
Received July 30, 2020, accepted September 4, 2020, date of publication October 14, 2020, date of current version October 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030970

How to Securely Collaborate on Data:
Decentralized Threshold HE
and Secure Key Update
EUNKYUNG KIM1, JINHYUCK JEONG 1, HYOJIN YOON1, YOUNGHYUN KIM1,
JIHOON CHO1, AND JUNG HEE CHEON 2, (Associate Member, IEEE)
1Security Research Center, Samsung SDS, Seoul 06765, South Korea
2Department of Mathematical Sciences, Seoul National University, Seoul 08826, South Korea

Corresponding authors: Eunkyung Kim (ek41.kim@samsung.com) and Jinhyuck Jeong (jhyuck.jeong@samsung.com)

This work was supported by the Institute for Information and Communications Technology Promotion (IITP) grant through the Korean
Government (MSIT), Development and Library Implementation of Fully Homomorphic Machine Learning Algorithms Supporting Neural
Network Learning Over Encrypted Data, under Grant 2020-0-00840.

ABSTRACT Threshold homomorphic encryption (Threshold HE) schemes are modified homomor-
phic encryption schemes to be suitable for privacy-preserving data integration and analysis. In actual
usage of it, one should take it care into consideration who manages secret keys. In Eurocrypt 2012,
Asharov et al. proposed decentralized (n, n)-threshold HE schemes in bottom-up approach for which all
n parties must allow by doing a partial decryption to decrypt successfully a ciphertext. To support more
general threshold structure for HE, Boneh et al. presented (t, n)-threshold HE schemes using secret sharing
schemes in top-down approach with a central key dealer. In this article, decentralized (t, n)-threshold HE
schemes in bottom-up approach will be constructed. The decentralized (n, n)-threshold HE scheme is fisrt
modified to reduce the error contained in the common evaluation key which affects to the entire parameter
size. Then by applying (t, n)-threshold secret sharing scheme, (n, n)-threshold HE scheme is converted to
(t, n)-threshold HE scheme. Moreover, proactive secret sharing scheme is applied to update secret key share
of the constructed (t, n)-threshold HE scheme whenever needed.

INDEX TERMS Fully homomorphic encryption, threshold decryption, proactive secret sharing.

I. INTRODUCTION
Data collection and analysis have become essential parts of
the modern industry and companies want to collect user data
to make more profit. However, data privacy regulations, such
as EU General Data Protection Regulation (GDPR), force
organizations to use data only for a pre-defined purposes
and periods of time, and demand de-identification process
before use, which may degrade the quality of the analysis.
Thus, we live in the world where protecting data privacy is as
important as accuracy of analysis. Data privacy is particularly
fatal to organizations such as financial and healthcare sectors
that deal with sensitive customer data. Obviously, accuracy
has a big impact on these organizations. On the other hand,
the demand to combine data with other organizations also
has increased in order to obtain greater insight from the

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao Liu .

aggregated data by using advanced analysis and AI capabili-
ties. The aggregated data must be further processed to ensure
that there is no risk of re-identification because combining
multiple datasets may lead to serious infringement of indi-
vidual data privacy. The analysis results, however, may not
be valuable as some important features in the dataset can be
omitted or replaced with inaccurate values during the process.

This is where privacy-enhancing analysis technologies
such as homomorphic encryption (HE) come into play to
solve both the problem of degradation in analysis qual-
ity during the de-identification process. HE is one of the
most promising cryptographic technologies for data usage
in untrusted environments. HE supports computation on
encrypted data, so that the original data can be completely
protected during the encrypted analysis. Since the first con-
struction of HE of Gentry [1], the efficiency has been
improved significantly over the decade ([2]–[14]). Especially,
CKKS scheme [15] that supports encrypted approximate

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 191319

https://orcid.org/0000-0002-6785-9835
https://orcid.org/0000-0002-7085-2220
https://orcid.org/0000-0001-8400-5754

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

arithmetic of real numbers made great strides as it demon-
strates the applicability of HE in real use cases ([16]–[21]).

By using HE, organizations can benefit from collabora-
tion without exposing original data, compromising privacy,
or concern about re-identification through data integration
with other sources. All the computations are performed on the
encrypted data, and only the result is decrypted by the person
holding the secret key. To prevent unauthorized decryption,
organizations can delegate the secret key management to a
trusted third party (TTP) such as government agencies or
courts. Unfortunately, such a TTP is not always available,
and it may not be desirable to rely on a single party for
maintaining the secret key.

Shamir [22] proposed the notion of (t, n)-threshold cryp-
tography, where the secret shares are distributed among n
parties and more than t shares allow a successful construc-
tion of the master secret. Following the idea, the notion of
threshold decryption for HE was introduced [23], [24] in
that a secret key is distributed among all the parties and
decryption can be done when all agree. Two types of HE
with threshold decryption – threshold HE and multi-key
HE – have been proposed, both of which essentially share
the same idea. The difference between threshold HE and
multi-key HE can be understood as when the common public
keys are generated, before or after the integration, respec-
tively. It is reasonable to assume that organizations have a
contract to collaborate on data before exchanging data. So
it is more realistic to generate the common key before the
encrypted data integration, and in real use cases threshold
HE seems to be a better choice. Moreover, organizations typ-
ically hold their customer data, so they do not have full data
ownership. Data privacy must be guaranteed for data owners
(customers), not for data users (organizations), and data users
may delegate secret key management to independent multiple
TTPs. As the focus of the paper is secret key management
of HE for real use cases that multiple TTPs manages secret
key on behalf of data owners and data users, decentral-
ized (t, n)-threshold HE scheme in bottom-up approach is
studied.

In Eurocrypt 2012, Asharov et al. proposed decentralized
(n, n)-threshold HE schemes in bottom-up approach from an
HE scheme based on learning with errors (LWE) problem and
ring LWE problem, respectively ([24], [25]). In the scheme,
n parties establish common public keys collaboratively using
the linearity of public keys while no one actually has the com-
mon secret key. The common secret key is implicitly defined
by the summation of partial secret keys generated by each
party, and all n parties must cooperate to decrypt a ciphertext.
On the other hand, Boneh et al. proposed (t, n)-threshold
HE schemes in top-down approach using {0, 1}-Linear secret
sharing scheme and Shamir secret sharing scheme. Roughly
speaking, a trusted third party or someone who can be one of
n parties first generates a common key tuple (pk, evk, sk) and
then distributes this secret key sk into n shares {ski}i using the
secret sharing schemes. They also adopt an auxiliary public
key encryption scheme to propose a decentralized threshold

HE scheme, but this can be thought as a top-down approach
in a nutshell.

The proactive secret sharing schemes refers to the secret
sharing schemes that are secure againstmobile adversarywho
can keep an eye on secret share holders over time but have
a limitation for the number of accessible holders at a time
unit. In order to protect the shared secret from the adversary,
the shares should be periodically updated so that the shared
secret remains the same and the previous shares are no longer
useful. Since the first proactive secret sharing scheme [26],
many proactive secret sharing schemes have been designed
for various purposes;mobile proactive secret sharing schemes
([27], [28]), verifiable proactive secret sharing schemes
([29]–[31]).

Our Contribution. We first modify the (n, n)-threshold
HE construction of [24]: From an HE scheme with
key-homomorphic property, we construct (n, n)-threshold HE
scheme by generating a key pair of the threshold version as
a sum of key pairs of original HE scheme. We then use each
secret key share, instead of the common public key, to encrypt
itself for evaluation key generation. The evaluation key is
constructed by aggregating encrypted secret key share of each
party. As the construction of [24] uses the common public key
to encrypt individual secret key, the evaluation key contains
error proportional to n2 where n is the number of participants.
On the other hand, our approach allows error proportional to n
which results in reducing the entire parameter size. Since the
distribution of the combined key is different from the original
key distribution, we show joint key security as in [24]. Joint
key security assures that ciphertexts of our threshold HE
scheme is indistinguishable from uniformly random one.

We then apply (t, n)-threshold secret sharing scheme to
convert our (n, n)-threshold HE scheme to (t, n)-threshold
HE scheme. We use a generalized Shamir secret sharing
scheme and key-homomorphic property of the underlying
HE scheme. Moreover, we introduce proactive secret sharing
schemes to update secret key share of our (t, n)-threshold HE
scheme whenever needed. In particular, we provide a simpler
method for updating secret key shares on the (n, n)-threshold
case. As a result, this scheme can get immune to the errors
relative to the general case.

