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ABSTRACT Many existing Multi-objective Particle Swarm Optimizers (MOPSOs) may encounter diffi-
culties for a set of good approximated solutions when solving problems with more than three objectives.
One possible reason is that the diluted selection pressure causes MOPSOs to fail to generate a set of good
approximated Pareto solutions. In this paper, a new approach called the Hybrid Global Leader Selection
Strategy (HGLSS) is proposed to deal with many-objective problems more effectively. HGLSS provides two
global leader selection mechanisms: one for exploration and one for exploitation. Each particle (solution)
can choose one of these two leader selection schemes to identify its global best leader. An external archive is
adopted for maintaining the diversity of the found solutions and it contains the final solution reported at the
end of the run. The update of the external archive is based on both Pareto dominance and density estimation.
The performance of the proposed approach is compared with respect to nine state-of-the-art multi-objective
metaheuristics in solving several benchmark problems. Our results indicate that the proposed algorithm

generally outperforms the others in terms of Modified Inverted Generational Distance (IGD™) indicator.

INDEX TERMS Many-objective optimization, particle swarm optimization, leader selection.

I. INTRODUCTION

Multi-objective optimization involves optimizing two or
more (normally conflicting) objective functions simultane-
ously and it frequently arises in many application domains
such as business and engineering [1]-[3]. In general, mini-
mizing a multi-objective optimization problem (MOP) with
K objectives can be stated as:

min F(x) = (fi(x0), 2(x), 50, ..., fx (x)) ey

where x € WM is an M-dimensional set of decision variables.

A solution is non-dominated if none of the objective func-
tions can be further improved without degrading some of
the other objective values. Solution x dominates solution y,
denoted by x < y, if and only if fy(x) < fi(y) for all k =
1,2, ..., K and k* exists such that . (x) < fi«(y). Also, if no
x' exists in the decision space such that x” < x, x is defined as
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a Pareto optimal solution (POS). The Pareto set (PS) contains
all POSs and its image (i.e., their corresponding objective
function values) is called the Pareto front (PF), defined by
PF = {F(x)|x € PS}.

Over the past few decades, different Multi-objective evo-
lutionary algorithms (MOEAs) have been proposed and their
abilities in solving MOPs with few objectives (two or three)
have been shown [4]-[7]. However, several studies [8], [9]
have shown that the performance of most MOEAs (partic-
ularly those based on Pareto ranking) severely deteriorates
when dealing with problems having more than three objec-
tives (they are called many-objective optimization problems
(MaOPs)). As the number of objectives increases, the pro-
portion of non-dominated solutions increases sharply [10],
and thus the selection pressure provided by the Pareto optimal
relation is quickly diluted.

Some MOEAs have recently been proposed to handle
MaOPs. From among them, the multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [11], [12] is

189527


https://orcid.org/0000-0002-7753-0136
https://orcid.org/0000-0002-8435-680X
https://orcid.org/0000-0002-8598-9983

IEEE Access

M.-F. Leung et al.: Hybrid Leader Selection Strategy for Many-Objective Particle Swarm Optimization

the most popular. MOEA/D decomposes a MOP into a set of
single-objective sub-problems by using a scalarizing function
and these sub-problems are then simultaneously optimized.
A set of weight vectors must be assigned properly to get a set
of good approximated Pareto solutions. However, some stud-
ies have shown that MOEA/D with fixed weight vectors may
not be able to approximate the whole Pareto front [13], [14].
Another popular approach is to make use of hypervolume-
based MOEAs [15]-[17], but this approach may not be suit-
able for problems having more than five objectives [18] due
to the high computational cost involved in computing exact
hypervolume contributions.

Particle swarm optimization (PSO) is a population-based
metaheuristic inspired on the flight patterns of a flock of birds
[19], [20]. Over the years, a wide variety of Multi-Objective
Particle Swarm Optimizers (MOPSOs) have been proposed
[21]-[23]. The study from [24] analyzed the performance of
six popular MOPSOs over a set of benchmark problems. This
study showed that the Speed-constrained MOPSO (SMPSO)
[25] was able to outperform other MOPSOs in several MOPs
having 2 and 3 objectives, but this approach was not properly
tested on MaOPs.

There are, however, several proposals of MOPSOs for
properly dealing with MaOPs. For example, Britto and
Pozo [26] proposed the use of reference points to update the
archive to address the issue of scalability in MOPSOs when
solving MaOPs. They showed that the approximated Pareto
solutions of the proposed algorithm were close to the selected
reference points. On the other hand, Wickramasinghe and
Li [27] proposed a user-preference-based MOPSO which
does not rely on the use of dominance comparisons, but uses a
distance metric as its guidance method. This MOPSO is able
to converge close to the preferred regions, but such regions
have to be specified by the decision maker beforehand.

As described before, the main difficulty in MOPSOs is
the diluted selection pressure [10] that significantly affects
performance when the number of objectives increases. This
paper develops a new many-objective particle swarm opti-
mizer that can handle the convergence and diversity properly
at the same time by using a hybrid global leader selec-
tion strategy (HGLSS). Moreover, an external archive is
used to maintain both the diversity of the algorithm and
the approximated solutions. Our performance investigation
shows that the proposed algorithm outperforms other popular
multi-objective optimization algorithms in some benchmark
many-objective optimization problems in terms of the modi-
fied inverted generational distance (IGD™) indicator.

The remainder of this paper is organized as follows.
Section II introduces a few preliminary concepts on parti-
cle swarm optimization and multi-objective particle swarm
optimization. Section III presents our proposed algorithm
called MOPSO-HGLSS. Section IV shows the performance
investigation in four sub-sections. The first sub-section intro-
duces a performance measure called IGD' [28] which is
used in this paper to compare our results with respect to
those of other approaches. The second sub-section discusses

189528

the parameters settings in MOPSO-HGLSS. The third sub-
section compares our proposed HGLSS with respect to
other leader selection strategies under the framework of the
MOPSO algorithm. The last sub-section compares the per-
formance of MOPSO-HGLSS with respect to nine popu-
lar population-based metaheuristics (SMPSO [25], IMOPSO
[29], MOPSOhv [30], MaPSO [31], MOEA/D [32] NSGA-III
[33], DBEA [34], RVEA [35] and ARMOEA [36]), in terms
of IGD' with different scalable MOPs (using 3, 5, 8 and
10 objectives). Section V presents our conclusions and some
possible paths for future research.

Il. PRELIMINARIES

A. PARTICLE SWARM OPTIMIZATION

PSO was originally proposed by James Kennedy and Rus-
sell C. Eberhart in 1995 [19]. In PSO, a group of particles
(solutions) is randomly initialized within the valid ranges of
the decision variables. Then, the velocity of each particle is
initialized and the whole swarm starts its motion. At every
cycle, the movement of each particle is influenced by its
personal best position and the best global position in the
swarm. Let x be the position of the i particle at cycle ¢,
its velocity v! is updated as follows:

Vf“ = Vi + c1r1(pp,i — X)) + cora(xey — x1)  (2)
where w is the inertia weight; ¢; and ¢, are defined as con-
stants representing the cognitive and social factors, respec-
tively; 1 and rp are two random (continuous) variables
defined within the range [0, 1]; xpy,; is the personal best posi-
tion of the i" particle and Xgp is the global best position in the
swarm. The personal best xpp, ; of i'" particle is replaced by its
new particle if its current fitness value is better, i.e., if f (xl.’ ) <
S (pp,i), then xpp ; = xi’ . The global best of the swarm xgy, is
identified by finding the one with the smallest fitness value,
i.e., xgp = argminf (x}) for all i.

The position of the i particle is updated by using the
following equation:

41 _ ot ]
Xp=x v (€)

B. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION

In the standard PSO, the whole swarm tends to converge to
the global best leader because all particles in the swarm share
a common global best leader, but some modifications are
required for PSO to solve MOPs. The first modification is an
external archive, which is widely accepted for use with a (pre-
defined) fixed size as a means to store the non-dominated
solutions generated by the algorithm. Additionally, the exter-
nal archive should maintain a set of good non-dominated
solutions in terms of diversity and convergence. The second
modification is a global leader selection scheme, which can
be used to identify the global best leader for each particle
from the external archive. This mechanism is very important
in MOPSOs because it affects the flight trajectories of par-
ticles and hence affects their convergence and diversity. Due
to the importance of the leader selection scheme, a variety
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of proposals are currently available (see [37]-[40]). Among
them, WSum [41], NWSum [42] and crowding distance [37]
are the most popular ones. The scheme of WSum was intro-
duced for personal best selection by assigning a higher weight
to those criteria in which particle is already relatively good.
In [42], the author considered this scheme for global best
selection. For a particular M-dimensional particle x € RM
with an archive member y € Y where Y is the set of all
members in the archive, the weighted sum value is calculated
as follows and the archive member with the smallest weighted
sum value is chosen as the global leader of that particle.

Selx )
4
Z Z J?(x)

The scheme of NWSum is another version of WSum whose
particles identify their global best leaders using (4) but with
the maximum weighted sum value. The scheme of Crowding
Distance (CD) was proposed in [43] to estimate the density
of solutions and they are assigned with a CD value. The
boundary solutions are assigned with infinity CD values.
Then, the solutions are sorted according to the CD values in
descending order. The top 5% of the sorted solutions will be
randomly selected as leaders. The aforementioned strategies
are also applied to select the personal best in MOPSOs [42].
Besides, various other personal best selection strategies are
proposed and some of them are widely used. In [44], the per-
sonal best is randomly selected from an external archive.
This approach is computationally efficient and favors diver-
sity. However, it may lead to a lack of convergence [42].
In [29], [45], the personal best of each particle is updated
if the new aggregation value is better. Furthermore, muta-
tion is widely used to increase the exploratory capability of
MOPSOs and to prevent premature convergence.

WSum(y, x) =

Ill. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
WITH HYBRID GLOBAL LEADER SELECTION STRATEGY

A. MOTIVATION

As discussed previously, the global leader selection scheme
plays an important role which affects both the conver-
gence and the diversity of MOPSO and it is difficult to
maintain both when using a single global leader selection
scheme, especially when the number of objectives is large.
Thus we propose using a Hybrid Global Leader Selection
Scheme (HGLSS). Under our proposed scheme, two global
leader selection schemes are available for every particle
to choose: one is for exploration and the other one is for
exploitation. Each particle recognizes its global best based
on one of these two leader selection schemes. In this work,
we propose the use of two existing leader selection strategies
for particles. They are Euclidean Distance Strategy (EDS)
[46] and Space Expanding Strategy (SES) [47].

