algorithm. The out-
puts of the network are the physical parameters that can be
used for generating a path, described in Section III-C. The
MPC control loop drives the vehicle among the given path,
which is evaluated afterward to calculate the reward based on
the success/failure information and additional performance
parameters. This reward function closes the RL loop and is
used to fit the agent’s neural networks.

III. METHODOLOGY
This section details the methods used to solve the problem.
For most machine learning algorithms, reinforcement learn-
ing also requires separate training and the evaluation phase.
Themethodology chapter focuses on the training of the neural
networks.

A. REINFORCEMENT LEARNING ENVIRONMENT
In the traditional sense, the reinforcement learning system
consists of an environmental model in which a learning
agent must choose from the action-space correctly. Based
on the environment’s state-space, which serves as an input

for the agent, it performs actions to receive a reward value
based on its performance, called the reward function. During
the training phase, the goal is to maximize future reward
value. Visualization and rendering help to evaluate the results,
enabling the human supervisor to determine the aspects in
which the learned system can be further developed.

Most of the influential frameworks to build machine
learning-based solutions are currently based on the Python
programming language. Several state-of-the-art reinforce-
ment learning agents (e.g., Intel Nervana Coach [41]),
open-source machine learning platforms (e.g., Tensorflow,
Keras), and test environments (e.g., OpenAI Gym) are avail-
able, which will make the development process more effi-
cient. A reinforcement learning environment should be built
to solve the problem outlined in Section II. The environment
is written in Python programming language, and the con-
stituent components are presented in the following subsec-
tions. All parts of the environmentalmodel were implemented
at the source code level.

1) DEEP DETERMINISTIC POLICY GRADIENT AGENT
The Deep Deterministic Policy Gradient Agent (Fig. 4) is a
powerful model-free Reinforcement Learning algorithm with
continuous action and state-space, based on the Deterministic
Policy Gradient (DPG) algorithm [42]. It consists of an actor
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FIGURE 4. Deep Deterministic Policy Gradient.

and a critic network. The actor-critic combines value-based
methods such as Deep Q-network (DQN) and policy-based
approaches.

In the DDPG algorithm [43], [44], the actor and critic work
with two different neural networks.

a = µ(s; θµ) (1)

In (1), the actor-network output is the action a, s stands for
the state-space, and θµ are learning weights of the network.
Using this, the actor gives a deterministic approximate of the
optimal policy. The actor-network does not learn a probability
distribution over actions, but the best-believed action in all
states. The actor is learned the argmax(Q(s, a)) function,
which is given the best action.

Q(s; a; θQ)⇒ Q(s;µ(s; θµ), θQ) (2)

The critic-network (2) returns the Q value, where θQ

stands for the weights of the network. The critic-network
works with the output of the actor-network (the actor’s
best-believed action) and learns to evaluate it. The µ(s; θµ

′

)
andQ(s; a; θQ

′

) are the target actor and critic networks, where
θQ
′

and θµ
′

are the weights. The actor-network is updated
with policy gradients, while the critic-network is updated
with gradients calculated from the Temporal Difference (TD)
error.

µ(s; θµ)+ N (3)

Noise N applied to the output of the actor provides the explo-
ration. The Ornstein–Uhlenbeck process [45] is the most
common method for noise production to DDPG.

yi = ri + γQ′(si+1, µ′(si+1|θµ
′

)|θQ
′

) (4)

During training, the replay buffer is filled with the parameters
of each step. The targetQ value is updated with (4) by random
sampling.

L =
1
M

∑
i

(yi − Q(si, ai|θQ)2) (5)

The TD error can be calculated by the (5) formula, which
can be used to update the weights of critic-networks with
gradients calculated from the L loss. The policy network is
updated with the policy gradient method. DDPG uses a soft
update strategy for greater stability, which is a slow blending
between the regular and target network weights.

A one-step reinforcement learning was used to determine
the parameters of the emergency evasive maneuver. This

TABLE 1. Hyperparameters of the trainig.

means that an episode consists of one step, and neural net-
works are updated after each step. This solution reduces
the complexity of the task and allows the use of a large
continuous state-space and many actions.