II. PRELIMINARIES
We use bold lowercase letters to denote vectors and bold
uppercase letters to denote matrices. For a positive integer q,
[q] is defined by {1, 2, . . . , q} and Zq = [−q/2, q/2)∩Z is a
set of representatives of residues modulo q. Given an integer
m and a modulus q, [m]q means an element a ∈ Zq such that
m ≡ a (mod q). For a finite set, a← Ameans a is uniformly
chosen from A. Through this article, n is the number of parties
with a threshold t ≤ n and P1, . . . ,Pn means a set of parties.

For a power-of-two N , we use R = Z[X]/(XN + 1) to
denote the ring of integers of a number fieldQ[X]/(XN + 1).
Given a modulus q, Rq = R/qR is the residue ring of
R modulo q. An element a ∈ R[X]/(XN + 1) represented
by a(X) =

∑N−1
j=0 ajX j of degree < N will be identified

191320 VOLUME 8, 2020

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

with its coefficient vector (a0, . . . , aN−1) ∈ RN . We use
the notation ‖a‖∞ to denote the usual `∞-norm of a. Let
M = 2N and Z∗M = {x ∈ ZM | gcd(x,M) = 1}. Then,
the canonical embedding τ for a ∈ R[X]/(XN + 1) is the
vector of evaluation value of a at each primitive M -th roots
of unity. That is, each component of the vector τ (a) is of the
form a(ζ j) where ζ = exp(−2π i) is a primitive M -th root of
unity and j ∈ Z∗M . We define the canonical embedding norm
‖a‖can
∞ of a as the `∞-norm of τ (a), ‖a‖can

∞ = ‖τ (a)‖∞.
For two distributions X and Y over a finite domain �,

the statistical distance between X and Y is defined by
1(X ,Y) := 1

2

∑
ω∈� |X (ω)−Y (ω)|. Let X and Y be distribu-

tion ensembles parameterized by the security parameter λ, we
say that X and Y are statistically indistinguishable, denoted

by X
stat
≈ Y , if the distance 1(X ,Y) is negligible.

Lemma 1 (Smudging Lemma [24], [32]): For the security
parameter λ, let B1 = B1(λ) and B2 = B2(λ) be positive
integers and let e1 ∈ [−B1,B1] be a fixed integer. Let
e2 ← [−B2,B2] be chosen uniformly at random. Then the
distribution of e2 is statistically indistinguishable from that
of e2 + e1 as long as B1/B2 is negligible in λ.

For positive integers B1 and B2, let e1 ∈ R be a fixed
polynomial with ‖e1‖∞ ≤ B1, and e2 ∈ R be another
polynomial whose coefficients are chosen independently and
uniformly at random from [−B2,B2]. Then we can show that
the distribution of e2 and that of e2 + e1 are statistically
indistinguishable as long as B1/B2 is negligible because each
coefficient was chosen independently.1

Throughout the paper, we denote by χsm(B2) the distri-
bution of polynomials in R whose coefficients are chosen
independently and uniformly at random from [−B2,B2] for a
positive integer B2.
Definition 1 (Homomorphic Encryption): A (leveled)

homomorphic encryption consists of a tuple of algorithms
(KeyGen, Enc,Dec, Eval):
• KeyGen(1λ, 1L)→ (pk, evk, sk): Key generation algo-
rithm KeyGen takes a security parameter λ and a depth
bound L, and outputs public encryption key pk, public
evaluation key evk, and secret decryption key sk.

• Enc(pk,m) → c: Encryption algorithm Enc takes pk
and a message m, and outputs a ciphertext c.

• Eval(evk, f , c1, · · · , ck) → c∗: Evaluation algorithm
Eval takes a k-input function f that can be computed by
a circuit of depth at most L, and outputs a new ciphertext
c∗ that is an encryption of f (m1, · · · ,mk) where ci ←
Enc(pk,mi) for i = 1, · · · , k.

• Dec(sk, c)→ m or⊥: Decryption algorithm Dec takes
sk and a ciphertext c, and outputs a message m or ⊥.

Definition 2 (Threshold Homomorphic Encryption): Let
P = {P1, · · · ,Pn} be a set of parties and t ≤ n be a
threshold number. A (t, n)-threshold homomorphic encryp-
tion (Threshold HE) scheme is a homomorphic encryption
scheme, with the difference that KeyGen and Dec are now

1If ‖e1‖∞ is less than B1 with high probability, we can say that the two
distributions are statistically indistinguishable with high probability.

n-party protocols instead of algorithms, and Dec works if at
least t parties participate in the protocol.
• THE.KeyGen(1λ, 1L;pp) → (pk, evk, {ski}i∈[n]):
Given the security parameter λ and a depth bound L,
each party Pi outputs a common encryption key pk,
a common evaluation key evk, and a secret key share
ski of the implicitly defined secret key sk under a public
parameter pp after a key generation protocol.

• THE.Enc(pk,m)→ c: Given a public key pk and a mes-
sage m, the encryption algorithm outputs a ciphertext c.

• THE.Eval(evk, f , {ci}i∈[k]) → c∗: Given an evaluation
key evk, a function f with a depth smaller than some
parameter L, and ciphertexts ci, the evaluation algo-
rithm outputs a new ciphertext c∗.

• THE.Dec({ski}i∈I , c) → m or ⊥: For an index set I ⊆
[n] with |I | ≥ t , each party Pi, i ∈ I , holds an individual
secret shares ski of the secret key sk. After a decryption
protocol, one who wants to decrypt a ciphertext c gets
a result if more than t parties give back their partial
decryptions.

Moreover, we say that a (t, n)-threshold FHE is decentralized
if all the parties have the same level of information and play
the same role in the KeyGen and Dec protocols.
Definition 3 (CKKS scheme): We recall a leveled homo-

morphic encryption scheme [15] that supports fixed point
arithmetic of real numbers.
• Setup(1λ, 1L): Given the security parameter λ and a
depth bound L, do the following:
– Choose a power-of-two integer N > 0, a base p >

0, a modulus q0, and a special modulus P, and let
qL = q0·pL so that N and P·qL satisfies the security
level λ.

– Choose a secret key distribution χsk, an error dis-
tribution χerr, and a random distribution χEnc for
encryption.

– Output public parameters

pp = (1λ, 1L ,N , p, q0, qL ,P, χsk, χerr, χEnc).

• KeyGen:
– Sample s ← χsk, a ← RqL and e ← χerr. Set
the secret key as sk ← (1, s) and the public key as
pk← (b, a) ∈ R2

qL where

b←−a · s+ e (mod qL).

– Sample a′ ← RP·qL and e′ ← χerr. Set the
evaluation key as evk← (b′, a′) ∈ R2

P·qL where

b′←−a′ · s+ e′ + P · s2 (mod P · qL).

• Enc(pk,m): Sample v ← χEnc and e0, e1 ← χerr.
Output c← v · pk+ (m+ e0, e1) (mod qL).

• Add(c, c′): Output cadd← c+ c′.
• Mult(evk, c, c′): For c = (c0, c1), c′ = (c′0, c

′

1) ∈ R2
q` ,

let (d0, d1, d2) = (c0c′0, c0c
′

1 + c′0c1, c1c
′

1) (mod q`).
Output cmult← (d0, d1)+ bP−1 · d2 · evke (mod q`)

VOLUME 8, 2020 191321

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

• Rescale`→`′ (c): Output c′← b
q`′
q`
ce (mod q`′).

• Dec(sk, c): Output 〈c, sk〉 (mod q`).
Note that if the output 〈c, sk〉 (mod q`) of Dec is sufficiently
smaller than q0 for all valid ciphertext c, we can take q0
instead of q` in Dec algorithm. Thus, we assume the message
space is limited to be smaller than a proper bound that 〈c, sk〉
(mod q`) = 〈c, sk〉 (mod q0) holds. For example, we can
restrict the message space for 〈c, sk〉 to be smaller than q0/4.

