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ABSTRACT We present a novel method to design and optimize window functions based on combinations
of linearly independent functions. These combinations can be performed using different strategies, such a
sums of sines/cosines, series, or conveniently using a polynomial expansion. To demonstrate the flexibility
of this implementation, we propose the Generalized Adaptive Polynomial (GAP) window function, a non-
linear polynomial form in which all the current window functions could be considered as special cases.
Its functional flexibility allows fitting the expansion coefficients to optimize a certain desirable property
in time or frequency domains, such as the main lobe width, sidelobe attenuation, and sidelobe falloff
rate. The window optimization can be performed by iterative techniques, starting with a set of expansion
coefficients that mimics a currently knownwindow function and considering a certain figure ofmerit target to
optimize those coefficients. The proposed GAP window has been implemented and several sets of optimized
coefficients have been obtained. The results using the GAP exemplify the potentiality of this method to
obtain window functions with superior properties according to the requirements of a certain application.
Other optimization algorithms can be applied within this strategy to further improve the window functions.

INDEX TERMS Discrete Fourier transforms, signal processing, optimization methods, adaptive algorithms.

I. INTRODUCTION
The Discrete Fourier Transform (DFT) is a powerful tool to
perform Fourier analysis in discrete data, with widespread
uses in several modern applications, such as in astronomy,
chemistry, acoustic signals, geophysics (seismic data), and
digital processing [1]–[3]. In signal processing, the signals
are sampled over a finite time interval, and window functions
are time- and frequency-domain weighting functions applied
to reduce the Gibbs oscillations resulting from the truncation
of a Fourier series. The analyzed signal is then the multiplica-
tion of the sampled data with the window function, with the
resulting signal called windowed one. The simplest window
function is the rectangular one, which is unitary inside the
window and null outside.

The use of window functions affects the analysis in the fre-
quency domain, sometimes introducing unwanted artifacts,
such as signal leakage, scalloping loss, intensity of side-
lobes, among others. Additionally, many signals of interest
are sampled corrupted with background noise, which could
be of the same intensity of the signals of interest. To pre-
vent such artifacts or improve the properties of the results,
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a large number of window functions have been proposed and
applied to several systems, with diverse successes [4]–[11].
Those window functions have been proposed to improve and
provide certain spectral characteristics, such as to reduce
leakage, distinguish two sine signals with close frequencies,
avoid scalloping loss, resolve a sine signal within a noisy
background, analyze signals with comparable strength, and
discriminate signals with different strength [12], [13].

The current need for better signal processing methods
opens space for the development of improved window func-
tions, particularly some that could provide superior properties
simultaneously. The major challenge of the current window
functions is that they are generally developed using guessed
functional forms, with small functional flexibility, and the
refinements of the window functions have been achieved by
adjusting a few parameters of close-form expressions.

The recent research on window functions has focused
mainly on the ability to create mechanisms to improve the
performance of the algorithms and develop windows with
flexible temporal and spectral characteristics [11], [14]–[17].
Several investigations have proposed window functions
with one or more free parameters that could be adjusted,
to improve a certain property [7]. For example, Sun et al.
proposed a method to design window functions with flexible
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spectral characteristics based on the inverse of the shaped
output using the cyclic algorithm (ISO-CA) [11]. In the same
context, Liu et at. presented a convex optimization problem
to optimize the sidelobe attenuation or the Signal-to-Noise
Ratio (SNR) [18]. Zaytsev and Khzmalyan also proposed a
method to synthesize optimal windows with sidelobe spec-
trum falloff rate multiple of 12 dB per octave (dB/oct) [15].

However, none of those window functions has the func-
tional flexibility that could provide simultaneously different
superior properties. In other words, while a window generally
improves a certain spectral characteristic, at the same time
it compromises other properties. Therefore, there is a major
need for a more systematic procedure to develop window
functions. In this sense, this investigation proposes a gen-
eralization for the representation of window functions for a
wide range of applications, e.g., suppression of co-channel
interference [19], harmonic analysis in real-time systems
[20], satellite altimeter’s waveform [21], radar systems [18],
[22], [23], sensor arrays [24], and audio systems [3], [25].

Here, we present a generalized window function, as a
non-linear polynomial expansion in which all the current win-
dows could be mimic with the appropriate expansion coef-
ficients. This functional form is very flexible, which allows
searching by a systematic method to obtain sets of expansion
coefficients that could provide superior and optimized prop-
erties, considering a reference figure of merit that takes into
account the property that is intended to be improved. Finally,
this procedure sets the road for the use of optimization and
adaptive methods, such as machine learning and genetic algo-
rithms, to adapt the window expansion coefficients to certain
sets of data. Considering those characteristics, we labeled it as
a Generalized Adaptive Polynomial (GAP) window function.