2) NETWORK ARCHITECTURE AND HYPERPARAMETERS
The actor and the critic are two separate neural networks. The
actor-network task is to provide the most optimal parameters
for a given state-space to generate the trajectory. The critic
neural network learns to evaluate the actions of the actor for
improvements in the learning process.

The first element of the actor-network structure is an
11-element input layer. Three fully connected hidden lay-
ers follow this. For hidden layers, batch normalization and
rectified linear unit (ReLu) activation function is used. The
8-element output layer has a hyperbolic tangent activation
function. Table 1 summarizes the architecture of both net-
works. The structure of the critic-network is more com-
plex, having input layers. An 11-element input represents the
states, and an 8-element describes the actions defined by the
actor. Three hidden layers follow the 11-element input layer
with batch normalization and a ReLu activation function.
A fully connected hidden layer follows the 8-element layer.
The topology of the last two layers of both networks are the
same, and their weights and biases are summarized. Finally,
a single output ReLu activation layer closes the network.

3) STATE-SPACE
As the training paradigm ismodel-free, the agent has no infor-
mation about the environmental model, only receives quan-
tified state variables closely related to the actions. To solve
this article’s basic problem, the status variables are to specify
the vehicle’s initial speed and designate an area over which
the vehicle must travel most optimally. The state-space (6)
consists of 11 continuous states.

[v0, l1,w1, x2, y2, l2,w2, x3, y3, l3,w3] (6)

The first is the vehicle speed v0 at the torque release line.
Three lanes are defined (see Fig. 2), for which wi and li are
the width and length of the lanes to stay within, and xi, yi are
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the points of the lane center in the coordinate system in which
the initial lane position is the origin. Based on the experience
gained with previous reinforcement learning systems, it is
worth normalizing the states to the range of [0, 1]. If one of
the state variables takes orders of magnitude higher or lower,
the neural network training may be more time consuming or
even learn in the wrong direction. Normalization is performed
with a min-max scaler.

4) ACTION-SPACE
The agent has eight continuous action outputs, which sig-
nificantly increases the complexity of the training task. The
action parameters determine the route. The route of the
overtaking maneuver is always composed of pre-defined seg-
ments III-C. These sections have longitudinal and lateral dis-
tances that can be fully defined, but the agent’s action-space
does not directly specify these distances. During the devel-
opment, experience shows that training gives much sooner
and significantly better results if the action space [0,1] is
normalized. Fig. 7 shows the length of the first straight section
s1, the lateral and longitudinal distances of the first curved
section xc1 , yc1 , the length of the second straight section s2,
the lateral and longitudinal distances of the second straight
section xc2 , yc2 , and the length of the third straight section
s3 must be specified in order to generate the route. These
distances were determined by ratio values for normalization
with knowledge of the path’s endpoint, which is defined to
the center of the last lane.

Ratio parameters are added to the action-space (7) to deter-
mine the longer distances of the track. The s2, yc1 , yc2 are short
distances that can be obtained by multiplying the normalized
action by a small number. An additional benefit of introduc-
ing ratio variables is reducing the number of dynamically
infeasible paths during the training phase.

[s2, rsc11sc32 , rs1c1 , rs3c2 , yc1 , yc2 , p1, p2] (7)

The (8) can be used to determine the distances required to
generate the path from the ratio variables.

xs1c1 = (x3 +
l3
2
− l2)rsc11sc32 ,

xs3c2 = (x3 − xs1c1 − l2),

xs1 = xs1c1rs1c1 , xc1 = xs1c1 − xs1 ,

xs3 = xs3c2rs3c2 , xc2 = xs3c2 − xs3 (8)

5) REWARD FUNCTION
The learning process consists of a series of iterations. It con-
sists of a series of steps in which the success of the attempts
can be characterized by reward value. In an emergency over-
taking maneuver, the reward function’s task is to quantify
the goodness of a route, in which the agent responds to a
given state. The reward function is built according to the
optimization goals.

The reward procedure is unusual and complex for this
problem. A classical controller III-D and a near-realistic,
efficient runtime vehicle model III-B is implemented as part

of the rewarding process. For each evaluation step, the vehicle
model is driven along the planned track in a classical control
loop with an MPC controller. The reward value is determined
by the control errors and the vehicle model’s dynamic param-
eters as it is driven along the track.