III. THRESHOLD HOMOMORPHIC ENCRYPTION WITH
NEW EVALUATION KEY GENERATION
Our threshold HE scheme starts from the (n, n)-threshold HE
scheme of [24]. After n parties P1, · · · ,Pn have generated its
secret key share ski = (1, si) and the corresponding public
key share pki, and parties collaboratively generate a common
encryption key pk and a common evaluation key evk follow-
ing the protocol in [24]. More specifically, after gathering
all the public key shares {pk1, · · · ,pkn}, Pi computes the
common public key pk and then broadcasts encrypted secret
key share under pk to other parties. Then from encrypted
secret key shares, Pi generates the common evaluation key
evk which can be seen as an encryption of (

∑n
i=1 si)

2 under
pk.

In this article, instead of pk, each party Pi uses its secret
key ski to encrypt ski for evaluation key generation. That is,
the party Pi holding ski broadcasts evki,0 ← (−a′ · si +
ei + si, a′) for some small error ei which is an encryption of
si under ski. From {evk1,0, · · · , evkn,0}, Pi can compute an
encryption evk0 of s :=

∑n
i=1 si under sk by adding the first

components of the given other evkk,0’s:

evk0 =

(
n∑
i=1

(
−a′ · si + ei + si

)
, a′
)

=
(
−a′ · s+ e+ s, a′

)
,

where e =
∑n

i=1 ei. Then, Pi can compute an encryption of
si · s under sk = (1,

∑n
i=1 si) by multiplying si · evk0:

si · evk0 = (si · (−a′ · s+ e+ s), si · a′)

=
(
−si · (a′ · s)+ si · e+ si · s, si · a′

)
.

Finally a new encryption of s2 = (
∑n

i=1 si)
2 can be computed

by adding them for all i:
n∑
i=1

si · evk0 =

(
(
n∑
i=1

si) · (−a′ · s+ e+ s),
n∑
i=1

si · a′
)

=

(
−(a′ · s) · s+ e · s+ s2, a′ · s

)
.

The above outlines our main construction, but we have
to add appropriate smudging errors when broadcasting small
polynomials to hide secret elements properly.

A. CONSTRUCTION
In this section we describe our (n, n)-threshold HE construc-
tion based on CKKS scheme [15] to fix an idea. Note that
it can be easily generalized by using other HE scheme with
key-homomorphic property such as [4].

• Setup(1λ, 1L , 1n): Given the security parameter λ,
a depth bound L and the number of parties n, do the
following:

– Choose a power-of-two integer N > 0, a base p >
0, a modulus q0, and a special modulus P, and let
qL = q0 · pL such that N and P · qL satisfies the
security level λ.

– Choose a secret key distribution χsk, an error distri-
bution χerr, a random distribution χEnc for encryp-
tion, and a set B of smudging error bounds B =
{BEval

sm ,BEnc
sm ,B

Dec
sm }.

– Choose common random elements a, a′← RP·qL .
– Output public parameters include

pp = (N , p, q0, qL ,P, χsk, χerr, χEnc,B).

• THE.KeyGen: Our key generation protocol KeyGen is a
two-round, n-party protocol among P1, · · · ,Pn.

– Round I. For i ∈ [n], each party Pi executes the
following.

1) Sample si ← χsk and ei ← χerr, and compute
bi←−a · si + ei (mod P · qL).

2) Sample e′i,0 ← χerr, and compute b′i,0 ← −a
′
·

si + e′i,0 + P · si (mod P · qL).
3) Set its secret key share as ski ← (1, si) and

broadcast bi, b′i,0 to other parties.

– Round II. Upon receiving {bj, b′j,0}j 6=i, Pi sets the
common public key as pk← (

∑n
j=1 bj, a) ∈ R2

P·qL .

1) Compute b′0←
∑n

i=1 b
′

i,0 (mod P · qL).
2) Sample smudging errors esm

i,0 , e
sm
i,1 ← χsm(BEval

sm)
and compute an intermediate evaluation key
evki← (si · b′0 + e

sm
i,0 , si · a

′
+ esm

i,1) ∈ R2
P·qL .

3) Broadcast evki to other parties.

Upon receiving {evkj}j 6=i, Pi sets the common eval-
uation key as evk←

∑n
j=1 evkj ∈ R2

P·qL .

• THE.Enc(pk,m):
1) Sample a random element v← χEnc and smudging

errors esm
0 , esm

1 ← χsm(BEnc
sm).

2) Output c← v · pk+ (m+ esm
0 , esm

1) (mod qL).

• THE.Add(c, c′): Output cadd← c+ c′.
• THE.Mult(evk, c, c′): For c = (c0, c1), c′ = (c′0, c

′

1) ∈
R2
q` , let (d0, d1, d2) = (c0c′0, c0c

′

1 + c′0c1, c1c
′

1)
(mod q`). Output cmult ← (d0, d1) + bP−1 · d2 · evke
(mod q`)

• THE.Rescale`→`′ (c): Output c′← b
q`′
q`
ce (mod q`′).

• THE.Dec({sk1, · · · , skn}, c): Our threshold decryption
protocol Dec is an one round, n-party protocol among
P1, · · · ,Pn.

– Round I. Given the ciphertext c = (c0, c1) at level
`, for i ∈ [n] each party Pi executes the following.

1) Sample a smudging error esm
i ← χsm(BDec

sm).
2) Compute a partial decryption pi← c1 · si+ esm

i
(mod qi), and broadcast it to other parties.

191322 VOLUME 8, 2020

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

Upon receiving {pj}j 6=i, Pi computes the final
decryption

c0 +
n∑
i=1

pi (mod q`).

B. SECURITY OF JOINT KEYS
In [24], they proved the security of joint keys by showing
the ciphertexts under the joint key is distributed uniformly
random after adding smudging errors. Following their idea,
we can also show that the joint key security of our con-
struction: Assume a public encryption key (b, a) is con-
structed honestly and an attacker can then adaptively choose
(b′ = −a · s′ + e′, a). Then, it suffices to show that the
attacker should not be able to distinguish some ciphertexts
under the combined key (b + b′, a) from uniformly ran-
dom ones. Let (KeyGen, Enc,Dec, Eval) denote the CKKS
scheme [15] which satisfies key-homomorphic properties
and let us consider an experiment JointKeyA(pp,B1,B2)
between an attacker A and a challenger defined as:
1) Challenger chooses s ← χsk and e ← χerr, and gives

(b = −a · s+ e, a) to A.
2) A adaptively chooses s′ ← χsk, e′ ← χerr and a ran-

dommessagem ∈ R. It gives (b′ = −a·s′+e′, s′, e′,m)
to the challenger.

3) The challenger sets the public encryption key pk =
(b+ b′, a) and chooses a random bit β ← {0, 1}.
• If β = 0, it chooses c∗ = (c∗0, c

∗

1) ← R2
qL

uniformly.
• If β = 1, it generates a valid ciphertext c∗ =
(c0, c∗1) ← Enc(pk,m), e∗ ← χsm(B2) and set
c∗0 = c0 + e∗.

4) A gets c∗ = (c∗0, c
∗

1) and outputs a bit β
′.

The output of the experiment is 1 if β = β ′ (A wins), and
0 otherwise (A loses).
Note that if χerr is a discrete Gaussian distribution, then

there exists a high probability bound B1 which satisfies
‖e‖∞ ≤ B1 for e← χerr with high probability.
Lemma 2: Assume the CKKS scheme has pseudorandom

ciphertexts and χerr is a discrete Gaussian distribution with
high probability bound B1. If B1/B2 = negl(λ), then for any
probabilistic polynomial time adversary A, we have∣∣∣∣Pr[JointKeyA(params) = 1]−

1
2

∣∣∣∣ = negl(λ).