For exploitation, EDS is adopted to guide particles to the
closest archive members so that particles can reach their
leaders within a small number of generations. Under this
scheme, particles select their own global leaders from the
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external archive (this will be explained in Section III-B)
based on the Euclidean distance calculation. For K objectives,
the Euclidean distance (ED) of two solutions x; and xp is
given by:

K
ED(p.x) = | ) () = fi(x2))? ®)
k=1

To determine the global leader of a particle, the Euclidean
distance between the particle and all members in the external
archive is calculated and the archive member with the shortest
Euclidean distance (in objective space) is chosen as the global

leader of that particle, i.e.,

ED(y*, x) < ED(y, x) (6)

given that y = y1,y2,...,y¥, € Y where Y is the set of all
members in the archive and y* is the global leader of a particle
where y* € Y.

For exploration, SES is responsible for maintaining the
diversity of the MOPSO. SES attempts to push some particles
to the boundary leaders and new solutions are aimed to be dis-
covered close to the boundary leaders. In SES, the objective to
select a leader is random at the beginning. Then, all external
archive members are sorted according to their fitness values
using the selected objective. Finally, one archive member is
randomly selected from the top 5% of the sorted archive [48],
[49] and the selected member becomes the global leader of
the particle. This 5% is to weight the focus away from the
compromise solutions. Under SES, particles in the swarm
are randomly pushed toward to the boundary of the external
archive so that the spread of the particles can be increased.
Algorithm 1 shows the pseudocode of SES.

Algorithm 1 Pseudocode of SES
Input: External archive Y
1: Create a variable objindex for holding the objective
index;
2: Randomly select one of the objectives, save the objective
index to objlndex;
3: Sort the external archive members according to objective
objIndex in ascending order of objective values;
4: for each particle i do
5:  Randomly select a member from the top 5% of the
sorted archive as the global best xgp;
6: end for
Output: A global best xg

In our proposed schemes, particles select their leaders from
EDS or SES. The selection is based on the probability p:
A random number between 0 and 1 is generated. If the random
number is less than p, SES is selected; otherwise EDS is
selected. To maintain the ability of exploitation, p cannot
be too large (e.g., 0.1); otherwise, there may not be enough
particles to get enough solutions for achieving convergence.
Due to the importance of p, the effect of this parameter on the
overall performance will be investigated in Section IV-B.
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B. EXTERNAL ARCHIVE

An external archive is required in MOPSO-HGLSS to store
a set of good approximated Pareto solutions. The external
archive has four main duties: 1) store new non-dominated
solutions; 2) remove solutions if they become dominated;
3) select and remove archive members if the archive is
full; and 4) maintain the diversity of archive members.
In MOPSO-HGLSS, two mechanisms have been designed to
achieve these duties: 1) Pareto Dominance Selection (PDS)
(for the first two duties), and 2) Neighbor Factor Selection
(NFES) (for the last two duties).

Algorithm 2 Pseudocode of the Update of the External
Archive
Input: Particles at cycle ¢, i.e., xl? for all i; the external
archive Y*
: for each particle x; do
insert_x=0;
for each archive member y; € Y* do
if x! < y; then
Remove y; from ¥*;
insert_x=1;
elseif x/ 4 y; then
if archive Y* is not full then
insert_x=1;
else
Calculate the NFS values for each y; € Y*;
Set the NFS values of boundary archive mem-
bers to infinity;
13: Remove the archive member with the smallest
NES value;
14: insert_x=1;
15: end if
16: end if
17:  end for
18:  if insert_x==1 then
19: Insert x] to Y*;
20:  end if
21: end for
Output: Y*

R A A R o S

— — =
M2

PDS is widely adopted in multi-objective evolutionary
algorithms (see e.g., [50]): if a new solution dominates at least
one archive member, such archive member(s) will be removed
and the new solution will be inserted into the archive; other-
wise, the new solution will be discarded. If the new solution is
incomparable (s1 and s2 are incomparable if neither s1 4 s2
nor 52 4 s1, and s1 # s2) with the archive members (i.e., all
archive members and the new solution are non-dominated
solutions) and the archive is not full, the new solution will
be added into the archive. However, if the new solution is
incomparable with the archive members and the archive is
full, an additional criteria which estimates the density of
the archive members based on the Euclidean distance [42]
(we call it NFS in this paper) is used to determine which
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solution should be removed from the archive. Note that the
role of NFS is to maintain the diversity of archive members.
If b is the new solution, NFS removes a solution with the
smallest NF (Neighbor Factor) value among all solutions
where the NF value of a solution is defined as follows:

NF(y) = ED(y1, y) + ED(y2, y) @)

where ED(y1, y) < ED(y2,y) < ED(y, y)fory,yl,y2 € Y+
bandy € Y —yl, y2. The NF value of a solution indicates the
diversity of a solution among all archive members. If the NF
value of a solution is small, it means it is close to its neighbors
(i.e., y1 and y2) and thus the diversity is not good. If this
solution is removed, the diversity of all archive members will
increase. Note that the boundary members (i.e., solutions with
the smallest fitness value(s) in one or more objectives) will
not be considered for removal because they need to remain in
the archive to maintain a well-distributed Pareto front.

C. MUTATION OPERATOR

Mutation operators are widely used in MOPSOs to pre-
vent premature convergence and increase their exploratory
capabilities. Note that the mutation rate should not be too
high; otherwise, the overall performance of a MOPSO will
degrade. Our proposed algorithm adopts polynomial-based
mutation [51]. Let r be a random number uniformly dis-
tributed in [0, 1] and n,, be the index for polynomial-based
mutation, then, the i particle to be mutated is calculated at
iteration ¢ as follows:

X' = x{ +ng@ — x) ®)

where X, x are the upper and lower bounds of x!, 1, is defined
as:

[2r 4+ (1 = 2r)(1 — np)y et — 1, r<05
1 —[2(1 = r) +2(r — 0.5)(1 — nz)nm+l]ﬁ, r>0.5,

and

z
X Xi

X

|=

n = M=

=1

|&=

X—x

D. THE FULL MOPSO-HGLSS ALGORITHM

Algorithm 3 shows the pseudocode of the full MOPSO-
HGLSS algorithm (i.e., HGLSS is implemented in the
MOPSO algorithm). At the beginning, the external archive
is initialized along with the position, speed and best locations
of all particles. Then, the swarm is evaluated and the archive
is updated. Non-dominated particles will be added into the
archive. If the external archive is full, an archive member or a
non-dominated particle will be removed based on their NF
values. The following procedure will be repeated until the
maximum number of generations is reached: particles update
their velocities based on their global best and their personal
best values. The global best of each particle is determined
by using HGLSS while the personal best is updated if it is
dominated by the current position. If they are non-dominated
to each other, one of them will be randomly selected [42].
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Algorithm 3 Pseudocode of the MOPSO-HGLSS Algorithm
Input: An empty external archive ¥ = []
1: Set the iteration counter t = 1;
2: for each particle i do
3:  Initialize the position randomly within its allowable
boundaries;
Initialize personal best xp ; = x

4 "
5 Initialize its speed to zero vf = 6;
6:  Evaluation;
7: end for

8: Update the external archive Y

9: for 1 = 2 to the last generation do

10:  for each particle i do

11: Use HGLSS to generate xgp;
12: ifxl{ < Xpp,; then

13: Xpb,i = xl-l 5

14: else if rand > 0.5 then

15: Xpb,i = xl.t;

16: end if

17: Update the velocity using (2);
18: Update the position using (3);

19:  end for

20:  Mutation;

21:  Boundary;

22:  Evaluation;

23:  Update the external archive Y
24: t=t+1,

25: end for

Output: Y*

After updating the position of all particles, mutation occurs
with a designated probability to enhance the exploratory
ability of the proposed algorithm. To ensure particles moving
within the search space, bounds checking for all the particles
is conducted after updating the positions. If the decision vari-
able of a particle is smaller than the lower bound or larger than
the upper bound, then it will be assigned to the lower or upper
bound value. Finally, the evaluation of all particles is carried
out. Before proceeding to the next generation, the external
archive and the personal best of all particles are updated.

IV. PERFORMANCE COMPARISONS

This section introduces the performance measures used in the
performance comparison, investigates the parameters settings
of HGLSS, and compares HGLSS with respect to other pop-
ular algorithms.

A. PERFORMANCE MEASURES
As the convergence and the diversity of approximated Pareto
solutions are two main issues in multi-objective optimization,
we decided to adopt the Modified Inverted Generational Dis-
tance (IGD™) indicator [28].

The idea of using an inverted form of the Generational
Distance indicator was apparently proposed first by Bosman
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and Thierens [52], although it was first used with the name
of Inverted Generational Distance (IGD) in [53]. IGD is able
to measure both the convergence and the diversity of the
approximated Pareto solutions. Let PF* be a set of uniformly
distributed points sampled from the true Pareto front and Y*
be the set of approximated Pareto solutions. Note that Y = Y'*
at the end of the generations. IGD is defined as:

erPF* ED(b*’ x)
|PF*|

where ED(b*, x) < ED(y, x) for b* € Y* and all y € Y* and
|PF*| is the cardinality of PF*. The lower the IGD value is,
the better the approximated Pareto solutions will be.

IGD is one of the most popular indicators used for assess-
ing performance of multi-objective optimization algorithms
(see e.g., [33], [54]. However, IGD is Pareto non-compliant
[55], [56], which may cause misleading results. To make
IGD weakly Pareto compliant, the authors in [28] suggested
taking the Pareto dominance relation between the approxi-
mated solutions and a reference set into account. This means
that if an approximated solution is dominated by a reference
point, the Euclidean distance is adopted in (9). If they are
non-dominated with respect to each other, the minimum dis-
tance from the reference point to the region that is dominated
by the solution is calculated. The authors also showed that
the modified IGD is weakly Pareto compliant. For each test
instance in this paper, PF* contains 100,000 Pareto optimal
points which were generated uniformly for calculating the
IGD™ value of the solutions generated by the algorithms
under evaluation.

IGD(Y*, PF*) = ©)

B. PERFORMANCE INVESTIGATION OF HGLSS

This sub-section investigates the effect of p on the perfor-
mance of HGLSS in some optimization problems where p is
the probability that particles identify their global best using
either EDS or SES (i.e., our proposed HGLSS). DTLZ1 and
DTLZ2 are used: DTLZ1 has many local Pareto fronts and
it is used to test whether an algorithm can converge into
the true Pareto front, while DTLZ2 is used to investigate
whether an algorithm can maintain a good solution distri-
bution. In addition, WFG6, WFG7, WFG8 and WFG9 are
also used. All these tests were conducted using the mentioned
test problems with ten objectives. Each test was assigned a
specified value of p.