Negative rewards are given to the agent in the following
termination cases:

• Longitudinal rear or front slip greater than 0.2
• Lateral rear or front slip greater than 0.15
• The euclidean distance between vehicle COG and
the nearest point of the path (distance error) greater
than 3 meter

• The angle difference between at closest point of the path
and vehicle (angle error) greater than 40 degree

• The vehicle does not cross the green lane (Fig. 2) or
leaves it sideways

The value of the negative reward is -1.5 in all cases. If the
vehicle reaches the end of the planned course, the agent gets
a positive reward (10). The optimization condition is to mini-
mize lateral acceleration. The lateral slip is proportional to the
lateral acceleration, so small front and rear lateral slip values
µlf , µlr are rewarded. The value of the maximum allowable
slip depends mostly on the speed. An empirical formula is
defined to make the reward value speed-independent over
the entire range. A formula (9) gives a maximum slip value
depending on the vehicle’s initial speed. The agent achieves
greater efficiency in higher speed cases with this solution.

µmax = 0.0037ev0 0.0693 (9)

The reward function (10) subtracts the maximum values that
occur during the route’s execution from the experience max-
imum value.

r = (2µmax)− µlf − µlr (10)

6) RENDERING AND CARLA INTEGRATION
Since the development of automotive functions raises several
safety issues, their testing usually consists of a simulation
phase, where the potential conflicts can be evaluated in a
safe environment [46]. During the development of a learn-
ing agent and environment, using theoretical knowledge, the
experience should be gained about the agent’s behavior in the
created environmental model, based on which the reward pro-
cedure should be refined andmodified the hyperparameters to
achieve the best results. A 2D visualization (Fig. 5) is created
using the Pygame package of the Python environment, which
plots the state-space (lanes marked with dots), the planned
route, and displays the vehicle.

The environmental model also includes Carla simulator
[47] integration, which allows the environment to be dis-
played in 3D, and can perform several functions. The environ-
mental model is built so that instead of the self-implemented
dynamic bicycle model, Carla’s four-wheel model can be
used for both teaching and evaluation. A simulator function
is developed in which the double lane-change solved by the
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FIGURE 5. 2D rendering.

FIGURE 6. Nonlinear single track vehicle model.

agent can be also tried by human drivers with a Logitech G27
racing wheel.

B. SIMULATION OF VEHICLE DYNAMICS
A nonlinear single track vehicle model containing a dynamic
wheel model is developed for accurate calculation of the
vehicle’s motion. An important consideration in designing
the model is accuracy in performing high-dynamic driving
maneuvers and a balance between computational require-
ments [12].

The multi-body model (see Fig. 6) consists of three ele-
ments, the vehicle chassis, and two virtual wheels, which
connected the front and rear axles rigidly. The main param-
eters are defined according to the vehicle to be modeled,
which are the mass m and moment of inertia θ of the chassis,
the horizontal distances between the vehicle’s CoG and the
front and rear wheel centers lf and lr , the CoG height of
the vehicle h, the moments of inertia θ[f /r] as well as the
radii r[f /r] of the front and rear wheels. The wheel models’
parameters also have a strong influence, from which the
most important ones are the coefficient of friction µ[f /r].
TheMagic Formula defines the transmittable amount of force
between road and tires [48]. The slip curves parameters are
C[f /r],[x/y], B[f /r],[x/y], E[f /r],[x/y].

C. CLOTHOID BASED PATH GENERATION
The overtaking maneuver consists of a series of straight and
curve segments. As shown in Fig. 7, eachmaneuver is bulit up

FIGURE 7. The double lane-change path.