This paper is organized as follows. Section II describes
the GAP window function. Section III presents a comparison
between traditional window functions and the ones obtained
with GAP. It also presents results from optimized GAP
window functions, particularly in improving the main lobe
width and the sidelobe value, or both simultaneously. Finally,
Section IV presents the conclusions.

II. THE GENERALIZED ADAPTIVE WINDOW FUNCTION
A. GAP WINDOW FUNCTION ALGORITHM
Several window functions have been developed over the last
few years, all with equivalent characteristics [10]. They are
symmetric with respect to the center N/2 (for data running
from i = 1 to N within the window) and generally nor-
malized at the center w[N/2] = 1. Also, with some excep-
tions, e.g., the rectangular window, they are null, w[0] =
w[N ] = 0, or with a very small value at their endpoints.
Some window functions carry additional properties, such as
null derivatives at those points. The most traditional window
functions are based on fixed expressions, such as the rectan-
gular, Hann, Hamming, Flat-top, Blackman, and Sine. Others
have one or more free parameters, such as the Gaussian,
Tukey, Chebyshev, and functional forms from more recent

investigations [7], [11], [26]–[28], which have been adjusted
to optimize a certain property at the frequency domain.
Hybrid window functions have also been developed, such as
the Barlett-Hann and Planck-Bessel ones, by combining other
known window functions.

All those well-established window functions, even the
adjustable ones, have low functional flexibility, and any
adjustable parameter can not improve substantially the spec-
tral characteristics desired. Additionally, those developments
are generally based on empirical and trial-and-error proce-
dures. This suggests the need for a more general window
function, in which all others could be derived. Besides, amore
systematic procedure to develop window functions could
provide higher optimization on the properties of signal pro-
cessing.

We propose the most flexible functional form for a window
function, a non-linear polynomial expansion (1):

w(t) =
m∑
n=0

antn (1)

where an andm are the coefficients and themaximum order of
the polynomial expansion, respectively. Additionally, those
coefficients must be determined according to certain rules.
This form has been proposed previously by other authors [5],
but with different goals than here.

In principle, any function could be described by an infinite
polynomial expansion. For any smooth function, such as the
window functions generally used in DFT, one could find a
finite expansion with the appropriate set of coefficients that
describe it satisfactorily.

One of the properties of all windows is the symmetry
constraint around its center. Therefore, considering the poly-
nomial represented only in the time interval −T/2 to +T/2,
we kept our expansion with that constraint, with the form:

w(t) = a0 +
m∑
n=1

a2n
( t
T

)2n
, for |t| ≤ T/2 (2)

and w(t) = 0 for |t| > T/2. Here, we develop window
functions constraining a0 = 1, but this constrain could be
lifted in future developments.

Besides, a smaller number of expansion terms than in (1) is
obtained with the exponent 2n, with reasonable results with
a small set of parameters (m varying from 4 to 12). On the
other hand, there is no theoretical shortcoming to consider
non-symmetrical window functions, such that this constraint
could also be lifted in future developments, to get even more
optimized widow functions, although with a higher computa-
tional cost due to a larger number of expansion terms.

B. FOURIER TRANSFORM OF GAP AND STRATEGIES TO
OPTIMIZE THE GAP WINDOW FUNCTION
With a flexible functional form for the window function, the
challenge is now to find the appropriate expansion coeffi-
cients that better describe a certain set of properties in the
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frequency domain. For that, we could use several optimiza-
tion strategies, defining a figure of merit function, or cost
function, to achieve the desired property in the frequency
domain.

This cost function could be minimized iteratively using
local or global optimization methodologies. A more sophis-
ticated procedure to obtain an optimized window function is
using a self-consistent adaptive procedure, such as machine
learning, to obtain the best set of expansion parameters for a
certain property.

The first optimization strategy can be performed in the
frequency domain, W (ω), by varying the GAP coefficients
and optimizing the main properties in the frequency response.
The Fourier transform of (2) is given by (3) [5]:

W (ω) = a0P0 +
m∑
n=1

a2nP2n (3)

P0 and P2n can be described by (4) and (5), respectively.

P0 =
2
ω
[sin(ωT/2)], (4)

P2n =
1

4n−1ω2T

[
ωT
2

sin(ωT/2)+ 2n cos(ωT/2)
]

−
2n(2n− 1)
(ωT )2

P2(n−1) (5)

As demonstrated in (2), the polynomial window is repre-
sented in the time interval |t| ≤ T/2. Applying the Fourier
transform in the polynomial regression coefficients, one can
calculated the variables P0 and P2n. These values would be
represented by delta functions if the limits of integration were
−∞ and +∞. However, with the restriction it is possible
to obtain the Fourier transform of polynomial functions on
a restricted domain. In short, P0 can be described as a sinc
function, while the P2n can be obtained generalizing the
pattern of the Fourier transform expansion.