For each test, 30 independent runs were conducted. The
total number of evaluations was set to 80,000 for the DTLZ
test problems and 150,000 for the WFG test problems. The
size of the swarm and the external archive were set to 100.
The values of c¢; and ¢, were set to 2.5. The inertia weight
was set to 0.1, ,, = 20 and the mutation rate p,, was set
to 1/n, where n is the number of decision variables.

Figure 1 shows the change of the mean IGD™ value for
the obtained solutions when the value of p changes from
0 to 1. The figure shows that the mean IGD™ value of the
approximated Pareto optimal solutions for each chosen test
problem is the lowest when p = 0.1. The result meets
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FIGURE 1. The mean IGD value vs. p for (a) DTLZ1, (b) DTLZ2, (c) WFG6,
(d) WFG7, (e) WFG8 and (f) WFG9 with ten objectives.

the expectation discussed in Section III-A (i.e., EDS should
dominate SES). Otherwise, particles may possibly disturb
their original flights and the swarm may lose exploitation
ability for a large value of p. As p increases, the mean IGD™
value increases, which implies that the performance of the
convergence and the diversity of the algorithm get worse.

Based on the performance investigation of the mean IGD™
values on the selected test problems obtained by our proposed
algorithm with different probabilities, p = 0.1 is an appro-
priate setting for HGLSS and it will be used later on for the
rest of our experiments.

C. PERFORMANCE COMPARISONS AMONG HGLSS AND
OTHER STATE-OF-THE-ART LEADER SELECTION
STRATEGIES

This sub-section compares the performance of HGLSS with
five leader selection strategies by using 11 scalable test prob-
lems with different numbers of objectives. The five strategies
are crowding distance (CD) [37], WSum [41], NWSum [42],
SES only and EDS only (both SES and EDS are mentioned
in Section III-A). All these leader selection strategies are
implemented under the framework of the MOPSO algo-
rithm. Thus six such MOPSO algorithms are called MOPSO-
HGLSS, MOPSO-CD, MOPSO-Wsum, MOPSO-NWSum
MOPSO-SES and MOPSO-EDS, respectively. For each of
the compared algorithms, the size of the swarm and the
external archive are all set to 100. The values of ¢; and
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¢y are both set to 2.5. The inertia weight is set to 0.1,
Nm = 20 and the mutation rate p,, = 1/n. The 11 test
problems are (a) DTLZ1 and DTLZ2 from the DTLZ test
suite [57], and (b) WFGI1 to WFG9 from the WFG test
suite [58]. Note that DTLZX-Y refers to the DTLZX test
problem with Y objectives. For example, DTLZ1-10 refers
to DTLZI1 with ten objectives. For all instances, 30 inde-
pendent runs are conducted. The maximum number of eval-
uations of each algorithm is set to 80,000 for the DTLZ
test problems and to 150,000 for the WFG test problems.
Table 1 shows the mean (outside the parentheses) and the
standard deviation (inside the parentheses) of the algorithms
in terms of the mean IGD™ value for different MOPs with
different numbers of objectives. The best mean is shown
in boldface. Wilcoxon rank-sum test [59] at a 0.05 signifi-
cance level was conducted between the proposed algorithm
and the five other MOPSOs (with different leader selection
schemes), respectively. In Table 1, ,  and = are marked
next to the values of an algorithm in the tables to denote
that the performance of the algorithm is significantly better,
worse or has no significant difference with respect to that of
MOPSO-HGLSS. Table 2 summarizes the results of the test
in terms of IGD™. With respect to IGD™, MOPSO-HGLSS
obtained better results in 191 out of 220 performance compar-
isons. From the results, we conclude that HGLSS performs
better that the other compared leader selection strategies with
regards to exploration and exploitation under the framework
of MOPSO.

D. PERFORMANCE COMPARISONS OF HGLSS-MOPSO
WITH OTHER ALGORITHMS

This sub-section compares the performance of HGLSS-
MOPSO with respect to that of nine popular multi-objective/
many-objective algorithms using 19 scalable test problems
with different numbers of objectives (DTLZ1, DTLZ2,
WFG1 to WFG9, and MaF1 to MaF8 [60]). For all instances,
30 independent runs were conducted. The maximum number
of evaluations of each algorithm was set to 80,000 for the
DTLZ test problems, 150,000 for the WFG and MaF test
problems.

The compared algorithms can be classified into two
groups: MOPSOs and MOEAs. The group of MOPSOs
consists of SMPSO [25], dMOPSO [29], MOPSOhv [30],
MaPSO [31] and the proposed algorithm, while the other
group consists of MOEA/D [32], NSGA-III [33], DBEA [34],
RVEA [35] and ARMOEA [36]. In [25], the authors found
that the speed of the particles in MOPSO was sometimes
too high, making the particles move directly towards the
boundaries. To tackle this problem, the authors presented
a modified MOPSO algorithm called Speed-constrained
Multi-objective PSO (SMPSO) that limits the velocities of
the particles. dIMOPSO uses decomposition to select lead-
ers and update the external archive. In [30], the authors
proposed a hypervolume-based MOPSO called MOPSOhv.
This algorithm uses the hypervolume contribution of the
archived solutions for selecting the global best and the
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TABLE 1. Performance comparisons of MOPSOs with different leader selection strategies in terms of the mean IGD* value.

M MOPSO-HGLSS MOPSO-CD  MOPSO-WSum MOPSO-NWSum

3 4.73E-1(3.8E-2) 5.21E-1(1.2E-2)} 4.85E-1(1.0E-2)= 4.79E-1(8.9E-3)=
5 5 5.52E-1(3.6E-2) 6.58E-1(9.7E-3)f 6.34E-1(1.3E-2)f 6.12B-1(1.6E-2)T
8 1.31E+0(3.7E-2) 1.60E+0(7.2E-3)f 1.38E+0(8.2E-3)= 1.32E+0(1.5E-2)=
10 3.53E+0(5.9E-2) 4.16E+0(1.9E-2)f 4.11E+0(8.5E-3)T 4.08E+0(9.2E-3)f
3 2.22E-2(3.3E-3) 2.01E-1(7.3E-3)f 1.56E-1(4.6E-3)f 2.10E-1(9.8E-3)f
5 5.41E-2(5.9E-3) 2.42E-1(6.1E-3)f 2.08E-1(6.9E-3)f 2.10E-1(8.2E-3)f

MOPSO-SES ~ MOPSO-EDS
4.79E-1(6.2E-3)= 4.59E-1(2.3E-2)}
6.27E-1(2.6E-3)T 5.60E-1(6.8E-3)=
1.36E+0(6.2E-3)= 1.29E+0(3.8E-2)=
4.05E+0(2.8E-2)T 3.50E+0(8.8E-2)=
2.52E-2(4.1E-3)t 3.12E-2(6.6E-3)F
7.18E-2(7.4E-3)f 9.78E-2(5.4E-3)f

WEF

WFG2

8 7.78E-2(8.2E-3) 4.55E-1(3.2E-2)} 4.11E-1(4.8E-2)} 3.67E-1(6.1E-2)f

1.63E-1(1.2E-2)}

3.46E-1(3.9E-2)}

10 1.36E-1(2.9E-2) 1.81E+0(1.2E-1) 1.37E+0(2.8E-1) 1.28E+0(1.7E-1)T

4.10B-1(3.7E-2)f

[ 44E+0(1.9E-)f

3 3.87E-2(4.8E-3) 3.00E-1(2.4E-2)t 2.37E-1(4.7E-2)t 2.82E-1(4.3E-2)}

8.67E-2(6.8E-3)}

1.03E-1(1.8E-2)}

5 2.28E-1(4.8E-2) 1.65E+0(2.6E-1)t 9.65E-1(1.3E-1)T 1.32E+0(2.1E-1)f

5.18E-1(5.6E-2)}

4.51E-1(7.9E-2)}

WEG3

8 4.60E-1(6.3E-2) 1.34E+1(2.2E+0)T [.02E+1(1.1E+0) 1.21E+1(3.1E+0)]

3.27E+0(1.0E+0)f

4.18E+0(1.3E+0)T

10 5.51E-1(8.2E-1) 4.93E+1(6.0E+0)t 3.99E+1(7.1E+0)} 4.01E+1(1.1E+1)}

T.OIE+1(5.6E+0)

2.16E+1(5.1E+0)T

3 3.01E-2(5.8E2)

1.23E-1(1.2E2)f

1.25E-1(2.0E-2)}

L.I7E-1(1.9E-2)f

LOIE-1(1.7E-2)f

6.26E-2(9.8E-3)f

5 9.98E-2(8.3E-2)

2.59E-1(3.5E-2)}

2.63E-1(3.9E-2)

2.33E-1(5.1E-2)}

3.55E-1(4.8E-2)}

1.99E-1(2.8E-2)}

8 1.26E-1(1.0E-2)

WFGA

4.63E-1(7.8E-2)}

4.13E-1(7.8E-2)}

4.37E-1(7.3E-2)}

6.59E-1(3.2E-2)f

4.30E-1(6.9E-2)}

10 1.51E-1(1.3E-2)

7.65E-1(9.9E-2)f

6.17E-1(1.3E-Df

6.02E-1(7.1E-2)f

9.13E-1(7.9E-2)}

6.88E-1(8.2E-2)f

3 4.38E-2(1.8E-3)

7.14E-2(7.9E-3)}

9.65E-2(6.6E-3)}

9.88E-1(1.0E-2)t

4.86E-2(1.1E-3)}

6.07E-2(4.6E-3)}

5 1.11E-1(4.9E-3)

1.53E-1(8.6E-3)f

1.50E-1(7.1E-3)f

1.58E-1(7.9E-3)f

1.16E-1(5.1E-3)=

1.39E-1(7.1E-3)f

WEGS5

8 1.53E-1(6.9E-3)

2.22E-1(1.9E-2)}

2.12E-1(1.7E2)f

2.09E-1(3.1E-2)}

1.59E-1(8.1E-3)=

2.00E-1(2.0E-2)}

10 1.91E-1(9.1E-3)

2.51B-1(3.4E-2)f

236E-1(4.1E-2)f

2.34E-1(1.8E-2)f

T.98E-1(1.1E-2)=

2.04E-1(2.3E-2)f

3 5.72E-2(2.1E-3)

6.53E-2(4.1E-3)t 5.80E-2(1.2E-3)=

5.76E-2(1.8E-3)=

5.74E-2(1.7E-3)=

5.74E-2(1.4E-3)=

5 1.20E-1(1.1E-2)

1.74E-1(2.8E-2)