FIGURE 8. Curve section with four primitive clothoid.

of five segments in a fixed order: straight l1, curve c1, straight
l2, curve c2 and straight segment l3.
The curved segments are composed of clothoid curves that

minimize the jerk for ride comfort and safety. The points
of the path are evenly distributed along the arc length. The
overtaking maneuver path presented in this article uses nine
parameters. The s1, s2, s3 specify the length of the straight
lines, c1, c2, yc1 , yc2 , p1, p2 specify the curve parameters. A
curve shown in Fig. 8 contains four primitive clothoid seg-
ments ca, cb, cc, cd . The clothoid generation solution uses the
method from [49], which offers an algorithm to generate a
path consisting of symmetric clothoid curves. The sum of the
deflection angles of the clothoids is zero (δ− δ− δ+ δ). The
method takes as inputs the forward distance xcf , the lateral
distance ycf and an ratio p parameters. Using these values
defined by the action space, formulas (11)-(16) can determine
the clothoid segments. The total distance traveled on the curve
s = L, the curvature κ , the sharpness of the clothoid α. C(s)
and S(s) are the Fresnel cosine and sine integrals.

The length of section [xab yab] is equal to the length of
the hypotenuse of the triangle with legs xcf and ycf . The
parameter p specifies the ratio of xab and yab.

xab = p ∗

√
x2cf + y

2
cf

2
,

xcd = (1− p) ∗

√
x2cf + y

2
cf

2
,

δ = arctan

(
ycf
xcf

)
(11)
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The formulas (12) only show parameters for calculation of
section ab. The section is made up of two symmetrical
clothoids. The Lab gives the length along the curve, which
is divided by two to get the length of the ca clothoid.

Lab=
xab

cosc(δ)
, La =

Lab
2
,

κa=
2δ
La
, αa =

κa

La
(12)

cosc(δ)=



(
− sin δ ∗ C(η)+cos δ ∗ S(η)

)
η

, δ > 0

1, δ = 0
−sinc(−δ), δ < 0

(13)

η=
√
2|δ|/π (14)

This gives the length of the section along which the Fres-
nel integrals can be calculated. The sharpness parameter α
determines the shape of the curve. By mirroring ca, cb can be
obtained.

xc(s) =
√
π

|α|
C
(

αs
√
π |α|

)
, (15)

yc(s) =
√
π

|α|
S
(

αs
√
π |α|

)
(16)

The cc and cd are also calculated with this method. By con-
catenation of the four sections, the entire curve can be
determined.

A good solution for estimating the Fressnell sine and
cosine with a low absolute error is also provided in [49],
which significantly speeds up the trajectory generation
process.

D. MODEL PREDICTIVE CONTROL
Model predictive control (MPC), also known as receding
horizon control (RHC), is a widely used advanced pro-
cess control system in automotive applications [50]. This is
because MPC can handle problems with many manipulated
and control variables even if they are constrained. Hence,
MPC can be applied for path tracking of vehicles very eas-
ily and successfully. As the name indicates, MPC requires
a dynamic model of the controlled process to predict the
process’s response to the calculated control input. In this case,
this is a dynamic vehicle model with two degrees of freedom,
which are represented by the lateral vehicle position and the
vehicle yaw angle [51]. Besides the mentioned model, the
controller uses an optimizer to minimize the user-defined
cost function J using the control input, resulting in optimal
control. A general example of this cost function is given
by (17)

J =
p∑
i=1

Wee2i +
p∑
i=1

W1u1u2i , (17)

where p is the prediction horizon, ei is the ith error between
the reference value and the predicted output,We is the weight-
ing coefficient to adjust the relative importance of reference
tracking, ui is the ith manipulated variable and W1u is the

weighting coefficient to penalize big changes in ui. At each
timestep, the MPC algorithm calculates the best control input
over the control horizon by minimizing the cost function
described above and defines the future plant output over the
prediction horizon. The actual process is controlled by only
the first calculated control input at each step. To reach the
desired performance, MPC can be tuned simply by adjusting
the weighting coefficients, choosing the right sample time
between each prediction, and defining the proper prediction
and control horizon.

The MPC controller is part of the classic control loop, with
which the reward function determines the value of the reward.
The controller was implemented in Python using the Pympc
package [52].

IV. RESULTS
The training result is an actor neural network that generates
the actions needed to create the path from the state-space and
a critic neural network that determines a Q value from the
actor’s actions and state-space. This Q value approaches the
reward value in the case of a learned system, so as a result,
it can be highlighted that it gives an estimate of the expected
feasibility of the path. As mentioned in Section III, the train-
ing phase of the DDPG agent applies noise to the action-space
output to retain exploration; therefore, a well-learned agent
also produces noise-loaded results. The success of training
is determined in the evaluation phase after leaving the noise.
The training ends when the reward value converges to a max-
imum value after successful attempts, and the estimated Q
value and reward became closer to each other. The RL agent’s
training phase consists of nearly 150,000 episodes, and with a
powerfully configured computer (i7-9700), it lasted 15 hours
and 31 minutes.

