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ABSTRACT In the human and computer vision, color constancy is the ability to perceive the true color of
objects in spite of changing illumination conditions. Color constancy is remarkably benefitting human and
computer vision issues such as human tracking, object and human detection and scene understanding. Tra-
ditional color constancy approaches based on the gray world assumption fall short of performing a universal
predictor, but recent color constancy methods have greatly progressed with the introduction of convolutional
neural networks (CNNs). Yet, shallowCNN-basedmethods face learning capability limitations. Accordingly,
this article proposes a novel color constancymethod that uses amulti-stream deep neural network (MSDNN)-
based convoluted mixture of deep experts (CMoDE) fusion technique in performing deep learning and
estimating local illumination. In the proposed method, the CMoDE fusion technique is used to extract and
learn spatial and spectral features in an image space. The proposed method distinctively piles up layers both
in series and in parallel, selects and concatenates effective paths in the CMoDE-based DCNN, as opposed to
previous works where residual networks stack multiple layers linearly and concatenate multiple paths. As a
result, the proposed CMoDE-basedDCNNbrings significant progress towards efficiency of using computing
resources, as well as accuracy of estimating illuminants. In the experiments, Shi’s Reprocessed, gray-ball
and NUS-8 Camera datasets are used to prove illumination and camera invariants. The experimental results
establish that this new method surpasses its conventional counterparts.

INDEX TERMS Color constancy, CMoDE fusion technique, multi-stream deep neural network (MSDNN),
illumination estimation, residual networks.

I. INTRODUCTION
In the computer vision, the perceived color of objects is
significantly impacted by the color of illumination in the
scene [1]. In contrast, the human vision has visual perception
that enables them to effortlessly distinguish objects by color.
This visual perception is referred to as color constancy [2], [3]
in the computer vision. When it comes to a captured image,
its recorded color carries a combined effect of the primary
peculiarities of the source illuminant, surface reflectance and
sensitivity function of the digital imaging device [4]. In par-
ticular, the color of the illuminant has a crucial repercussion
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on the recorded color of the digital image. For this reason, it is
significantly meaningful to eliminate undesirable illuminant
effects in order to facilitate robust performance of color-
based computer vision systems such as human-computer
interaction, video analytics, object tracking, color feature
extraction and digital photography [5], [6]. For the past two
decades, computer vision researchers have suggested a lot
of color constancy adjustment techniques to cope with col-
oration and color cast in digital images. Broadly speaking,
the previous works can be categorized as statistics-based,
gamut-based, physics-based, learning-based and biologically
inspired methods.

The statistics-based approach aims to analyze and repre-
sent images not by estimating illumination but by using the
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features that stay constant irrespective of the scene light.
This approach has developed into various methods based on
a variety of hypotheses. On the achromatic side, the gray
world assumption is that the maximum or mean of an image’s
three RGB color components is achromatic [7], [8]. With
this gray world assumption, once the algorithms are given
images, they use their color information and perform color
constancy adjustment. The algorithms are intended to deliver
neural gray when calculating the average of the colors of
the color-balanced image. When the approach is first pub-
lished, it is recognized as groundbreaking color balancing.
However, the approach has to take many complicated steps
to extract many different features. Its major drawback is that
this approach is solely applicable to a uniform illumination
condition. In other words, color variations in the given images
profoundly affect the performance of the method, which
appears in the color-corrected images in away that colors tend
to be skewed towards a dominant color [7].

Based on the Retinex theory, the Max-RGB method
assumes that white surface of an image possibly fits into
illuminant chromaticity. This method predicts the illuminant
by using the chromaticity of the three maximum RGB color
values of the image [8]. TheMax-RGBmethod has advanced,
as compared with the gray-world method, in the sense that
it uses an increasing amount of color information for color
balancing. Yet the approach sometimes fails to meet the
Retinex theory requirements depending on input image data
types. When there is an influence of input data image on the
color balancing, its corrected colors appear skewed toward a
dominant color of the image.

The next advancedmethod is theMax-RGB orWhite Patch
methodwhich adopts the subsampling process in ref. [9]. This
method uses an arbitrary selection of pixels, not all pixels
of an image, to compute the chromaticity of the maximum
RGB values. The Shades of Gray (SoG) method assumes that
when image data undergoes Minkowski norm, the resultant
generalized or power mean is an achromatic color [10]. The
authors of this article show that their method produces the
best performance when using Minkowski norm with p = 6.
The Gray Edge (GE) in ref. [11] hypothesizes that the mean
absolute deviation of red, green and blue color components
is an achromatic color. This method is a combined tech-
nique of SoG, Max-RGB and GW (Gray World), and uses
the edge information of objects to achieve color constancy.
To remove noise, this approach uses an LPF (Low Pass Filter)
prior to edge detection. Consequently, the approach delivers
increased robustness against noise, but adding one more step
comes with a drop in efficiency. The last example of statistic-
based methods is the Weighted GE proposed in ref. [12].
This technique extracts the edge information of all different
objects across the image based on color correction factors.