Proof: Wewill construct an adversaryA′ distinguishing
ciphertexts from uniform distribution using the given adver-
sary A. Assume a challenger for pseudorandom ciphertexts
property of CKKS scheme gives pk = (b = −a ·s+e, a) and
a challenge (c̃0, c̃1) to the adversary A′. Then, A′ gives it to
A and get back (b′ = −a ·s′+e′, s′, e′,m) fromA. Lastly,A′
sets (c∗0, c

∗

1) = (c̃0, c̃1)− (c̃1 · s′, 0), sends it toA, and outputs
the bit β ′ obtained from A.
Note that (c∗0, c

∗

1) is uniformly random if (c̃0, c̃1) so is. On the
other hand, if (c̃0, c̃1) is of the form (−c̃1 · s+ ẽ, c̃1), then

(c∗0, c
∗

1) = (c̃0, c̃1)− (c̃1 · s′, 0) = (−c̃1 · (s+ s′)+ ẽ, c̃1)

which is an instance of (R)LWE problem. Thus,A′ breaks the
pseudorandomness of ciphertexts with the same advantage as
A by smudging lemma. �

C. NOISE ESTIMATION
In this section, we estimate the growth of errors after various
operations assuming specific distributions for χsk, χerr and
χEnc, following the heuristic approach in [11], [15], [33]. One
can set specific parameters for our threshold homomorphic
encryption schemes using these estimated errors. To do this,
we first examine each distribution and give high probability
upper bounds for the size of error polynomials. Recall that
we measure the size of a polynomial a ∈ R by the canonical
embedding norm

‖a‖can
∞ = ‖τ (a)‖∞ = max

j∈Z∗M
|a(ζ j)|

where τ is the canonical embedding into CN . For j ∈ Z∗M ,
each component a(ζ j) of τ (a) is the inner product of the coef-
ficient vector of a and a vector (1, ζ j, · · · , ζ j(N−1)), having
the Euclidean norm

√
N , where ζ is a primitive M -th root

of unity. If each coefficient of a is sampled independently
from the identical distribution χ with the variance δ2, then
we may assume that the random variable a(ζ j) is distributed
similarly to a Gaussian random variable over the complex
plane having the variance δ2N . If we assume a(ζ j) is from
a Gaussian distribution with the variance δ2N , we can use a
high probability upper bound 6

√
δ2N = 6δ

√
N for ‖a‖can

∞ .
Furthermore, for two polynomials a, b ∈ R, since we have
(a · b)(ζ) = a(ζ)b(ζ), we use a high probability upper bound
‖a · b‖can

∞ ≤ 16δ1δ2 when random variables a(ζ j) and b(ζ j)
have variance δ21 and δ

2
2 , respectively.Wewill also use the fact

that the random variable c(ζ j) has variance δ23 , then it holds
that ‖a · b · c‖can

∞ ≤ 32δ1δ2δ3 with high probability. See [11],
[15], [33] for more details.

To precisely estimate the size of errors, we fix some spe-
cific distributions for various polynomials. Let us start from
the error distribution χerr. For the error distribution, many
homomorphic encryption schemes [15] based on RLWE use
the distribution DG(σ 2) which draws a polynomial by sam-
pling each coefficient independently from the discrete Gaus-
sian distribution with the variance σ 2. Following the above
argument, we use a high probability upper bound ‖e‖can

∞ ≤

6σ
√
N for e← DG(σ 2). Let denote by ZO the distribution

overRwhichwill be used for χsk and χEnc where each coeffi-
cient is sampled independently from {0,±1}, with probability
1/4 for each of −1 and +1, and probability being zero
1/2. Again, since the coefficients are sampled independently
from an identical distribution with the variance 1/2, we think
a ← ZO has an upper bound ‖a‖can

∞ ≤ 3
√
2N with high

probability. In addition, we consider a distribution χsm(B) for
smudging errors. For a given B > 0, the distribution χsm(B)
draws each coefficient from the uniform distribution [−B,B]
with the variance B2/3, and hence we use a high-probability
upper bound ‖a‖can

∞ ≤ 2
√
3NB for a← χsm(B).

VOLUME 8, 2020 191323

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

TABLE 1. Assumption for distributions: If a polynomial a ∈ R is sampled
from a distribution χ , then we can compute the variance of a(ζ j) to give a
high-probability upper bound for ‖a‖can

∞ .

For a common public key pk = (b, a) where b =∑n
i=1 bi = a ·

(∑n
i=1 si

)
+
(∑n

i=1 ei
)

generated by
THE.KeyGen protocol, let denote the corresponding secret
key sk = (1, s) where s =

∑n
i=1 si which is never computed

by any party. Note that for two polynomials a, b ∈ R chosen
independently from the distributions with the variance δ21 and
δ22 , respectively, we can conclude that the random variable
(a+b)(ζ) = a(ζ)+b(ζ) is similarly distributed to a Gaussian
distribution with the variance δ21 + δ

2
2 .

Lemma 3 (Public encryption key): Let pk be a common
public encryption key generated by THE.KeyGen protocol,
and sk be the corresponding secret key. Then it holds that

‖〈pk, sk〉 (mod P · qL)‖can
∞ ≤ 6σn

1
2N

1
2 .

Proof: In THE.KeyGen protocol, each party generates
its secret key share ski = (1, si) and compute the individual
public key pki = (bi, a) where bi = −a · si+ei (mod P ·qL).
Then the common public key pk = (b, a) is computed by b =∑n

i=1 bi = −a ·
∑n

i=1 si+
∑n

i=1 ei (mod P ·qL), and we have
〈pk, sk〉 = b+ a · s =

∑n
i=1 ei (mod P · qL). Since the noise

term ei is sampled independently fromDG(σ 2), e =
∑n

i=1 ei
can be seen as a sample from the distributionDG(σ 2)+· · ·+

DG(σ 2)
stat
≈ DG(nσ 2) with the variance nσ 2. Thus, we have

‖e‖can
∞ ≤ 6

√
σ 2 nN = 6σn

1
2N

1
2 as desired. �

Lemma 4 (Evaluation key): Let evk be an evaluation key
generated by THE.KeyGen protocol, then it holds that

‖〈evk, sk〉 − P · s2 (mod P · qL)‖can
∞ ≤ Bmultkey

where

BmultKey = 8
√
2σnN + 2

√
3BEval

sm

(
n

1
2N

1
2 +

4
√
2

3
nN

)
.

Proof: In this proof, all equations are defined modulo
P · qL . To generate evk, each party generates b′i,0 = −a

′
·

si + e′i,0 + P · si and broadcasts it to compute evki = (si ·
b′0 + esm

i,0 , si · a
′
+ esm

i,1) where b
′

0 =
∑n

i=1 b
′

i,0. For e
′

i,0 ←

DG(σ 2), esm
i,0 , e

sm
i,1 ← χsm(BEval

sm), let e′ =
∑n

i=1 e
′

i,0, e
sm
0 =∑n

i=1 e
sm
i,0 and esm

1 =
∑n

i=1 e
sm
i,1 . Then we have Var(e′(ζ)) =∑n

i=1 Var(e′i,0(ζ)) = nσ 2N , and similarly Var(esm
0 (ζ)) =

Var(esm
1 (ζ)) = n(BEval

sm)2 N/3 and Var(s(ζ)) = nN/2. There-
fore, it holds that

‖〈evk, sk〉 − P · s2‖can
∞

≤ ‖e′ · s+ esm
0 + e

sm
1 · s‖

can
∞

≤ 16σ
√
nN

√
nN
2
+ 6

√
nN/3BEval

sm + 16

√
nN
3
BEval

sm

√
nN
2

= 8
√
2σnN + 2

√
3n

1
2N

1
2BEval

sm +
8
3

√
6nNBEval

sm .

�
Lemma 5 (Encryption): Let c ← THE.Enc(pk,m) be a

ciphertext of m under pk. Then, it holds that

‖〈c, sk〉 − m (mod qL)‖can
∞ ≤ Bclean

where Bclean = 8
√
2σn

1
2N + 2

√
3BEnc

sm (N
1
2 +

4
√
2

3 n
1
2N).

Proof: The ciphertext c is computed by v · pk + (m +
esm
0 , esm

1) (mod qL) where v ← ZO and esm
0 , esm

1 ←

χsm(BEnc
sm). Thus, we have 〈c, sk〉 = v · 〈pk, sk〉+m+ esm

0 +

esm
1 · s = v · e+ m+ esm

0 + e
sm
1 · s (mod qL), and

‖〈c, sk〉 − m (mod qL)‖can
∞

≤ ‖v · e+ esm
0 + e

sm
1 · s‖

can
∞

≤ 16

√
N
2
σ
√
nN + 2

√
3NBEnc

sm + 16BEnc
sm

√
N
3

√
nN
2

= 8
√
2σn

1
2N + 2

√
3N

1
2BEnc

sm +
8
√
6

3
n

1
2NBEnc

sm .