1.39E-1(1.1E-2)f

1.43E-1(1.6E-2)F

1.18E-1(9.3E-3)=

1.20E-1(13E-2)=

WFEG6

8 1.52E-1(9.6E-3)

2.63E-1(2.9E-2)t

2.53E-1(4.3E-2)}

2.08E-1(1.IE-2)f

2.15E-1(4.6E-2)f

2.10E-1(6.1E-2)f

10 1.66E-1(9.8E-3)

2.99E-1(3.7E-2)}

2.62E-1(2.1E2)f

2.29E-1(2.0E-2)}

2.46E-1(1.6E-2)}

2.35E-1(2.5E-2)}

3 2.88E-2(8.7E-4)

1.66E-1(1.1E-2)f

1.73E-1(1.9E-2)F

1.48E-1(1.2E-2)t

7.01E-2(1.6E-2)f

6.00E-2(5.6E-3)}

5 9.92E-2(8.3E-3)

2.88E-1(2.1E2)T

2.79E-1(2.3E2)f

2.54E-1(2.7E2)f

2.11E-1(6.8E-3)§}

1.84E-1(9.9E-3)§}

o~
O
; 8 1.66E-1(9.8E-3)

4.01E-1(2.9E2)t

3.68E-1(3.3E-2)T

3.58E-1(3.1E-2)T

3.00E-1(2.1E-2)t

221E-1(1.8E2)f

10 1.78E-1(9.3E-3)

4.99E-1(3.1E-2)f

4.68E-1(3.7E-2)

436E-1(2.7TE-2)f

3.52E-1(1.9E-2)f

251E-1(1.6E-2)f

3 6.48E-2(4.1E-3)

1.32E-1(1.3E2)t

1.75E-1(6.8E-3)}

1.69E-1(7.1E-3)t

LOIE-1(1.IE2)t

9.76E-2(6.5E-3)f}

55 1.18E-1(9.8E-3)

1.85E-1(1.9E-2)f

1.63E-1(7.9E-3)f

1.59E-1(6.5E-3)f

2.03E-1(84E-3)f

L47E-1(9.1E-3)f

‘g 8 1.71E-1(7.6E-3)

2.35E-1(2.3E2)f

221E-1(1.9E2)f

224E-1(1.8E2)f

2.81E-1(7.3E-3)}

2.12E-1(5.5E-3)}

10 2.02E-1(9.2E-3)

291E-1(2.1E2)t

2.77E-1(3.6E-2)t

2.80E-1(2.0E-2)f

3.38E-1(1.5E-2)T

248E-1(1.3E2)f

3 4.39E-2(3.1E-3)

5.28E-2(1.1E-2)f

3.76E-2(1.2E-3)f 4.23E-2(2.8E-3)=

4.40E-2(2.6E-3)=

4.37E-2(1.7E-3)=

5 1.08E-1(9.8E-3)

1.76E-1(4.8E-2)t

1.26E-1(1.4E-2)t

1.24E-1(1.IE2)T

1.05E-1(8.5E-3)=

1.07E-1(9.1E-3)=

(@)}
©
g 8 5.46E-1(2.1E-2)

9.01E-1(2.7E-Df

6.04E-1(5.2E-2)

6.48E-1(2.1E-D)f

5.43E-1(2.3E-2)=

548E-1(3.1E2)=

10 1.38E+0(1.5E-2) 2.68E+0(9.5E-1)1 1.56E+0(6.8E-1)} 1.60E+0(8.1E-1)f

1.35E+0(1.8E2)=

1.38E+0(1.2E-2)=

3 3.29E-2(7.9E-4) 3.51E+1(L.4E+1)f 3.89E+1(1.6E+1)f 4.11E+1(1.0E+1)f

1.20E+0(4 8E+0)T

5.81E-2(5.7E-3)

N'5 9.13E-2(3.4E-3) 3.57E+1(1.2E+D)f 4.11E+1(1.0E+ DT 3.68E+1(I.IE+1)f

5.21E+0(7.0E+0)f

121E-1(1.3E2)F

58 1.54E-1(6.5E-3) 3.66E+1(1.IE+1)f 4.18E+1(1.1E+1)f 3.43E+1(1.2E+1)T

9.28E+0(9.1E+0)f

227E-1(LIE-Df

10 1.86E-1(1.2E-2) 4.10E+1(1.IE+1)T 4.32E+1(7.4E+0)f 3.42E+1(1.2E+1)T

771E+0(1.0E+ )T

2.87E-13.5E-2)f

3 2.81E-2(3.1E-3) 7.58E-2(7.9E-3)} 1.22E-1(2.1E-2)7 9.79E-2(3.1E-2)}

4.82E-2(3.0E-3)}

3.51E-2(2.8E-3)f

5 1.35E-1(9.1E-2) 3.01B-1(14E-2)f 3.07E-1(1.6E-2)f 3.13E-1(2.8E-2)f 2.54E-1(3.7E-2)f
8 2.51E-1(2.1E-2) 4.99E-1(2.1E-2)f 5.38E-1(2.3E-2)f 4.81B-1(3.1E-2)f 4.26E-1(2.6E-2)
10 3.49E-1(1.9E-2) 5.71E-1(2.6E-2)f 5.99E-1(3.1E-2)f 5.94E-1(3.6E-2)f 5.68E-1(2.7E-2)f

1.53E-1(2.3E-2)f
3.04E-1(2.9E2)f
391E-1(2.1E-2)f

DTLZ2

TABLE 2. Summary of the Wilcoxon rank-sum test results for the selected leader selection strategies with respect to the mean IGD* value.

MOPSO-CD MOPSO-WSum MOPSO-NWSum MOPSO-SES MOPSO-EDS

i 44 40 40 33 34
i 0 1 0 0 1
= 0 3 4 11 9

1, I and = denote the number of times the performance of the corresponding algorithm is significantly better, worse or has no
significant difference with respect to that of the proposed algorithm, respectively.

personal best for every particle in the swarm. In [31], the
particle swarm optimizer with the use of scalar projections,

is extended for many-objective optimization. MOEA/D
is a popular decomposition-based MOEA proposed by
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FIGURE 2. Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA,
(h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG2-3, respectively.

Li and Zhang [32]. In MOEA/D, a MOP is decomposed into
a set of single-objective problems through the use of a scalar-
izing function, and these sub-problems are simultaneously
optimized using neighborhood search. NSGA-III, DBEA
and RVEA are decomposition-based algorithms which deal
with many-objective problems, whereas ARMOEA is an
indicator-based algorithm for many-objective optimization.

For SMPSO, both the swarm size and the archive size are
set to 100. The inertia weight is set to 0.1. The values of
c1 and ¢, are assigned randomly between 1.5 and 2.0. The
mutation rate is set to 1/n. For dIMOPSO, its inertia weight
is assigned randomly between 0.1 and 0.4. The values of
c1 and ¢y are assigned randomly between 1.5 and 2.0. The
swarm size is set to 100 and the age threshold is set to 2. For
MOPSOhv, both the swarm size and the archive size are set to
100. The inertia weight is set to 0.4. The values of ¢; and ¢;
are set to 1.0. The mutation rate is set to 0.5. MOEA/D uses
the differential evolution crossover. The crossover probability
and the differential weight are set to 1.0 and 0.5, respectively.
The neighborhood size is set to 20. The population size of
NSGA-III, DBEA and RVEA are set to 105. The population
size of MaPSO is set to 92. For ARMOEA, the population size
is set to 105. In HGLSS, the size of the swarm and external
archive are set to 100. The values of ¢; and ¢, are set to 2.5.
The inertia weight is set to 0.1. The mutation rate is set to 1 /n
and its distribution index is set to 20.

Figures 2 to 7 show some approximated Pareto fronts of
the median run produced by the compared algorithms for dif-
ferent MOPs (with three objectives), whereas Figures 8 to 18
show the parallel coordinates of Pareto fronts produced by
the compared algorithms for different MOPs (with 10 objec-
tives). Tables 3 and 5 show the mean (outside the parentheses)
and the standard deviation (inside the parentheses) of the

189534

selected algorithms in terms of the mean IGD™ value for dif-
ferent MOPs with different numbers of objectives. The best
mean is shown in boldface. The Wilcoxon rank-sum test at a
0.05 significance level was conducted between the proposed
algorithm and the nine popular multi-objective optimization
algorithms that we selected, respectively. In Tables 3 and 5,
t, T and = are marked next to the values of an algorithm in
the tables to denote that the performance of the algorithm
is significantly better, worse or has no significant difference
with respect to that of MOPSO-HGLSS.

WFG1 is separable and unimodal. Its Pareto optimal front
is both concave and convex. In Table 3, it is shown that
MOPSO-HGLSS always outperforms SMPSO, dMOPSO
and MOPSOhv when WFGI is scaled from three to ten
objectives (3, 5, 8 and 10 objectives) in terms of the mean
IGD™ value. However, MaPSO and ARMOEA outperform
the proposed algorithm. MOEA/D performs better than
MOPSO-HGLSS in WFG1-3 but it is outperformed when
the number of objectives is 5, 8 and 10. For DBEA, it out-
performs the proposed algorithm when using 3 and 8 objec-
tives, but is outperformed when the number of objectives
is 10. For NSGA-III, it outperforms the proposed algorithm
when the problem has 3 objectives, but it is outperformed
when the number of objectives is 5, 8 and 10. For RVEA,
it has similar performance with the proposed algorithm when
using 3 objectives, while the proposed algorithm outperforms
RVEA when the number of objectives is 5, 8 and 10.

The Pareto optimal front of WFG2 is disconnected and
convex. Figure 2 shows the approximations of the true Pareto
front of this problem produced by DBEA, NSGA-III, RVEA,
ARMOEA and our proposed algorithm. Figure 9 shows
how both SMPSO and our proposed algorithm can generate
well-distributed Pareto fronts. Regarding the mean IGD™
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FIGURE 3. Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA,

(h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG4-3, respectively.

FIGURE 4. Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA,

(h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG5-3, respectively.

value, our proposed algorithm performs better than the others
when the problem is scaled up to 8 and 10 objectives.

The Pareto optimal front of WFG3 is degenerated and lin-
ear. Note that MOPSO-HGLSS performs better than SMPSO,
MaPSO, DBEA and ARMOEA when WFG3 was scaled
from 3 to 10 objectives. Although the performance of
MOPSO-HGLSS is worse than that of dMOPSO, MOPSOhv,
MOEA/D, NSGA-III and RVEA in some test instances,
it outperforms them when the problem is scaled up to 8 and
10 objectives.