Another strategy to optimize the GAP functions can be per-
formed directly in the time domain. For example, minimizing
the window function derivative at its extremities to improve
the relative sidelobe attenuation, as described in (6), or max-
imizing its second derivative at the center point, as indicated
in (7), to decrease the main lobe width.

min
{
|dw(t)/dt|

∣∣∣
t=±T/2

}
(6)

max
{
d2w(t)/dt2

∣∣∣
t=0

}
(7)

The simulation could be performedwith certain constraints
for the function described by (2). Those constraints, such
as forcing a null value for the window function extremities,
guarantee that the window is normalized at its center, or to
achieve a strictly positive window function, could be enforced
after each iterative step. On the other hand, in a more general
window function, all those constraints could be lifted. For
example, as mentioned earlier, the expansion in (2) forces a
symmetry around its center, but this constraint could be also
lifted to explore a more general window function. With the

procedure described in the previous paragraphs, it is possible
to achieve highly optimized window functions as compared
to the currently established ones.

III. SIMULATIONS AND RESULTS
A. GAP WINDOW FUNCTION COMPARISON
An expansion with m = 10, with only ten coefficients (a2 to
a20), can describe well most of the traditional window func-
tions, although large values of m could be more appropriate
in some cases. The expansion of (2), with the appropriate
coefficients presented in Table 1, allows to mimic any of the
well-established window functions, therefore one can call the
function as a generalized window function with flexibility to
allow searching for sets of expansion coefficients that could
provide highly-optimized results for signal analysis.

For some window functions, such as the Dolph-Chebyshev
with sidelobe attenuation of−100 dB, the polynomial expan-
sion with an order of up to 20 is insufficient to describe and
to optimize the window satisfactorily. In these cases, it is
necessary to increase the number of polynomial expansion
terms.

Figs. 1 (a) and (b) show, respectively, the time and fre-
quency domains of Hamming, Hann, Blackman, and Flat
Top windows obtained with the GAP function (considering
a window with N = 64). The GAP windows present the same
spectral characteristics when compared to those traditional
implementations. The Hamming and its GAP implementation
have the same values of sidelobe attenuation, −42.5 dB, and
main lobe width (−3 dB), 0.041071 (1.31 bins). Also, the
Hann and its GAP implementation have sidelobe attenuation
of−31.5 dB and the main lobe width of 0.045656 (1.46 bins).
A slight variation is observed in Flat Top window spectral
characteristics. While the Flat Top has sidelobe attenuation
of −88.0 dB and the main lobe width of 0.118126 (3.78
bins), the polynomial approximation presented−90.3 dB and
0.115230 (3.68 bins). Those variations could be mitigated
using a greater m value. Equivalent results are obtained with
different N values.

B. GAP WINDOW OPTIMIZATION
The optimization could be performed starting with a random
set of expansion coefficients. In the optimizations performed,
GAP coefficients that mimic traditional window functions
were used as initial guesses to allow a quick optimization and
to guarantee a convergent solution. In other words, starting
with a set of expansion coefficients ai that mimics one of the
well-known window functions, as given in Table 1, one can
find a new window function by varying those coefficients,
searching iteratively to minimize the cost function up to a
certain pre-determined convergence value.

There is no difference in treating symmetrical or
non-symmetrical window functions in the proposed method.
In the case of non-symmetrical window functions, one can
consider maintaining the polynomial expansion with coef-
ficients calculated on the power of n instead of the power
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TABLE 1. Expansion coefficients of the GAP window function according to (2).

FIGURE 1. Time (a) and frequency (b) domain representations of
traditional window functions obtained with GAP (64 samples).

of 2n. The symmetrical window functions were used in this
investigation to facilitate the comparison with the existing
literature and other well-known window functions.

There are different metrics to analyze window functions.
In general, the most relevant are the main lobe width, sidelobe
attenuation, and sidelobe falloff rate. The first twometrics are
widely used when comparing window functions, so they can
be used as a reference for optimization.

Figs. 2, 3, and 4 exemplify GAP optimizations performed
analyzing the frequency domain response. Fig. 2 shows an
optimization for the Flat Top window to improve the sidelobe
attenuation. The iterative procedure started with the set of
expansion coefficients that mimic the Flat Topwindow. These

FIGURE 2. Frequency response of the GAP Flat Top window compared
with optimized GAP Flat Top.