�
Lemma 6 (Rescaling): Let c be a level-` ciphertext of m

under pk satisfying

‖〈c, sk〉 − m (mod q`)‖can
∞ ≤ B

for some B > 0. Then, for c′← Rescale`→`′ (c), it holds that

‖〈c′, sk〉 − p`
′
−`
· m‖can

∞ ≤ p
`′−`
· B+ Bscale

where Bscale =
√
3N

1
2 +

4
√
6

3 n
1
2N.

Proof: Let 〈c, sk〉 = m+e (mod q`) where ‖e‖can
∞ ≤ B.

Then for c′ ← Rescale`→`′ (c) it is satisfied that 〈c′, sk〉 =
q`′
q`
(m + e) + escale (mod q`′) for the rounding error vector

(τ0, τ1) = c′ − q`′
q`
c and escale = τ0 + τ1 · s. Note that our s

is a summation of si’s where si ← ZO, and hence we have
Var(s(ζ)) = nN/2. Thus, if we assume the each coefficient of

τ0 and τ1 is from a distribution with the variance
√

1
12 , as in

Lemma 2 of [15], we have

‖escale‖
can
∞ ≤ ‖τ0‖

can
∞ + ‖τ1 · s‖

can
∞

≤ 6

√
N
12
+16

√
N
12

√
nN
2
≤
√
3N

1
2+

4
√
6

3
n

1
2N .

�
Lemma 7 (Addition/Multiplication): Let ci be a level-`

ciphertext of mi with ‖mi‖can
∞ ≤ νi under pk satisfying

‖〈ci, sk〉 − mi (mod q`)‖can
∞ ≤ Bi

for some Bi > 0 and i = 1, 2. Then, for cadd ← add(c1, c2)
and cmult← mult(evk, c1, c2), it holds that

‖〈cadd, sk〉 − (m1 + m2) (mod q`)‖can
∞ ≤ B1 + B2

and

‖〈cmult, sk〉 − m1 · m2 (mod q`)‖can
∞ ≤ Bmult(`)

where Bmult(`) = ν1B2 + ν2B1 + B1B2 + P−1 · q` ·
√
N/3+

Bscale.

191324 VOLUME 8, 2020

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

Proof: Let ci = (bi, ai) with 〈ci, sk 〉 = mi+ei (mod q`)
for some polynomials mi, ei satisfying ‖ei‖can

∞ ≤ Bi, (i =
1, 2). Then, by Lemma 4, cmult contains three errors; an error
m1e2+m2e1+e1e1, an additional error e′′ = P−1 ·d2 e′ and a
rounding error bounded by Bscale where d2 = a1a2 and e′ is
the noise in the evaluation key evk. Assuming d2 behaves as
a uniform random variable on Rq` , P‖e

′′
‖

can
∞ is bounded by

2
√
Nq2`/12BmultKey = Bks · q`. Thus, cmult is an encryption

of m1m2 with an error bounded by

‖m1e2 + m2e1 + e1e2 + e′′‖can
∞ + Bscale

≤ ν1B2 + ν2B1 + B1B2 + P−1 · q` · Bks + Bscale.

�
Lemma 8 (Decryption): Let c = (c0, c1) be a level-`

ciphertext of m under pk with ‖〈c, sk〉 − m‖can
∞ ≤ B, and

let m′← THE.Dec({sk1, · · · , skn}, c) be the final decryption
from the decryption protocol. Then, it holds that

‖m′ − m (mod q`)‖can
∞ ≤ B+ BDec

where BDec = 2
√
3nN

1
2BDec

sm .
Proof: The final decryption m′ is computed by m′ ←

c0+
∑n

i=1 pi (mod q0) and pi← c1 · si+ esm
i where esm

i ←

χsm(BDec
sm). Thus, we havem′ = c0+c1 ·

∑n
i=1 si+

∑n
i=1 e

sm
i .

Therefore, it holds that

‖m′ − m (mod q`)‖can
∞

≤ ‖m′ − 〈c, sk〉‖can
∞ + ‖〈c, sk〉 − m‖

can
∞

≤

n∑
i=1

‖esm
i ‖

can
∞ + B = B+ 2

√
3nN

1
2BDec

sm .

�

IV. SECRET KEY UPDATE
A. EXTENDED SHAMIR SECRET SHARING SCHEME
First, we revisit the Shamir secret sharing scheme to extend it
for threshold FHE. Let q be a prime and assume we will share
a secret s ∈ Zq to n parties so that any more than t parties
can reconstruct the secret s successfully. Then, the sharing
algorithm of Shamir secret sharing scheme is following: a
dealer randomly chooses t − 1 elements a1, . . . , at−1 from
Zq and sets a polynomial

f (x) = a0 + a1 x + . . .+ at−1x t−1 ∈ Zq[x]

whose constant term a0 equals to the secret s. After comput-
ing each share si = f (i), the dealer sends it to the party Pi
for i = 1, . . . , n. Later, if more than t parties {Pi}i∈I gather,
the shared secret is reconstructed by computing

s′ =
∑
i∈I

λI ,isi

where λI ,i =
∏

j∈I\{i}
j
j−i called as Lagrange coefficients.

Note that λi,I is well-defined since Zq is a field and s′ equals
to s if the {si}’s are legitimate shares.
Definition 4 (Shamir secret sharing scheme on Zq): Let

s ∈ Zq be a secret to be shared with a prime q. A Shamir

secret sharing scheme Shamir is a duple of algorithms
(Share,Combine) as defined follows:
• Share(s, t, n) → (s1, . . . , sn): The share algorithm
takes a secret s and a threshold number t with n parties
as input. After randomly choosing a polynomial f (x) =
a0 + a1 x + · · · + at−1x t−1 ∈ Zq[x] such that a0 = s, it
outputs the secret shares si = f (i) for i ∈ [n]

• Combine({si}i∈I) → s′: The combine algorithm takes
a set {si}i∈I of secret shares for some index set I ⊆ [n].
Then, it outputs a reconstructed secret s′ =

∑
i∈I λI ,isi

where λI ,i =
∏

j∈I\{i}
j
j−i . For a convenience, we some-

times omit I in the notation λI ,i.
Now, let us consider the case we want to share a secret

s(X) lies in Rq = Zq[X]/(XN + 1) instead of Zq We can
extend the sharing algorithm by choosing t − 1 elements
a1(X), . . . , at−1(X) in Rq and setting

f (x) = a0(X)+ a1(X)x + . . .+ at−1(X)x t−1 ∈ Rq[x]

whose constant term a0(X) equals to s(X). Then, shares

si(X) for i = 1, . . . , n

= f (i)

= a0(X)+ a1(X) · i+ · · · + at−1(X) · it−1

=

N−1∑
`=0

a0,`X` +
N−1∑
`=0

a1,`X` · i+ · · · +
N−1∑
`=0

at−1,`X` · it−1

=

N−1∑
`=0

(a0,` + a1,` · i+ · · · + at−1,` · it−1)X`

can be considered as independent applications of the standard
Shamir secret sharing for each coefficients of s(X). Thus,
if the coefficients of s(X) are independently sampled, one
can easily get the correctness and security of Shamir secret
sharing over Rq.
In some homomorphic encryption schemes, however, they

use sparse binary (or sparse ternary) secret polynomi-
als whose coefficients lies in {0, 1} (or {0,±1}) with a
fixed Hamming distance h for their efficiency. For example,
the HEAAN library2 uses ternary secrets with h = 64. This
relation from the sparsity may have an impact on the guaran-
tee of security for this extended Shamir secret sharing scheme
breaking the independence of coefficients of secret polyno-
mials. Therefore, we recommend using some distribution for
secret in which the coefficients are sampled independently
instead of sparse secret distributions.