WFG4 is multimodal and its Pareto optimal front is con-
cave. It should be noted that our proposed algorithm outper-
forms MaPSO and ARMOEA when the problem is scaled

VOLUME 8, 2020

from three to ten objectives in terms of the mean IGD™
value. DBEA and RVEA outperform the proposed algorithm
when the problem has 3 and 5 objectives, but they are
outperformed when the problem has 8 and 10 objectives.
Besides, our proposed algorithm outperforms dMOPDO,
MOPSOhv, MOEA/D and NSGA-III when the problem has
8 and 10 objectives. Figure 11 shows that the performance of
our proposed algorithm improves when the problem is scaled
up to 10 objectives.

WFGS is deceptive and separable. Its Pareto optimal
front is concave. Regarding IGD™, our proposed algo-
rithm performs better than SMPSO, dMOPSO, MOPSOhv,
MaPSO and MOEA/D when the problem is scaled from 3 to
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FIGURE 5. Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA,
(h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG6-3, respectively.

(h)

FIGURE 6. Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA,
(h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ1-3, respectively.

10 objectives in terms of mean IGD™ value. It also outper-
forms DBEA and NSGA-III when the problem has 10 objec-
tives. Note that RVEA has similar performance than our pro-
posed algorithm when the problem has 3 and 10 objectives.
Although Figure 4 shows that DBEA, NSGA-III, RVEA and
ARMOEA produce better-distributed Pareto fronts than our
proposed algorithm, Figure 12 shows that the performance of
our proposed algorithm improves when the problem is scaled
up to 10 objectives. Additionally, Table 3 shows that our
proposed algorithm obtains the smallest IGD™ value when
the problem has 10 objectives.

189536

WFG®6 is non-separable and unimodal. Its Pareto optimal
front is concave in shape. The performance of our pro-
posed algorithm is not satisfactory when the problem has
3 and 5 objectives, respectively. However, as the problem
is scaled up, MOPSO-HGLSS outperforms the other algo-
rithms in terms of IGD™. Similar to WFGS, Figure 5 shows
that DBEA, NSGA-III, RVEA and ARMOEA can generate
better-distributed Pareto fronts than our proposed algorithm.
However, Figure 13 shows that the performance of our pro-
posed algorithm improves when the problem is scaled up to
10 objectives. Additionally, Table 3 shows that our proposed
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FIGURE 7. Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA,
(h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ2-3, respectively.
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FIGURE 8. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG1-10, respectively.
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FIGURE 9. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhvy, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG2-10, respectively.

algorithm obtains the smallest IGD™ value when the problem WFG7 is separable, unimodal and parameter depen-
has 10 objectives. dent. Its Pareto optimal front is concave. Regarding IGDT,
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FIGURE 10. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG3-10, respectively.
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FIGURE 11. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG4-10, respectively.
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FIGURE 12. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG5-10, respectively.

our proposed approach outperforms the compared algorithm our proposed algorithm can generate well-distributed Pareto
except for NSGA-III and RVEA. RVEA has a similar perfor- fronts when the problem has 10 objectives.

mance to that of our proposed algorithm when the problem WFG8 is unimodal and parameter dependent but non-
has 3 and 5 objectives. Figure 14 shows that both SMPSO and separable. Its Pareto optimal front is concave. Although
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FIGURE 13. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG6-10, respectively.
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FIGURE 14. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG7-10, respectively.
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FIGURE 15. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG8-10, respectively.

the performance of our proposed algorithm is not satisfac- generate a well-distributed Pareto front when the problem has
tory in WFG8-3, WFGS8-5 and WFGS-8 in terms of IGD™, 10 objectives.

its performance improves when the problem is scaled up WFG9 is non-separable, multimodal, parameter dependent
to 10 objectives. As shown in Figure 15, our proposed and deceptive. Its Pareto optimal front is concave. Table 3
algorithm is not the best optimizer whereas SMPSO can shows that the scalability of our proposed approach is not as
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FIGURE 16. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG9-10, respectively.
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FIGURE 17. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ1-10, respectively.
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FIGURE 18. The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO,
(f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ2-10, respectively.

good as that of the other algorithms under WFG9 in terms SMPSO can generate a well-distributed Pareto front when the
of mean IGD™ value. Furthermore, Figure 16 shows that problem has 10 objectives.
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TABLE 3. Performance comparisons of different algorithms in terms of the mean IGD* value for DTLZ1, DTLZ2, and WFG1 to WFGS9.
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5.29E-1(5.8E-3)7 6.81E-1(4.2E-2)7 2.21E-1(8.2E-2)f

4.30E-1(1.3E-2)f

391E-12.0E-2)] 4.36E-1(2.6E-2)f

4.68E-1(4.6E-2)=

1.47E-1(9.0E-4)F

5 5.52E-1(3.6E-2)

7 44E-1(6.0E-3)

6.85E-1(8.1E-3)7 7.02E-1(1.8E-1)] 3.55E-1(8 8E-2)}

5.90E-1(1.1E-2)T

5.43E-1(7.4E-2)= 7.68E-1(3.2E-2)T

6.10E-1(1.9E-2)T

4.74E-1(5.2E-3)1

WEG1
=

1.31E+0(3.7E-2)

1.62E+0(1.0E-2)1 1.73E+0(3.8E-2)}

1.50E+0(5.6E-2)

7.03E-1(2.6E-1)] 1.43E+0(3 5E-2)T

9.96E-1(5.76-2)1 1.70E+0(5.9E-2)1

T42E+0(6.0E-2)

1.06E+0(2.9E-2) 1

=)

3.53E+0(5.9E-2)

4.20E+0(2.0E-2)7 4.25E+0(6.1E-2)T

3.68E+0(1.9E-1)T

8.09E-1(2.4E-1)] 3.86E+0(2.3E-1)T

4.27E+0(2.4E+0)T 4.18E+0(1.7E-1)T

3.G7E+0(1.8E-1)T

1.59E+0(4.7E-2)F

2.22E-2(33E-3)

5.11E-2(8.3E-3)t 2.69E-2(3.3E-3)}

3.29E-2(8.6E-3)t

1.28E-1(7.9E-3)1 2.18E-2(2.7E-3)=

345B-2(3.1E-3)7 2.87E-2(3.0E-3)t

337E-2(3.2E-3)t

1.65E-1(8.7E-4)1

541E-2(5.9E-3)

[71E-1(2.6E-2)T 5.50B-2(3.6E-3)=

4.42E-2(1.3E-2)1

344E-1(1.1E-2)T 5.090E-2(1.2B-2)f

L12E-13.7E-2)f 9.15E-2(3.5E-2)f

550E-2(8 4E-3)=

5.04E-1(2./E-3)T

WFG2
oo| | w

7.78E-2(3.2E-3)

2.04E-1(4.0E-2)T 1.I4E-1(Z0E-2)1

S39E-2(2.1E-2)f

Z01E-1(9.0E-3)] 1.20E-1(3.5E-2)1

2.99E-1(0.2E-2)f L4SE-1(4.9E-2)f

174E-1(54E-2)

T.O9E+0(2.7E-2)

S

1.36E-1(2.9E-2)

5.16B-1(LIE-1)T 1.75E-1(45E-2)

T49E-12.1E-2)f

494E-1(9.2E-3)] 3.46E-1(13E-D)T

3AIE-1(7.0E-2)f L77E-1(65E-2)f

6.65E-1(22E- 1)

[ 37E+02.8E-2)f

3.87E-2(4.8E-3)

7.39E-2(1.6E-2)t 3.37E-2(5.1E-3)}

1.56E-2(8.8E-3)§

T.01E-1(3.2E-3)F 1.29E-2(1.2E-3)f

4.38E-2(7.0E-3) 3.87E-2(6.0E-3)=

8.14E-2(9.0E-3)f

T.11E-1(8.0E-3)T

2.28E-1(4.8E-2)

499E-1(3.7E-2)f 2.27E-1(25E-2)=

2.41E-2(5.0E-3)f

4.62E-1(12E-2)T 1.06E-1(2.7E-2)f

5.00E-1(2.6E-4)f 1.70E-1(2.7E-2)%

1.89E-1(3.6E-2)F

6.83E-1(4.9E-2)

oof L] W

4.60E-1(6.3E-2)

WFG3

450E+0(6.2E-1)f 7.06E-1(2.0E-1)T

1.33E+0(4.0E-1)T

9.18E-1(1.4E-2) 5.25E-1(9.5E-2)1

5.13E-1(1.7E-2)t 2.19E+0(8.2E-1)}

1.75E+1(6.1E+0)T

2.27E+0(1.7E-1)T

S

5.51E-1(8.2E-2)

1.80E+1(3.2E+0)T 2.66E+0(1.4E+0)T

7 0BE+0(1 .8E+0)

1.17E+0(1.0E-2)1 8.77E+0(3.9E+0)}

7.38E-1(1.7E-1)1 8.75E+0(2.9E+0)}

1.36E+2(3.9E+1)T

3.32E+0(1.6E-1)T

3.01B-2(5.8E-3)

552B-2(1.9E-3)7 4.73E-2(13E-3)

4.97E-2(1.0B-2)T

2.02B-1(2.8E-3)t 4.44E-2(4.0B-3)T

2.78B-2(1.2E-3)7 2.10E-2(2.8E-4)}

2.36E-2(8.6E-4)f

221B-1(3.5E-5))1

9.08E-2(8 3E-3)

oo | W

931E-2(6.5E-3)] 1.05E-1(5.0E-3)=

351E-12.8E-Df

T.03E+0(1.9E-2) 8.69E-2(9.8E-3)=

4.90E-2(13E-2)f 1.55E-13.7E-2)f

5.98E-2(7.5E-3)%

1.23E+0(6.4E-4)t

1.26E-1(1.0E-2)

WFG4

T.29E-1(9.0E-3)= 4.26E-1(1.4E-Df

379E-1(2.5E-D)f

249E+0(3 3E-2)f 2.04E-1(9.7B-2)T

152E-1(72E-2)f 2.76E-1(1L.OE-Df

ZI5E-1(1.5E-Df

3 54E+0(72E-3)T

S

T51E-1(1.3E-2)

[56E-1(1.4E-2)= 5.75E-1(14E-)T

436E-1(22B-1)T

342E+0(3 3E-2)T 1.86E-1(5.2B-2)T

[.80E-1(6.7E-2) 527E-1(LIE-Df

6.88E-1(3.0E- 1)1

5.88E+0(1 3E-2)1

4.38E-2(1.8E-3)

6.01E-2(3.9E-3)7 5.70E-2(2.4E-4)