FIGURE 3. Frequency response of the GAP Hann window compared with
optimized GAP Hann. The frequencies close to −3 dB are presented in
detail to demonstrate the improvement in the main lobe.

coefficients represent only the initial guess, and any new set
of coefficients that improves the property in the frequency
domain provides a more optimized window function than
that initial guess. Using the ai variables as an input of the
Nelder–Mead (NM) algorithm (simplex method), it is pos-
sible to find a local minimum of a sidelobe measurement
function. While the Flat Top window initially has relative
sidelobe attenuation of −90.3 dB and main lobe width of
0.115230 (3.68 bins), the optimized one achieves a relative
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FIGURE 4. Frequency response of the GAP Tukey (cosine fraction = 0.5)
window compared with optimized GAP Tukey.

FIGURE 5. Frequency response of the GAP Nuttall window compared with
optimized GAP Nuttall.

sidelobe attenuation of−99.5 dB keeping the samemain lobe
width.

Fig. 3 shows the results obtained for the Hann window
coefficients to improve the main lobe width. The iterative
procedure started with the coefficient set that mimics the
Hann window. While the Hann window has initially the main
lobe width of 0.045656 (1.46 bins) and a relative sidelobe
attenuation of −31.5 dB, the optimized one achieves the
main lobe width of 0.039063 (1.25 bins) (an improvement
of 14.44%), keeping the same relative sidelobe attenuation.

Fig. 4 presents an improvement of both the sidelobe atten-
uation and the main lobe width starting with Tukey window
coefficients. While the Tukey window has initially the main
lobe width of 0.036449 (1.16 bins) and a relative sidelobe
attenuation of −15.1 dB, the optimized one achieves the
main lobe width of 0.031250 (1.00 bins) (an improvement of
14.26%) and a relative sidelobe attenuation of −25.6 dB (an
improvement of 69.53%).

Both optimizations, shown in Figs. 3 and 4, present a
decrease in the sidelobe falloff rate. This parameter is fun-
damental when attenuation is required at higher frequencies.

Finally, Fig. 5 demonstrates the optimization of three spec-
tral characteristics (main lobe width, sidelobe attenuation,
and sidelobe falloff rate) simultaneously using the GAP

FIGURE 6. Sidelobe Attenuation vs. Main lobe width (−3 dB) comparison
of traditional window functions and those obtained with GAP (64
samples).

TABLE 2. Comparison of frequency characteristics of traditional window
functions and the ones obtained with GAP optimization,
considering 64 samples.

Nuttall as initial value. Considering the first two window
metrics, while the Nuttall window has initially the main lobe
width of 0.059320 (1.90 bins) and a relative sidelobe attenu-
ation of −93.8 dB, the optimized one achieves the main lobe
width of 0.058594 (1.87 bins) (an improvement of 1.22%)
and a relative sidelobe attenuation of−102.7 dB (an improve-
ment of 9.48%). The optimized GAP Nuttall features a very
significant and innovative result obtained in this investigation
since it combines expressive values of sidelobe attenuation
with main lobe width.

Table 2 and Fig. 6 summarize the results obtained from
main lobe width (×π rad/samples and bins) and sidelobe
attenuation (dB) of traditional windows and those obtained
with GAP optimization. The window functions with better
spectral characteristics should have high sidelobe attenuation
and small main lobe width, i.e., they are allocated in the lower
and left positions of Fig. 6.

In the proposed scenarios, the optimized GAP window
functions improved the spectral characteristics of the tradi-
tional window functions. During the GAP optimizations, the
trade-off between main lobe width and sidelobe attenuation
could be suppressed, increasing the resolution in frequency
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without the cost of reducing the dynamic range of the spec-
trum and vice versa.

The results demonstrate the versatility of GAP, and opti-
mizations based on other methods, such as simulated anneal-
ing, could lead to even better performances. The examples
presented here demonstrate the potentiality of using GAP as
a strategy to develop adaptive windows.

IV. CONCLUSION
A novel method based on polynomial window functions,
labeled GAP, is proposed. It allows to mimic previously
knownwindow functions, and this algorithm proposes a com-
prehensive method to embed a full set of window functions in
devices. Since the proposed algorithm to obtain window func-
tions is quite general, it allows the use of several optimization
methods, such as global optimization techniques, e.g., genetic
algorithms, simulated annealing, or local optimization tech-
niques, e.g., Newton methods and gradient-based methods.
Even machine learning could be the focus of future investi-
gations. Besides, any new window obtained by optimization
procedures represents an improvement of the properties in
the frequency domain, when compared to that initial window
function guess.
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