From the human point of view, an average driver only gets
into a dangerous traffic situation a few times in its life when
he or she has to perform an emergency evasive maneuver,
and the vehicle comes close to the slip limit. It is usually
an unexpected situation. In addition to the vehicle’s equip-
ment and technical condition, a lot depends on the driver’s
individual ability (reflexes, physical condition, fatigue) and
driving experience to perform the task without an accident.
To evaluate the agent’s performance, its results are compared
to human drivers performing tests on selected, continuously
hardening scenarios. The experiment included ten people
with different driving experiences. Some do not have a driv-
ing license or even driving expertise in computer games, and
on the other end, one of them is the number one pilot on a For-
mula Student racing team. Some have a few years of driving
experience and rarely drive. Most people have 15 to 20 years
or more of experience and drive a car daily. Age distribution
was between 25 and 42 years. A simulator environment is
created to perform the tests, which consisted of the following
elements (see Fig. 9):

• Logitech G27 Racing wheel with force feedback
• High-end PC with powerful graphics card (Nvidia
1080Ti)
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FIGURE 9. The Carla environment used for visual evaluation and for testing with human drivers.

FIGURE 10. Success Rate of each human driver.

• CARLA Simulator
• Self-developed Python environment
Each driver had to perform seven randomly generated

tracks (tracks no. 1-7) and three moose tests (tracks no. 8-10)
at different speeds. The lowest starting speed at the torque
release point was 30 km/h, and the highest was 50 km/h.
For comparability, everyone had the same random seed. The
tracks are 100% successfully fulfilled by the agent, which
learned to fulfill all possible tracks in the training range.
To vary the scenarios, one round consisted of all tracks, and a
driver had to perform ten rounds, which resulted in 100 runs
in total/driver. In each case, the driver’s job was to pass
between the traffic cones in a CARLA environment with-
out leaving the track. When a traffic cone is touched, the
thread fails. There was a 5-second waiting time between
each attempt until the driver saw the task to be performed
(see Fig. 9) on a 3D and top-view 2D display and the initial

FIGURE 11. Evolution of the human drivers’ performance through test
rounds.

speed of the vehicle. Same as the original DLC test, only
steering was allowed to complete the task. The steering
gear was set lower than an average car, which allows for
faster steering responses to help drivers. The drivers were
allowed to perform a set of seven cycles (7 tries on each of
the ten tracks), which were unrecorded and did not appear
in the statistics, to help them get familiar with the test
environment.

Settings close to reality were selected for the tests. The
adhesion factor was chosen to be one, and the parameters
of an average vehicle were set. The self-developed vehicle
model run during the tests, which did not include Electronic
Stability Program (ESP).

Table 2 shows that there is a difference between tracks and
people as well. Track 1 was the easiest. It was completed
65 times, though there were some drivers for whom this track
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FIGURE 12. Comparison of performances on tracks (1, 5, 6, 10).

was already way too hard. Track 10 was the hardest, and not
surprisingly, only the most experienced racing driver could
accomplish it two times. For this statistics, only the fulfilment
of the test is evaluated, which is defined successful, when the

driver reaches the exit point and the vehicle does not touch
any traffic cones.

As expected from the diversity of the drivers, their perfor-
mance varies widely, as shown in Fig. 10. The worst driver
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TABLE 2. Statistical evaluation of the ten drivers’ performance on the ten
tracks. Each cell shows how many times a driver could reach the exit
point of a specific track from 10 tries.

failed on all tries, and the oldest, though experienced driver,
also only succeeded 4%, all from the three easiest tracks.
The majority of the drivers performed between 20 and 50%,
though most of their successful attempts came from the first
six tracks. The racing driver completed 70 attempts, which
is almost two deciles higher than the second-best. Though
on the last three setups, which are the Moose test defined by
the standard on different velocities, his performance was still
low (33.3%).