8 44E-2(1.6E-2)T

1.98E-1(7.6E-3)f 5.81E-2(2.2E-3)T

429E-2(11E-3)= 4.16E-2(1.7E-4)}

4.43E-2(1.9E-4)=

4.20E-2(1.1E-5)f

T.11E-1(4.9E-3)

1.46E-1(5.5E-3)1 1.23E-1(3.7E-3)

2.05E-1(1.IE-1)T

9.96E-1(2.2E-2)1 1.17E-1(6.4E-3)T

386E-1(1.1E-3)T 1.28E-1(1.6E-2)

6.97E-2(6.8E4)T

1.22E+0(1.3E-4)

WEG5
| | w

1.53E-1(6.9E-3)

1.73E-1(1.2E-2)1 2.08E-1(4.2E-2)

2.58E-1(14E-1)T

2.28E+0(2.7E-2)1 2.69E-1(9.7E-2)T

1.05E-1(5.2E-3); 1.88E-1(3.9E-2)

1.23E-1(1.8E-3)}

3.53E+0(7.4E-3)

=)

1.91E-1(9.1E-3)

2.02E-1(8.7E-3)1 2.34E-1(6.1E-2)

2.58E-1(1.IE-1)T

3.12B+0(1.6E-2)T 3.05E-1(1.1E-1)T

3.87E-1(1.7E-8)t 3.73E-1(9.5E-2)

1.99E-1(8.5E-3)=

5.81E+0(2.5E-2)

5.72B-2(2.1E-3)

528B-2(44E-3)7 4.11E-2(1.0E-3)f

4.00E-2(3.7E-3)f

6.96E-2(5.9E-3)1 5.23E-2(5.7B-3)f

432E-2(1.8E-3)f 3.60E-2(23E-3)f

3.87E-2(3.7E-3)%

438E-2(3.5E-3)f

120E-1(1.1E-2)

[31E-1(60E-3) 1.22B-1(58E-3)=

221E-1(1.2E-Df

T.OSE+0(2.1E-2)T 1.I5E-1(9.8E-3)=

T.O9E-1(2.6E-2)] 142E-1(1.9E-2)f

6.50E-2(2.6E-3)]

[ 21E+0(7.6E-4)

WFG6
oo| tn| w

1.52E-1(9.6E-3)

T.60E-1(6.6E-3)= 237E-1(7.8E-2)f

251E-1(1.3E-Df

2.30E+0(3.3E-2)1 1.78E-1(6.0E-2)=

T72E-I(IIE-1)= 2.48E-1(LIE-)T

16IE-1(52E-2)=

3.53E+0(9.9E-3)t

S

T.66E-1(9.8E-3)

173E-1(6.5E-3)7 2.53E-1(1.OE-Df

2.85E-1(1L4E- DT

336E+0(3 3E-2)f 3.27E-1(13B-)T

349E-1(1.0E-T 6.18E-19.5E-2)f

2.07E-1(1.0E-DT

580E+0(3 3E-2)f

2.88E-2(8.7E-4)

7.41E-2(5.4E-3)t 4.94E-2(1.2E-3)

4.05E-2(3.3E-3) 1

1.92E-1(5.2E-3)1 4.10E-2(1.6E-3)}

3.18E-2(1.0E-3)t 2.91E-2(8.6E-4)=

2.99E-2(8.4E-4)=

2.21E-1(3.9E-5)t

9.92E-2(3.3E-3)

1.67E-1(5.2E-3)1 1.45E-1(4.7E-3)

240E-1(1.3E-1)T

1.01E+0(1.9E-2)f 1.16E-1(7.1E-3)T

1.36E-1(2.7E-2)t 1.40E-1(2.4E-2)

9.95E-2(6.4E-3)=

1.23E+0(1.3E-3)

WEG7
| | w

1.66E-1(9.8E-3)

2.02E-1(5.4E-3) 2.50E-1(4.0E-2)

2A48E-1(1.IE-1)T

241E+0(3.4E-2)T 1.89E-1(3.4E-2)T

3.15E-19.76-2)f 1.83E-1(1.9E-2)

1.71E-1(1.9E-2)}

3.55E+0(1.7E-2)

S

1.78E-1(9.3E-3)

2.17B-1(8.2E-3)f 2.52E-1(3.3E-2)

2.16E-1(7.1E-2)}

335B+0(2.4E-2)1 2.91E-1(8.5E-2)T

340E-1(84E-2)f 3.06E-1(4.9E-2)

1.89E-1(2.4E-2)T

5.91E+0(9.4E-2)

6.48E-2(4.1E-3)

9.98E-2(5.7E-3)1 7.96E-2(3.0E-3)

7.53E-2(4.5E-3)T

1.94E-1(4.6E-3) 5.96E-2(25E-3)%

6.26E-2(14E-3)= 5.55E-2(2.0B-3)f

6.42E-2(4.6E-3)=

2.69E-1(2.8E-3)T

T.I8E-1(9.8E-3)

T.67E-1(8.0E-3)f 1.60E-1(6.0E-3)f

T31E-1(14B-2)T

T.05E+0(2.4E-2)T 1.OSE-1(75B-3)f

2.86E-1(2.0E-)T 2.03E-1(1.7E-2)f

9.79E-2(1.7TE-2)}

T.22E+0(8.0E-4)f

WFG8
oo| tn| w

171E-1(7.6E-3)

1.88E-1(1.0E-2)t 2.08E-1(2.5E-2)}

20IE-I(LIE-Df

2.56E+0(3 3E-2)f 1.28E-1(12E-2)f

3.98E-1(6.6E-2) 427E-1(14E-Df

6.08E-1(1.8E-1)T

3.61E+0(22E-2)T

S

2.02E-1(9.2E-3)

2.06E-1(1.4E-2)= 2.05E-1(Z.1EB-2)=

2.03E-1(7.6E-2)=

352E+0(2.1E-2)1 2.14B-1(2.3E-2)=

377E-142E-2)f 834E-1(3.1E2)f

9.19E-1(1.8E-1)t

5.98E+0(1.4E-1)T

4.39E-2(3.1E-3)

359E-2(4.4E-3)7 4.28E-2(7.3E-4)

7.16E-2(2.0E-2)t

2.03E-1(9.4E-3)t 5.78E-2(1.0E-2)t

2.95E-2(9.6E-3)f 3.58E-2(9.9E-3)

3.18E-2(9.6E-3)}

2.21E-1(6.6E-4)t

1.08E-1(9.8E-3)

1.05E-1(1.3E-2)= 1.14E-1(7.7E-3)

2.69E-1(2.4E-1)t

9.76E-1(2.0E-2)7 1.07E-1(1.8E-2)=

2.19E-1(7.9E-3)t 1.62E-1(3.3E-2)

1.07E-1(1.3E-2)=

1.21E+0(3.9E-3)

oof k| W

5.46E-1(2.1E-2)

WEG9

3.29E-1(9.8E-2)f 4.11E-1(1.4E-1)

5.23E-1(1.9E-)=

2.31E+0(2.7E-2)T 4.32E-1(1.8E-1){

5.29E-1(1.3E-1)=7.84E-1(6.7E-2)

8.97E-1(1.4E-1)T

3.53E+0(2.4E-2)

S

1.38E+0(1.5E-2)

4.24E-1(1 4E-1)f SA45E-1(23E-Df

1.06E+0(3.6E-1)}

3.16E+0(2.5E-2)1 1.50E+0(2.3E-2)}

1.19E+0(5.4E-1) 1.96E+0(2.5E-1)f

2. 71E+0(7.2E-1)f

5.78E+0(2.4E-2)

3.29E-2(7.9E-4)

5.19B-2(2.3E-3)f 3.81E-2(8 2E-4)f

1.38E+0(1.2E-2)t

2.01E-2(4.8E-4)f 3.41E-2(6.1E-4)1

3.93E-2(2.9E-2)t 3.52E-2(1.1E-2)t

334B-2(2.5E-4)=

2.06E-2(I.1E-5)f

9.13B-2(34E-3)

oo | W

2A4E-1(33E-2)f 134E-1(71E3)f

158E+0(1.0E-D)f

751B-2(5.26-3)7 9.89E-2(2.7E-3)T

6.10B-1(4 1E-1)T 9.73E-2(2.6E-3)f

9.15E-2(2.4E-3)=

6.82E-2(3. 1E-5)]

DTLZ

1.54E-1(6.5E-3)

3.93E+0(8.7E+0)T 2.08E-1(I.1E-2)f

1 73E+0(1 AE-2)f

T.26E-1(6.5E-3)f 1.60E-1(7.5E-3)1

358E+0(3.1E+0)T 1.64E-1(7.3E-3)T

1.56E-1(6.5E-3)=

TOSE-1(1.1E3)}

S

1.86E-1(1.2E-2)

8.11E+0(1.5E+1)t 2.60E-1(1.5E-2)}

332E+0(1 AE+0)T

T45E-1(5.9E-3)f 1.92E-1(1.2B-2)T

3.28E+0(2.5E+0)T 1.84E-1(1.1E-2)

[8IE-1(1.2E-2)=

1.55E-1(6.8Ee-3)]

2.81E-2(3.1E-3)

424E-2(2.1E-3)] 3.58E-2(5.7E-4)

2.20E-1(3.9E-2)t

4.94E-2(1.7E-3)1 3.42E-2(1.1E-3)}

2.38E-2(9.7E-4)} 2.25E-2(2.8E-4)}

2.26E-2(6.2E-6)f

5.45E-2(4.4E-6)

1.35E-1(9.1E-3)

3.32E-1(3.2E-2)t 1.15E-1(2.1E-3)

4.00E-1(2.0E-2)f

1.86E-1(4.2E-3)1 1.06E-1(3.6E-3)}

4.52E-1(4.2E-2)T 1.16E-1(5.5E-3)

6.34E-2(3.2E-5)

2.12E-1(3.3E-5)

DTLZ2
| | w

2.51E-1(2.1E-2)

7.68E-1(9.7E-2)t 2.01E-1(3.0E-3)

5.52E-1(1.7E-2)t

3.20E-1(5.5E-3)t 1.86E-1(4.1E-3)}

2.38E-1(1.6E-1)= 1.92E-1(1.3E-2)

L41E-1(1.2E-4)

3.87E-1(6.8E-4)

S)

3.49E-1(1.9E-2)

1.06E+0(1.5E-1)1 2.47E-1(8.1E-3)

6.29E-1(1.9E-2)}

3.83E-1(3.8E-3)7 2.73E-1(1.9E-2)f

7.97E-1(3.6E-7)T 2.98E-1(1.7E-2)

1.46E-1(2.4E-4)

5.02E-1(4.7E-3)T

TABLE 4. Summary of Wilcoxon rank-sum test results for the selected algorithms with respect to the mean IGD™ value for DTLZ1, DTLZ2, and WFG1 to

WFG9.