B. THRESHOLD STRUCTURE AND PROACTIVE SECRET
SHARING
1) KEY SHARE RE-DISTRIBUTION PROTOCOLS
In this paragraph, we will introduce some key share
renewal methods to be used for giving a threshold struc-
ture and proactive secret sharing to our scheme. Since the
first proactive secret sharing was proposed in 1995 by

2https://github.com/snucrypto/HEAAN

VOLUME 8, 2020 191325

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

Herzberg et al. [26], many proactive secret sharing schemes
have been designed with each purpose. These proactive secret
sharing schemes can be classified into two cases upon the
method of re-distributing shares as following:

• By adding shares of 0. This method is mostly cho-
sen for proactive secret schemes including the first
one ([26]–[28]). Note that Shamir secret sharing
has a linearity between the secrets and their shares.
More precisely, if (s1, . . . , sn) ← Share(s, t, n)
and (s̄1, . . . , s̄n) ← Share(s̄, t, n), then we have
Combine({si + s̄i}i∈I)→ s′ = s+ s̄ for any subset I ⊆
[n] of size more than or equals to t . Thus, the key point of
re-distributing algorithm in this class is generating new
shares whose shared secret is actually 0 and adding these
to the old shares like masking.

• By re-sharing each old shares. This method chosen
by [29]–[31] is more complicate than the former and
comes from the fact that the reconstruction algorithm is
performed by linear operation on the shares si and their
coefficients λI ,i are determined only by the indices I of
gathered parties not by the collected shares themselves.
For more detailed, let us assume that n parties shared
a secret s by (s1, . . . , sn) ← Share(s, t, n) and that t
parties {Pi}i∈I gathered to re-distribute the shares with
new (t ′, n′)-threshold structure. First, each party Pi(i ∈
I) runs (si,1, . . . , si,n′)← Share(si, t ′, n′) and sends si,j
to the party Pj. Then, we have si =

∑
j∈J λJ ,jsi,j for all i

and all J ⊆ [n′] with |j| ≥ t ′ and so if we set new shares
s′j =

∑
i∈I λI ,isi,j for all j ∈ [n′], the shared secret s can

be reconstructed by computing

∑
j∈J

λJ ,js′j =
∑
j∈J

λJ ,j · (
∑
i∈I

λI ,isi,j)

=

∑
j∈J

∑
i∈I

λJ ,j · λI ,isi,j

=

∑
i∈I

λI ,i
∑
j∈J

λJ ,jsi,j

=

∑
i∈I

λI ,isi = s

for any J ⊆ [n′] with |j| ≥ t ′.

However, Nikov and Nikova showed the re-distributing
method by adding shares of 0 are vulnerable to a spe-
cific attack even for a passive mobile adversary [34]. Thus,
we focus on the re-sharing methods from now on.

2) DECENTRALIZED THRESHOLD CKKS SCHEME
Adapting a key share re-distribution protocol after generation
of public encryption key and evaluation keys, one can give
a threshold structure into our decentralized CKKS scheme.
Here, we provide some protocols for this with its modified
threshold decryption. Remind that the shared secret is of the
form s = s1 + · · · + sn in the previous section.

• THE.Threshold({sk1, . . . , skn}, t): This key update pro-
tocol Threshold is an one round, n-party protocol
among P1, . . . ,Pn.
– Round I. For i ∈ [n], each party Pi executes the

following:
1) Sample independently ai,1, . . . , ai,t−1 ← Rq

and set fi(x) = si + ai,1x + · · · + ai,t−1x t−1

where ski = (1, si).
2) Compute shares si,j = fi(j) and send it to Pj (j ∈

[n]).
Upon receiving {si,j}i∈[n], each party Pj for j ∈ [n]
computes new share s′j =

∑
i∈I si,j and sets skj ←

(1, s′j).
Since the relation between shares to bring back the common
shared secret is changed from simple additions into a linear
operation with Lagrange coefficients after this key update
algorithm, the decryption protocol should also be modified
as in [35].
• THE.Dec1({sk1, · · · , skn}i∈I , c): Our (t, n)-threshold
decryption protocol based on Shamir secret shar-
ing Dec1 is an one round, t-party protocol among
P1, . . . ,Pn.
– Round I.Given the ciphertext c = (c0, c1), for i ∈ I

each party Pi executes the following.
1) Sample a smudging error esm

i ← χsm(BDec
sm).

2) Compute a partial decryption pi ← c1 · si +
(n!)2 esm

i (mod q0), and broadcast it to other
parties.

Upon receiving {pj}j 6=i, Pi computes the final
decryption

c0 +
∑
i∈I

λI ,ipi (mod q0).

Theorem 1 (Thresholdize/Decryption): Let c = (c0, c1) be
a level-` ciphertext of m under pk satisfying

‖〈c, sk〉 − m (mod q0)‖can
∞ ≤ B

for some B > 0 and let (n!)3 ≤ q0.
If {sk′i}i∈[n] ← THE.Threshold({ski}i∈[n], t) and m′ ←

THE.Dec1({sk′1, · · · , sk
′

n}, c), then it holds that

‖m′−m (mod q0)‖can
∞ ≤ B+ BDec

where BDec = n(n!)3 BDec
sm .

Proof: Since m′ is computed by c0 +
∑

i∈I λI ,ipi
(mod q0) and pi← c1 ·si+(n!)2 esm

i (mod q0) where esm
i ←

χsm(BDec
sm), m′ = c0 + c1 ·

∑
i∈I λI ,isi +

∑
i∈I λI ,i(n!)

2 esm
i

Therefore, it holds that

|m′ − m (mod q`)‖can
∞

≤ ‖m′ − 〈c, sk〉‖can
∞ + ‖〈c, sk〉 − m‖

can
∞

≤ ‖

∑
i∈I

λI ,i(n!)2 esm
i ‖

can
∞ + B

≤ n(n!)3 BDec
sm + B.

The last inequality comes from |(n!)2 · λi,I | ≤ (n!)3 as an
integer [36]. �

191326 VOLUME 8, 2020

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

3) PROACTIVE SECURITY
• THE.KeyUpdate1({ski}i∈I): Our protocol for key
update KeyUpdate1 based on Shamir secret shar-
ing scheme is an one round, n-party protocol among
P1, . . . ,Pn.
– Round I. For i ∈ I , each party Pi executes the

following:
1) Sample independently ai,1, . . . , ai,t−1 ← Rq

and set fi(x) = si + ai,1x + · · · + ai,t−1x t−1

where ski = (1, si).
2) Compute shares si,j = fi(j) and send it to Pj (j ∈

[n]).
Upon receiving {si,j}i∈I , each party Pj for j ∈ [n]
computes new share s′j =

∑
i∈I λI ,isi,j and sets

skj← (1, s′j).
In fact, when we restrict the case on (n,n)-threshold, there

are simple methods to re-distribute secret shares in which
decryption errors are smaller than the previous methods. Let
a secret s be distributed to shares si so that s = s1 + · · · + sn.
• By adding shares of 0. Each party Pi generate si,j (j =
1, . . . , n) such that 0 = si,1+· · ·+si,n and send si,j to the
party Pj. Then, setting the new shares s′j = sj+

∑n
i=1 si,j

for all j ∈ [n], the shared secret s can be reconstructed
by s = s′1 + · · · + s

′
n.

• By re-sharing each old shares. Each party Pi can
re-share si into si,j so that si = si,1 + · · · + si,n and
send si,j to the party Pj. Then, setting the new shares
s′j = s1,j + · · · + sn,j for all j ∈ [n], the shared secret
s can be reconstructed by s = s′1 + · · · + s

′
n.

Applying this to our key update protocol, we can get another
protocol as followingwhich is usable only for (n, n)-threshold
structure.
• THE.KeyUpdate2({sk1 . . . , skn}): Our protocol for key
update KeyUpdate2 supporting (n, n)-threshold struc-
ture is an one round, n-party protocol amongP1, . . . ,Pn.
– Round I. For i ∈ [n], each party Pi executes the

following:
1) Sample independently ai,1, . . . , ai,t−1 ← Rq

and set ai,t = si−
∑t−1

j=1 ai,j where ski = (1, si).
2) Send ai,j to Pj (j ∈ [n]).
Upon receiving {ai,j}i∈[n], each party Pj for j ∈ [n]
computes new share s′j =

∑n
i=1 ai,j and sets skj ←

(1, s′j).

V. CONCLUSION
Using our (n, n)-threshold HE scheme, we have obtained
(t, n)-threshold HE scheme based on CKKS HE scheme.
Then we have introduced proactive secret sharing scheme to
update secret key share of our (t, n)-threshold HE scheme
whenever needed.