Naturally, the drivers’ performance evolved during the test,
as shown in Fig. 11. Since the number of tries for each driver
at each round is small for creating statistics, their overall
learning progress was examined by their cumulated perfor-
mance in each round. It would also be an exciting experiment,
determining how much training a human driver would need,
and what is the plateau of human performance. However,
on the one hand, this is out of the paper’s focus.

For a more in-depth comparison, the diagrams of the light-
est (track 1), the most difficult (track 10), and two intermedi-
ate (track 5 and 6) tracks are presented in Fig. 12. The figure
compares the successful human attempts with the agent’s
results by showing their actual paths’ taken and the rear
wheel lateral slip values, which gives a good measure of
how well the maneuvers are executed. Gray lines indicate the
driver’s tracks, while red is the vehicle tracks along the route
planned by the agent. All corresponding subfigures’ axes are
scaled similarly, for the easier comparison of the continuously
hardening tasks topological and slip values.

It can be seen in the most comfortable track that it can
be accomplished even with big mistakes, and 55 out of
the 60 attempts of the best six human drivers are successful.
There is even a maneuver on subfigures 12a and 12b, where
the human oversteered and corrected before reaching the side
lane and still managed to survive. In the middle tracks, suc-
cessful performances are scattered around the agent’s path,
but the agent moves on the safest way with a smaller slip
value in the middle of the two extremes. Subfigures 12c
and 12e show that the agent starts the returning maneuver at
the earliest possible instant, before the human drivers, which

enables it to stabilize the vehicle earlier in the exit lane, and
also reach the centerline of it more precisely, even though in
a real emergency situation, this is not that important. In these
tries, overall human performance was 41.5%, and for the
best six, it was 60%. Only the best driver could successfully
drive through the hardest track on the highest speed, in two
out of its ten tries (rounds 7 and 10), which is shown in
subfigures 12g and 12h. It shows that this track can be com-
pleted on almost only one trail. The slip diagrams show that
only in the most challenging cases did a slip value greater
than 0.1 appear. At this point, the vehicle slipped, but soon
came out of the slip and finally passed the moose test at a
speed of 50 km/h. According to the drivers, they found that
unusually fast steering movements could lead to good results
while driving. It was difficult to find the optimum between
maneuverability and slip.

V. CONCLUSION
The paper presents an RL based solution for the ISO dou-
ble lane-change test, in which a TD3 agent generates the
geometrical parameters of an evasive maneuver. Afterward,
a classic control loop performs direct path tracking. As this is
an emergency scenario, the method’s practical applicability
depends on the algorithm’s response time, i.e., the reaction
time between recognizing the situation and the generation
of the path. For the approach presented in this article, the
neural network’s response and the geometric planing only
need 1ms (PC implementation), which is far in the acceptable
range. This shows that for scenes where decision time is
crucial, previously trained agents can be an excellent choice
for designing highly automated vehicle functions. Naturally,
the presented research has its limitations. First, this is a
safety-critical vehicle function where the automated driving
system should be responsible for its decisions. Though there
is an intention in the vehicle industry to standardize the test-
ing, validation, and acceptance of AI-based vehicle functions,
it is not available until today. On the other hand, a well-
trained agent based on the actor-critic paradigm, like the TD3
presented in this article, provides its results through the actor-
network. As a side effect of the learning process, the critic
network can give a reasonable estimate of the expected value,
e.g., the planned action’s feasibility. In this case, this means
that if a supervisory system chooses an evasive maneuver, the
agent can still provide information on that it is not or slightly
feasible. Another limitation of the presented method is that
it is trained for a fixed environmental condition parameter
set, i.e., the tire friction and other vehicle parameters are
constant, and the speed range is limited. On different weather
or slippery road conditions, the output is not guaranteed.
Though using the method for a broader range of environmen-
tal conditions, considering the differences mentioned above,
an agent could still learn the appropriate behavior. This arti-
cle’s primary goal is to give a feasibility proof of the presented
hierarchical double lane-change maneuver algorithm. It is
shown that the presented hierarchical RL-MPC architecture
can outperform human drivers and provide a computationally
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fast feasible solution. In the future, we intend to perform real
vehicle tests on an automotive proving ground, under safe
conditions, to validate the method.
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