SMPSO dMOPSO MOPSOhv

MaPSO MOEA/D DBEA NSGA-II

RVEA ARMOEA

t 34 31
t 5 8
- 5 5

37
5
2

36 26
8 12
0 6

28 30
10 11
6 3

18 34
13 10
13 0

1, T and = denote the number of times the performance of the corresponding algorithm is significantly better, worse or has no
significant difference with respect to that of the proposed algorithm, respectively.

DTLZ1 is multimodal and its Pareto optimal front is
linear. Regarding the mean IGD™ value, our proposed
approach performs better than SMPSO, dMOPSO, MOP-
SOhv, MOEA/D and DBEA when the problem is scaled
from 3 to 10 objectives. For NSGA-III, its performance is
worse than that of our proposed algorithm when the problem
has 3, 5 and 8 objectives. For RVEA, it has a similar perfor-
mance as our proposed algorithm when the problem has 3,
5, 8 and 10 objectives. However, MaPSO and ARMOEA
outperform our proposed algorithm. Both Figures 6 and 17
show that RVEA and ARMOEA work perform in this
problem.

VOLUME 8, 2020

DTLZ2 is unimodal and its Pareto optimal front is concave.
Note that MOPSO-HGLSS performs better than SMPSO and
MOPSOhv when the problem is scaled from 3 to 10 objec-
tives in terms of mean IGD™T value. However, dMOPSO
and MOEA/D perform better than MOPSO-HGLSS for
DTLZ2-5, DTLZ2-8 and DTLZ2-10. For MaPSO and
ARMOEA, they are outperformed by our proposed algo-
rithm in terms of mean IGD™ values. Regarding DBEA,
it outperforms our proposed algorithm for DTLZ2-3 but it
is outperformed when the number of objectives is 5 and
10 in terms of mean IGD* value. For NSGA-IIT and RVEA,
they outperform our proposed algorithm when the problem

189541
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TABLE 5. Performance comparisons of different algorithms in terms of the mean IGD* value for MaF1 to MaF8.

M MOPSO-HGLSS SMPSO

dMOPSO

MOPSOhv

MaPSO

MOEA/D DBEA NSGA-III

RVEA

ARMOEA

3 455B-2(1.1E-3) 6.10E-2(3.0E-3)

1.09E-1(5.4E-3)f

6.54E-2(2.2E-3)

3.53E-2(14E-3)]

7.04E-2(4 1E-7)T 6.99E-2(2.8E-4)f 6.28E-2(1.7E-3)T

8.19E-2(7.6E-4)

434E-2(1.6B-4)T

5 158E-1(1.0E-2) 1.89E-1(88E-3)f

3A2E-1(4 3E-2)1

[.94E-1(74E-3)f

T.I2E-1(2.6E-3)]

2.25E-1(1.6E-3)T 2.28B-1(3.5E-6)7 2.53E-1(39E-2)

354E-1(6.7E-2)1

1.59E-1(2.8E-3)=

8 2.86B-1(2.1E-2) 3.18E-1(I1IE-2)

MaF1

5.30E-1(4.4E-2)t

3.19B-1(1.2E-2)f

1.86E-1(1.2E-3)]

5.14E-1(1.3E-3) 3.52E-1(4.1E-3)f 2.85E-1(9.0E-3)=

7.13E-1(5.5E-2)t

2.87E-1(1.4E-3)=

10 337E-1(2.3E-2) 3.63B-1(1.4E-2)

5.73E-1(2.8E-2)t

3.94B-1(2.7E-2)

2.22E-1(4.2E-3)1

5.34E-1(3.0E-4)T 4.01E-1(1.0E-2)f 3.41E-1(9.0E-3)=

6.69E-1(8.2E-2) T

311B-1(68E-4)]

3 5.14E-2(4.1E-3) 6.26E-2(3.6E-3)f

435E-2(8.7E-4)%

6.07E-2(3.9E-3)t

2.45E-2(8.8E-4)1

3.84E-2(3.5E-4)f 4.66E-2(1.1E-3)f 3.65E-2(5.6E-4)}

430E-2(1.5E-3)%

331E-2(8.6E-4)f

5 1.72E-1(4.7E-3) 148E-1(7.8E-3)f

128E-1(22B-3)}

1.53E-1(6.6E-3)1

8.09E-2(7.2E-4)}

1.40E-1(1.2E-3)f 1.52E-1(6.1E-4)f 1.42E-1(3.3E-3)}

T45E-1(1.3E-3)1

1.22E-1(1.6E-3)}

8 2.33E-1(5.7E-3) 201E-1(4.1E-3)}

MaF2

246E-1(9.8E-3)T

1.99E-1(4.0E-3)F

122E-1(4 1E-3)]

2.32E-1(4 2E-4)= 1.93E-109.1E-4)f 2.59E-1(6.3E-2)t

5.87E-1(2.1E-1)}

1.98E-1(3.9E-3)1

10 243E-1(5.2E-3) 197E-1(43E-3)%

J45E-1(2.8E-2)T

2.10E-1(2.3E-3)}

1.31E-1(1.9E-3)f

3.70E-1(3.7E-3)1 8.61E-1(5.7E-3)f 3.16E-1(4.7E-2)}

6.43E-1(1.3E-1)T

248E-1(1.2E-2)=

3 2.99E-2(1.7E-3)

420E+3(5.1E+2)f 5.98E-1(1.7E-D)f

1.88E+4(6.7E+3)] 2.74E-2(1.7E-3)f

541E-2(5.5E-4)7 5.00E-2(2.6E-3)f 4.65E-2(2.7E-4)f

4.06E-2(72B-4)f

4.66E-2(2.6B-4)T

75 5.15E-2(5.5E-3)

2.86E+3(1.4E+3)T 541E-1(2.6E-2)f

333E+4(3.9E+3)1 121E-1(3.6E-2)

[ 24E-1(1.6E-3)T 1.37E+6(4 3E+6)T 9.8SE-2(1.3E-3)T

7.97E-2(4.9E-3)t

9.88E-2(1.0E-3)

S8 151E-1(3.3E3)

7 12E+4(1 2E+4)T 654E-1(1.9E-D)f

551E+4(3.7E+4)T 3.28E+0(7.0E-1)T 1.65E-1(1.7E-3)T

4. 16E+0(8.9E+0)1 1.48E+0(2.7E+0)T

LI3E-1(7.0E-3)f

[35E-138E-3)]

10 2.64E-1(1.1E-3)

5.67E+7(9.4E+6)T 5.39E-1(1.8E-2)

1.34E+5(1.3E+5)T 4.23E+2(5.4E+1)T 1.90E-1(5.2E-4)

3.01E+2(5.8E+2)1 7.00E+1(1.6E+2)T

9.59E-2(4.2E-3)1

T.14E-1(6.6E-3)]

3 3.93E-2(2.8E-3) 2.76E+1(3.8E+1)

3.93E+1(74E+1)T 3.97E+2(8.6E+1)T 2.27E-1(3.9E-3) 6.66E-1(1.7E-2)T

8.6OE-1(4.1E-1)f 3.52E-1(2.0E-2)T

3.95E-1(74E-2)T

3.40E-1(1.6E-3)t

375 1.81E-1(7.4E-3) 8.20E+1(1.4E+2)

T.14E+3(1.1E+3)T 2.51E+3(2.8E+2)T 1.93E+0(5.1E-2)T 9.92E+0(2.9E-1)T

4.97E+0(2.8E+0)t 3.91E+0(6.8E-1)}

4.46E+0(74E-1)T

2.89E+0(1.1E-1)T

S8 6.59E-1(2.7E-1) 1.08E+3(1.7E+3)

1.70E+4(7.2E+3)T 1.86E+4(3.5E+3)1 1.63E+1(1.5E+0)T 1.18E+2(5.3E+0)t 3.80E+1(6.6E-1)1 3.45E+1(2.2E+0)} 7.50E+1(1.6E+1) 3.17E+1(3.2E+0)T

10 2.37E+0(1.5E+0) 6.89E+2(6.6E+2)t 5.42E+4(3.8E+4)T 6.46E+4(1.9E+4)T 6.59E+1(6.5E+0)1 4.44E+2(9.6E+0)T 1.41E+2(7.9E-1)1 1.55E+2(1.6E+1)T 2.12E+2(5.1E+1)T 1.35E+2(1.3E+1)}

3 1.04E-1(2.3E-2) 9.91E-1(1.3E+0)f

717E-1(L.7E-1)T

411E-1(4.0E-2)f 1.97E-1(69E-3)f 538E-1(5.0E-1)T

8.97E-1(8.5E-1)f 4.37E-1(5.6E-1)

2.59E-1(6.4E-6)T

1.67E+0(1 3E+0)T

1075 251E-1(2.1E-2) 3.56E+0(d 2E-D)f

1.13E+1(8.3E-2)t

Z.07E+0(3 2E-1)T 1.47E+0(4.7E-2)T 9.39E+0(1.0E+0)T 6.00B+0(2.0E+0)T 2.73E+0(1. IE+0)T 2.54E+0(4 1E-1)T

240E+0(3 SE-2)T

S 8 1.03E+0(8.5E-1) 3.88E+1(6.4E+0)T 8.73E+1(4.8E-2)f

3.38E+1(4.5E+0)T 1.00E+1(5.3E-1)T 8.45E+1(6.4E-1)t

342E+1(7.8E+0)T 2.82E+1(33E-2D)T

3.09E+1(4.36+0)T 2.87B+1(3.5E-D)f

10 6.41E-+0(1 OE+0) 1.30E+2(1.7E+1)T 3.06E+2(6.8E-1)T

1.17E+2(9.5E+0)T 3.28E+1(1.6E+0)f 3.03E+2(4.7E-1)t

TA0E+2(6.0E+1) 1.37E+2(3.3E-Df

T20E+2(1.6E+1)T 1.62E+2(73E+0)T

3 1.62E-1(6.1E-5) 5.31E-3(2.1E-4)f

4.54E-1(8.3E-2)