As a real use case of our (t, n)-threshold HE scheme,
consider multiple organizations who want to analyze the
aggregated data without concerning data privacy. In that case,
organizations can delegate the secret key management to n

TTPs who can decrypt the encrypted result when more than
t of them agree, using our decentralized (t, n)-threshold HE
scheme. It is plausible to assume that there is no hierarchy
among n TTPs, so bottom-up approach is appropriate in key
generation protocol.

To ensure the joint key security, smudging errors are
required which inevitably enlarge the entire parameter size.
An interesting open problem is to eliminate the smudging
errors in our scheme. One can further reduce the parameter
size of our threshold HE scheme using well-known optimiza-
tion techniques for CKKS scheme, such as RNS decomposi-
tion method [37], [38].

APPENDIX A
THE EVALUATION KEY GENERATION PROTOCOL IN [24]
ON RING LWE PROBLEMS
The basic concept of [24] is the same as ours except for
the generation of public evaluation keys. To generate an
evaluation key, the common public encryption key pk should
be built first by a protocol because the individual secret key
share si has to be encrypted under pk. Thus, their protocol for
evaluation key generation is performed by following:
• THE.KeyGen: This generation protocol KeyGen is a
three round, n-party protocol among P1, · · · ,Pn.
– Round I. For i ∈ [n], each party Pi executes the

following.
1) Sample si ← χsk and ei ← χerr, and compute

bi←−a · si + ei (mod P · qL).
2) Set its secret key share as ski ← (1, si) and

broadcast bi to other parties.
– Round II. Upon receiving {bj}j 6=i, Pi sets the com-

mon public key as pk← (
∑n

j=1 bj, a) ∈ R2
P·qL .

1) Compute an encryption ci← THE.Enc(pk,Psi).
2) Broadcast ci to other parties.

– Round III. Upon receiving {cj}j 6=i, Pi executes the
following.
1) Compute evki,j ← si · cj which can be consid-

ered as an encryption of Psisj under pk for all
j 6= i.

2) Get a new ciphertext evki,i ← vi · pk+ (Ps2i +
ẽsm
i,0 , ẽ

sm
i,1) ∈ R2

P·qL where vi ← χEnc and
ẽsm
i,0 , ẽ

sm
i,1 ← χsm(BEval

sm).
3) Compute evki ←

∑n
j=1 evki,j which can be

considered as an encryption of Pssi under pk.
4) Broadcast evki.
Upon receiving {evkj}j 6=i,Pi can finally set the com-
mon evaluation key evk←

∑n
j=1 evkj ∈ R2

P·qL
Lemma 9 (Evaluation key): Let evk be an evaluation key

generated by the previous protocol, then it holds that

‖〈evk, sk〉−P · s2 (mod P · qL)‖ ≤ B

where B = O(n2 N
3
2BEnc

sm + nNB
Eval
sm).

Proof: Note that we have if j 6= i,

〈evki,j, sk〉−P · sisj = si · (〈cj, sk〉−P · sj)

VOLUME 8, 2020 191327

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

= si · (v′j · e+ e
sm
j,0 + se

sm
j,1)

for some v′j← ZO and esm
j,0 , e

sm
j,1 ← χsm(BEnc

sm), and

〈evki,i, sk〉−P · s2i = vi〈pk, sk〉 + ẽsm
i,0 + s · ẽ

sm
i,1

= vi · e+ ẽsm
i,0 + s · ẽ

sm
i,1

where e =
∑n

i=1 ei and ẽ
sm
i,0 , ẽ

sm
i,1 ← χsm(BEval

sm). Thus,

‖〈evk, sk〉−P · s2‖
= ‖

∑
i,j

(〈evki,j, sk〉−P · sisj)‖

= ‖

∑
i

(si
∑
j 6=i

(v′je+ e
sm
j,0 + se

sm
j,1)+ vie+ ẽ

sm
i,0 + sẽ

sm
i,1)‖

≤ 32 n

√
N
2

√
(n− 1)N

2
σ
√
nN + 16 n

√
N
2
BEnc

sm

√
(n− 1)N

3

+ 32 n

√
N
2

√
nN
2
BEnc

sm

√
(n− 1)N

3
+ 16

√
nN
2
σ
√
nN

+ 6 BEval
sm

√
nN
3
+ 6

√
nN
2
BEval

sm

√
nN
3
≤ B.

�

REFERENCES
[1] C. Gentry, A Fully Homomorphic Encryption Scheme, vol. 20, no. 9.

Stanford, CA, USA: Stanford Univ. Stanford, 2009.
[2] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, ‘‘Improved security for

a ring-based fully homomorphic encryption scheme,’’ in Proc. IMA Int.
Conf. Cryptogr. Coding. New York, NY, USA: Springer, 2013, pp. 45–64.

[3] Z. Brakerski, ‘‘Fully homomorphic encryption without modulus switching
from classical gapsvp,’’ inProc. Annu. Cryptol. Conf.NewYork, NY,USA:
Springer, 2012, pp. 868–886.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 13:1–13:36, 2014.

[5] Z. Brakerski and V. Vaikuntanathan, ‘‘Fully homomorphic encryption from
ring-LWE and security for key dependent messages,’’ in Proc. Annu.
Cryptol. Conf., New York, NY, USA: Springer, 2011, pp. 505–524.

[6] Z. Brakerski andV. Vaikuntanathan, ‘‘Efficient fully homomorphic encryp-
tion from (standard) LWE,’’ SIAM J. Comput., vol. 43, no. 2, pp. 831–871,
2014.

[7] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Proc. Annu. Int. Conf. The-
ory Appl. Cryptograph. Techn. New York, NY, USA: Springer, 2010,
pp. 24–43.

[8] J.-S. Coron, T. Lepoint, and M. Tibouchi, ‘‘Scale-invariant fully homo-
morphic encryption over the integers,’’ in Proc. Int. Workshop Public Key
Cryptogr. New York, NY, USA: Springer, 2014, pp. 311–328.

[9] J. H. Cheon and D. Stehlé, ‘‘Fully homomophic encryption over the
integers revisited,’’ in Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn. New York, NY, USA: Springer, 2015, pp. 513–536.

[10] L. Ducas and D.Micciancio, ‘‘Fhew: Bootstrapping homomorphic encryp-
tion in less than a second,’’ in Proc. Annu. Int. Conf. Theory Appl. Crypto-
graph. Techn. New York, NY, USA: Springer, 2015, pp. 617–640.

[11] C. Gentry, S. Halevi, and N. P. Smart, ‘‘Homomorphic evaluation of the
aes circuit,’’ in Proc. Annu. Cryptol. Conf. New York, NY, USA: Springer,
2012, pp. 850–867.

[12] Y. Doröz, Y. Hu, and B. Sunar, ‘‘Homomorphic AES evaluation using
the modified LTV scheme,’’ Des., Codes Cryptogr., vol. 80, no. 2,
pp. 333–358, Aug. 2016.

[13] C. Gentry, A. Sahai, and B.Waters, ‘‘Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,’’ in Advances in Cryptology—CRYPTO. New York, NY, USA:
Springer, 2013, pp. 75–92.

[14] A. López-Alt, E. Tromer, and V. Vaikuntanathan, ‘‘On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,’’ in
Proc. 44th Symp. Theory Comput. STOC, 2012, pp. 1219–1234.

[15] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. New York, NY, USA: Springer, 2017, pp. 409–437.

[16] S. Park, J. Byun, J. Lee, J. H. Cheon, and J. Lee, ‘‘HE-friendly algorithm for
privacy-preserving SVM training,’’ IEEE Access, vol. 8, pp. 57414–57425,
2020.

[17] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, ‘‘Simulating homo-
morphic evaluation of deep learning predictions,’’ in Cyber Security Cryp-
tography and Machine Learning, S. Dolev, D. Hendler, S. Lodha, and
M. Yung, Eds. Cham, Switzerland: Springer, 2019, pp. 212–230.

[18] J. H. Cheon, D. Kim, Y. Kim, and Y. Song, ‘‘Ensemble method for privacy-
preserving logistic regression based on homomorphic encryption,’’ IEEE
Access, vol. 6, pp. 46938–46948, 2018.

[19] H. Chen,W. Dai, M. Kim, and Y. Song, ‘‘Efficient multi-key homomorphic
encryption with packed ciphertexts with application to oblivious neural
network inference,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 395–412.