4.65E-3(1.8E-4)1

2.29E-2(44E-3)F

339E-2(3.3E-7)1 1.82E-2(1.8E-3)7 1.69E-2(22E-3)}

3.65E-2(4.7E-3)}

5.10E-3(1.1E-4)f

5 3.34E-1(5.7E-5) 5.70E-3(2.6E-4)1

4.83E-1(14E-1)T

5.06E-3(2.1E-4)1

5.12B-2(1.2E-2)F

T.13E-1(1.9E-1)] 1.14E-1(42E-3)f 6.33E-2(1.6E-2)f

8 18E-2(6.1E-3)}

5.11E-3(6.3E-5)1

MaF6

8 3.71E-1(44E-5) 7.28E-2(8 3E-2)f

5.00E-1(1.4E-1)T

9 40E-1(34E-1)T

5.49E-2(2.4E-2)}

6.35E-2(5.3B-2)F 7A2E-1(19E-7)f 1.03E-1(6.3E-2)%

3.90E-1(3.0E-1)f

6.34E-3(4 2E-4)%

10 3.77E-1(3.4E-3) 4.07E-1(2.5E-1)}

5.15E-1(6.6E-2)T

1.59E+0(7.1E-1)T

1.50E+0(74E-1)T

4.50E-1(3.1E-1)f 7.42E-1(1.3E-7)} 3.25E-1(1.1E-2)}

1.65E-1(1.0E-2)%

1.39E-2(9.9E-3)}

3 2.46E-2(9.4E-4) 9.59E-2(I.1E-2)t

1.38E-1(5.3E-3)T

8.71E-2(3.6E-3)t

5.37B-2(1.4E-3)

2.18E-1(2.0E-1)T 9.61E-2(42E-3)f 7.75E-2(4.3E-3)f

1.04E-1(1.0B-3)f

1.79E-1(1.4E-1)t

5 1.33E-1(6.0E-3) 5.04E-1(92E-3)f

6.74E-1(14E-1)T

J17E-193E-3)T

2.34E-1(5.0E-3)

T.O0E+0(1.6E-1)T 4.23E-1(2.6E-2)f 3.78E-1(1.0E-2)T

5.03E-1(75E-3)T

3.49E-1(8.6E-3)

8 2.68E-1(9.4E-3) 1.55E+0(5.7E-D)T

MaF7

2.45E+0(7.7E-1)t

8.73E-1(0.0E-3)f

4 73E-1(28E-2)

1.91E+0(1.8E-1)t 1.69E+0(9.8E-1)1 9.34E-1(7.3E-2)}

T.93E+0(6.6E-2)1

T78E+0(11E- DT

10 3.23E-1(8.1E-3)

T.93E+0(1.3E-1)T 3.20E+0(1.0E+0)7 I.I5E+0(Z.1B-2)T

5.20E-1(23E-2)

1.90E+0(3.0E-1)t 6.68E+0(4.8E+0)t 1.72E+0(1.8E-1)}

3.47E+0(5.5E-1)t

346E+0(1.9E-D)T

3 2.82E-2(9.8E-4) 7.89E-2(3.7E-3)T 1.12E-1(8.6E-4)7 8.04E-2(2.5E-3)7 5.96E-2(3.7E-3)1 1.10E-1(2.7E-3)7 1.41E-1(1.1E-3)7 1.09E-1(4.3E-3)1 1.38E-1(8.6E-3)} 7.74E-2(2.1E-3)
£ 5 4.39E-2(1.1E-3) 1.53E-1(8.7E-3)} 2.72E-1(6.0E-3)1 1.48E-1(4.8E-3)1 1.01E-1(2.8E-3)7 2.86E-1(7.5E-3){ 2.07E-1(8.3E-3)t 2.43E-1(2.1E-2)} 4.72E-1(4.2E-2)7 1.38E-1(5.2E-3)
S 8 5.40E-2(4.3E-4) 2.05E-1(54E-3)t 7.01E-1(29E-3)t 2.08E-1(7.4E-3)f 1.29E-1(2.7E-3)} 7.67E-1(1.6E-2)1 6.48E-1(2.5E-2)f 4.39E-1(3.1E-2)t 9.52E-1(1.3E-1)7 2.19E-1(1.1E-2)

10 6.16E-2(1.1E-3) 2.33E-1(7.2E-3)} 1.12E+0(2.4E-3)} 2.31E-1(6.1E-3)} 1.47E-1(6.9E-3)} 1.12E+0(5.5E-3)} 9.74E-1(1.0E-2)} 4.65E-1(7.0E-2)1 1.09E+0(9.3E-2)} 2.44E-1(6.1E-3)

TABLE 6. Summary of the Wilcoxon rank-sum test results for the selected algorithms with respect to the mean IGD* value for MaF1 to MaF8.

SMPSO dMOPSO MOPSOhv MaPSO MOEA/D DBEA NSGAIII RVEA ARMOEA

T 26 30 27 20 25 27 24 24 18
i 6 2 5 12 6 5 6 8 11
= 0 0 0 0 1 0 2 0 3

t, 1 and = denote the number of times the performance of the corresponding algorithm is significantly better, worse or has no

significant difference with respect to that of the proposed algorithm, respectively.

has 3, 5, 8 and 10 objectives. Figure 18 shows that RVEA
performs well in this problem.

MaF1 is a modified version of DTLZ1 which has an
inverted Pareto optimal front which is linear. Regarding the
mean IGD™ value, our proposed algorithm performs better
than SMPSO, dMOPSO, MOPSOhv, MOEA/D, DBEA and
RVEA when the problem is scaled from 3 to 10 objectives,
while MaPSO outperforms our proposed algorithm. Regard-
ing NSGA-III, its performance is worse than that of our
proposed algorithm when the problem has 3 and 5 objectives.
For ARMOEA, it outperforms our proposed algorithm when
the problem has 3 and 10 objectives.

MaF?2 is a modified version of DTLZ2 which has a con-
cave Pareto optimal front. Regarding the mean IGD™ value,
MaPSO is the winner in this test problem as it obtains
the smallest IGD™ values when the problem is scaled from
3 to 10 objectives. Our proposed algorithm outperforms
SMPSO and MOPSOhv for MaF2-3 but it is outperformed
when the number of objectives is 5, 8 and 10. Although
dMOPSO, MOEA/D, DBEA, NSGA-III and RVEA outper-
form the proposed algorithm for MaF2-3, the performance
of the proposed algorithm improves when the problem has
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10 objectives. For ARMOEA, it outperforms the proposed
algorithm when the problem has 3, 5 and 8 objectives, while
the two algorithms have a similar performance when the
problem has 10 objectives.

MaF3 is multimodal. It is a modified version of DTLZ3
but with a convex Pareto optimal front. Regarding the
mean IGD™T value, MOPSO-HGLSS performs better than
SMPSO, dMOPSO, MOPSOhv, DBEA and NSGA-IIT when
it was scaled from 3 to 10 objectives. Although the
performance of MOPSO-HGLSS is worse than that of
MaPSO for MaF3-3, it outperforms them when the prob-
lem has 5, 8 and 10 objectives. Furthermore, it should be
noticed that MOEA/D, RVEA and ARMOEA perform better
for MaF3-10.

MaF4 is multimodal. It is a modified of DTLZ3. Its Pareto
optimal front is inverted and badly scaled. Regarding the
mean IGD™ value, our proposed algorithm outperforms the
others when the problem has 3, 5, 8 and 10 objectives.

MaF5 is modified from DTLZ4. Its Pareto optimal front
is convex and badly scaled. Similar to MaF4, our proposed
algorithm outperforms the others when the problem has 3, 5,
8 and 10 objectives in terms of mean IGD™* value.
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MaF6 has a degenerate Pareto optimal front. Regarding
the mean IGD™ value, our proposed algorithm outperforms
dMOPSO, while NSGA-III, RVEA and ARMOEA outper-
form our proposed algorithm. Although SMPSO, MOPSOhv,
MaPSO, MOEA/D and DBEA outperform our proposed
algorithm for MaF6-3 and MaF6-5, our proposed algorithm
outperforms them when the problem has 10 objectives.

MaF7 has a disconnected Pareto optimal front. Regard-
ing the mean IGD™ value, our proposed algorithm out-
performs the others when the problem has 3, 5, 8 and
10 objectives.

The Pareto optimal region of MaF8 in decision space is
a 2D manifold, which allows a direct observation of the
search behavior of a multi-objective optimization algorithm.
Regarding the mean IGD™ value, our proposed algorithm
outperforms the others when the problem has 3, 5, 8 and
10 objectives.

Table 4 summarizes the results of the comparisons per-
formed for DTLZ1, DTLZ2, and WFG1 to WFG9 in terms
of IGD*. With respect to IGD*, MOPSO-HGLSS obtained
better results in 275 out of 396 performance compar-
isons. Table 6 summarizes the results of the comparisons
performed for MaFl to MaF8 in terms of IGD™. With
respect to IGDT, MOPSO-HGLSS obtained better results
in 221 out of 288 performance comparisons. From these
results, we conclude that MOPSO-HGLSS performed better
that the other nine algorithms in terms of convergence and
diversity because the two mechanisms included in HGLSS
could properly balance the convergence and diversity of the
MOPSO, which are two basic and very important issues in
MOPs. In addition, MOPSO-HGLSS showed a promising
performance as the number of objectives of the problems
increased.

V. CONCLUSION AND FUTURE WORK

Most multi-objective particle swarm optimizers encounter
difficulties when solving problems with more than three
objectives. The reason is that the diluted selection pres-
sure caused by the single global leader selection strategy
of MOPSOs as the number of objectives increases has a
negative effect on convergence and diversity, which are the
two main goals for generating a proper set of solutions. Based
on this observation, we proposed here a new algorithm called
multi-objective particle swarm optimizer with hybrid global
leader selection strategy (MOPSO-HGLSS). HGLSS has two
global leader selection mechanisms: one is called Euclidean
Distance Strategy (EDS) and the other one is called Space
Expanding Strategy (SES). These two mechanisms aims to
enhance the convergence and the diversity of the MOPSO,
respectively. Performance investigation is conducted to facil-
itate the use of HGLSS which aims at balancing the trade-off
between convergence and diversity of the MOPSO during
the search. In addition, four MOPSOs (SMPSO, dMOPSO,
MOPSOhv and MaPSO) and five popular MOEAs called
MOEA/D, NSGA-III, DBEA, RVEA and ARMOEA were
used to assess the performance of our proposed approach
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in terms of IGD™. Supported by statistical tests, our per-
formance investigation shows that HGLSS can properly bal-
ance the trade-off between convergence and diversity of
our MOPSO. Thus, MOPSO-HGLSS outperforms the other
algorithms in 19 MOPs (with 3, 5, 8 and 10 objectives for
each selected problem) and has a promising performance in
many-objective optimization problems.

Our future work will focus on investigating the perfor-
mance of MOPSO-HGLSS in real-world many-objective
problems. We are also interested in studying the impact of
both mutation operators and mutation rates on MOPSO-
HGLSS in greater depth.
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