[20] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, ‘‘Logistic regression
model training based on the approximate homomorphic encryption,’’ BMC
Med. Genomics, vol. 11, no. S4, p. 83, Oct. 2018.

[21] K. Han, S. Hong, J. H. Cheon, and D. Park, ‘‘Efficient logistic regression
on large encrypted data,’’ IACR Cryptol. ePrint Arch., vol. 2018, p. 662,
Jul. 2018.

[22] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[23] G. Asharov, A. Jain, and D. Wichs, ‘‘Multiparty compu-
tation with low communication, computation and inter-
action via threshold fhe,’’ IACR Cryptol. ePrint Arch.,
Tech. Rep. 2011/613, 2011. [Online]. Available: https://
eprint.iacr.org/2011/613

[24] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs, ‘‘Multiparty computation with low communication, computa-
tion and interaction via threshold fhe,’’ in Proc. Annu. Int. Conf. The-
ory Appl. Cryptograph. Techn. New York, NY, USA: Springer, 2012,
pp. 483–501.

[25] A. López-Alt, E. Tromer, and V. Vaikuntanathan, ‘‘Cloud-assisted multi-
party computation from fully homomorphic encryption,’’ IACR Cryptol.
ePrint Arch., vol. 2011, p. 663, Dec. 2011.

[26] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, ‘‘Proactive secret
sharing or: How to cope with perpetual leakage,’’ in Proc. Annu. Int.
Cryptol. Conf. New York, NY, USA: Springer, 1995, pp. 339–352.

[27] D. Schultz, B. Liskov, and M. Liskov, ‘‘MPSS: Mobile proactive
secret sharing,’’ ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, pp. 1–32,
Dec. 2010.

[28] S.-J. Wang, Y.-R. Tsai, and P.-Y. Chen, ‘‘Strategies of proactive (k, n)
threshold secret sharing and application in a secure message exchange
system,’’ J. Comput., vol. 19, no. 1, pp. 29–38, 2008.

[29] T. M. Wong, C. Wang, and J. M. Wing, ‘‘Verifiable secret redistribution
for archive systems,’’ in Proc. 1st Int. IEEE Secur. Storage Workshop,
Dec. 2002, pp. 94–105.

[30] V. H. Gupta and K. Gopinath, ‘‘An extended verifiable secret redistribution
protocol for archival systems,’’ in Proc. 1st Int. Conf. Availability, Rel.
Secur. (ARES), Apr. 2006, p. 8.

[31] V. H. Gupta and K. Gopinath, ‘‘Gits
2 VSR: An information theoreti-

cal secure verifiable secret redistribution protocol for long-term archival
storage,’’ in Proc. 4th Int. IEEE Secur. Storage Workshop, Sep. 2007,
pp. 22–33.

[32] P.Mukherjee andD.Wichs, ‘‘Two roundmultiparty computation viamulti-
key fhe,’’ in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn.
New York, NY, USA: Springer, 2016, pp. 735–763.

[33] A. Costache and P. Nigel, ‘‘Which ring based somewhat homomorphic
encryption scheme is best,’’ in Topics in Cryptology—CT-RSA, vol. 9610,
San Francisco, CA, USA: Springer, Feb. 2016, 2016, p. 325.

[34] V. Nikov and S. Nikova, ‘‘On proactive secret sharing schemes,’’ in Proc.
Int. Workshop Sel. Areas Cryptogr. New York, NY, USA: Springer, 2004,
pp. 308–325.

[35] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P.M. Rasmussen, and
A. Sahai, ‘‘Threshold cryptosystems from threshold fully homomorphic
encryption,’’ in Proc. Annu. Int. Cryptol. Conf. New York, NY, USA:
Springer, 2018, pp. 565–596.

[36] S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee,
‘‘Functional encryption for threshold functions (or fuzzy ibe) from lat-
tices,’’ in Proc. Int. Workshop Public Key Cryptogr. New York, NY, USA:
Springer, 2012, pp. 280–297.

191328 VOLUME 8, 2020

E. Kim et al.: How to Securely Collaborate on Data: Decentralized Threshold HE and Secure Key Update

[37] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, ‘‘A full RNS variant
of approximate homomorphic encryption,’’ in Proc. Int. Conf. Sel. Areas
Cryptogr. New York, NY, USA: Springer, 2018, pp. 347–368.

[38] K. Han and D. Ki, ‘‘Better bootstrapping for approximate homomorphic
encryption,’’ in Proc. Cryptographers’ Track RSA Conf. New York, NY,
USA: Springer, 2020, pp. 364–390.

EUNKYUNG KIM received the B.S. degree in
mathematics and statistics and the M.S. and Ph.D.
degrees in mathematics from Ewha Womans Uni-
versity, Seoul, South Korea, in 2011, 2013, and
2018, respectively.

She has been doing research and development
with Samsung SDS, Seoul, since 2018. Her current
research interests include efficient applications
and secure key management for homomorphic
encryption.

JINHYUCK JEONG received the B.S. degree in
education of mathematics and the Ph.D. degree in
mathematical sciences from Seoul National Uni-
versity, Seoul, South Korea, in 2012 and 2019,
respectively.

He has been doing research and development
with Samsung SDS, South Korea, since 2019.
His current research interests include biometrics
authentication, homomorphic encryption with its
applications, and multiparty computations.

HYOJIN YOON received the master’s and Ph.D.
degrees in mathematics and cryptography from
Seoul National University. She is currently the
Team Leader of the Security Algorithm Team,
Samsung SDS.

YOUNGHYUN KIM received the B.S. degree
in mathematical science and computer engineer-
ing from Seoul National University, Seoul, South
Korea, in 2018.

He has been doing research and develop-
ment with the Security Algorithm Team, Sam-
sung SDS, South Korea, since 2018. His current
research interests include generative adversarial
networks (GANs) with differential privacy, and
homomorphic encryption.

JIHOON CHO received the M.Math. degree in
cryptography from the University of Waterloo and
the Ph.D. degree in information security from the
Royal Holloway University of London.

He has worked as a Security Architect for
mobile devices with LG Electronics, South Korea.
He is currently the Director of the security research
with Samsung SDS, South Korea.

JUNG HEE CHEON (Associate Member, IEEE)
received the B.S. and Ph.D. degrees in mathemat-
ics from KAIST, in 1991 and 1997, respectively.

He is currently a Professor with the Depart-
ment of Mathematical Sciences and the Director
of the Industrial and Mathematical Data Analytics
Research Center (IMDARC), Seoul National Uni-
versity (SNU). Before joining SNU, he has worked
as a Senior Researcher with ETRI, the Visiting
Scientist of Brown University, and an Assistant

Professor with ICU. He has been working on computational number the-
ory, cryptology, and information security. In those areas, he has published
more than 50 journal articles, including Journal of Cryptology, Mathe-
matics of Computation, IEEE TRANSACTIONS ON INFORMATION THEORY, IEEE
TRANSACTIONS ON COMPUTERS, ACM TISSEC, and SIAM Journal on Discrete
Mathematics; and many conference papers, including 13 Crypto/Eurocrypt,
which are the most prestigious conferences for Cryptology. He is one of the
co-inventors of braid cryptography and (independently) Xedni calculus on
elliptic curve discrete logarithms. As one of the co-inventors of approximate
homomorphic encryption HEAAN, he is actively working on homomorphic
encryptions and their applications, including machine learning on encrypted
data, homomorphic control systems, and DNA computation on encrypted
data.

Dr. Cheon received the Best Paper Award in Eurocrypt 2015 for this joint
work on cryptanalysis of multilinear maps. His works on improved Pollard
rho algorithm and an efficient algorithm on strong DH problem drew many
attentions, the former of which won the Best Paper Award in Asiacrypt 2008.
He was selected as the Scientist of the month by the Korean Government
in 2018 and won the POSCO Science Prize in 2019. He has co-chaired
ANTS-XI, Asiacrypt 2015/2016, and MathCrypt 2018/2019. He served on
program committee for numerous crypto conferences, including Crypto,
Eurocrypt, Asiacrypt, and so on. He is an Associate Editor ofDesigns, Codes
and Cryptography, Journal of Communication Networks, and Journal of
Cryptology, that is the plagship journal in cryptology.

VOLUME 8, 2020 191329