Next, the gamut mapping method is introduced by Forsyth
based on the hypothesis that an image represents only a
few perceived colors due to the illuminant impact [13] and
carries color variation because of the changing colors of the
light sources. In an image, the recorded colors of objects can

differ from their actual colors, depending on given illumi-
nants under which they are captured. The gamut mapping
approach captures an image under an unknown illuminant
and uses the predetermined canonical gamut to accomplish
color constancy. The gamut mapping-based method deliv-
ers superior performance to the statistics-based methods in
most cases. However, this technique has a drawback of high
computational cost. Finlayson and his co-authors extend into
2D gamut mapping approach to reduce the complexity of
implementation. The authors also postulate that the gamut
mapping approach is enabled to use the chromatic color
space [14]. Finlayson and Hordley [15] propose 3D gamut
mapping which performs slightly better than the earlier 2D
gamut mapping. The authors use convex programming in
implementing the 3D gamut mapping method to enhance
efficiency, but find that the result is not much different from
that of the original method in ref. [16]. Mosley and Funt
[17] simplify the gamut mapping approach by replacing the
convex hull of the pixel values with a simple cube. Another
gamut mapping approach is proposed by Gijsenij et al. [18].
The authors come up with the diagonal-offset model to avoid
the failure of the diagonal model [19]. They unveil a number
of extended gamut mapping versions by combining various n-
jet-based gamut mapping methods. In result, they reveal that
the gamut mapping achieves the best illuminant estimation
with the use of a possible intersection of the gamut maps.
Gijsenij and Gevers [20] also propose a gamut mapping-
based color constancy approach that displays the best per-
formance with a certain image dataset that they experiment
with. The method computes the Weibull parameters such as
grain size and contrast, and uses the outcomes in extracting
image characteristics. The authors apply a MoG classifier to
their algorithms which are then able to learn weighting and
correlation between Weibull parameters and diverse image
attributes such as textures, edges and SNR. They also come
up with a selection of parameters, which contributes to per-
forming the best color constancy. Their method makes a 20%
improvement in estimation performance, as compared with
its best conventional counterparts.

The physics-based method is developed based on the
dichromatic reflection of the image formation model.
Physics-based algorithms factor into physical interactions
between the illuminant and an object in the given image.With
the hypothesis that all the pixels of a surface align to the
RGB color space, the method estimates the illumination color
by mapping diverse surfaces onto various planes and caus-
ing those planes to interact with one another. However, the
physics-based techniques find difficulty in retrieving specular
reflections and sometimes cause color clipping, affecting
their performance [21]–[23]. Finlayson and Schaefer [24]
propose a new method which builds on the dichromatic
reflection model to project surface pixels. In this approach,
the authors employ the Planckian locus of black-body radia-
tors, which is used to generate possible illuminants.

In the color constancy technology, the learning-based algo-
rithms use diverse machine learning methods to perform the
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illuminant estimation [25]–[29]. Baron [25] redefines the
color constancy as a localization issue in the log-chromaticity
color space. The method is designed to scale the color chan-
nels of an image and translate the image into the log chro-
maticity histogram. Then, the resulting histogram is used
as input data in the convolutional neural network (CNN).
Bianco et al. [26] propose a CNN-based illuminant estimation
method with the use of a histogram stretching technique.
Their method is made up of a convolutional layer, a fully con-
nected neural network (FCNN) layer and three output nodes.
At its last hidden layer, the algorithm uses a histogram stretch-
ing technique to adjust the contrast of an image and extract
activation values from the adjusted image. Then, the algo-
rithm combines the activation values to predict the illumi-
nant. The authors report convincing, experimental results
with a raw image dataset, not with widely benchmarked
image datasets. Another CNN-based method in ref. [27] puts
Minkowski pooling in the color constancy context to facilitate
and promote deep learning of the network. In consequence,
the FCNN creates and uses reliable features to perform color
balancing. Drew et al. [28] report a color constancy approach
which uses a log-relative chromaticity space named ‘‘Zeta
Image’’ and generates better performance than other unsuper-
vised techniques. This supervised technique does not require
a process of tuning the parameters of the dataset used in train-
ing, in comparison with its unsupervised counterparts which
need no training dataset and carry out complex procedures.
However, when it comes to estimation accuracy, the two tech-
niques are not much different. Joze and Drew [29] propose
an exemplar-based approach which uses the training dataset
made up of the weak color constant red, green and blue values
and the texture features, and predict the local illuminant by
picking the neighboring surfaces in the dataset. Xu et al. [30]
propose a global-based video enhancement algorithm that
significantly increases visual experience of diverse regions
of interests (RoI) in images and video frames. Their method
explores the features of diverse ROIs to create a global tone
mapping curve across the image. They effect immediate and
appropriate visual enhancement in various regions of the
processed images. Chen et al. [31] put forward an intra-and-
inter-constraint-based (ACECB) video quality enhancement
technique. This method is designed to figure out RoIs in the
video frames by applying the AdaBoost-based object detec-
tion method. Upon getting the resulting RoIs, the method
calculates their mean and standard deviations, analyzes the
features of diverse RoIs and create a global piecewise tone
mapping curve across the frame. The authors demonstrate
that the technique substantially enhances the visual quality
of different RoIs within an image to an appropriate level.

The biological color constancy method is intended to
mimic and apply the functional characteristics of the human
visual system (HVS) to perform the learning-based illu-
minant estimation, and several models have been pre-
sented [32]–[34]. Gao et al. [32] propose an HVS-based
color rendering approach by taking after the interaction
between the single-opponent (SO) cells in the retina, the

double-opponent (DO) cells and any possible neurons in
the human visual cortexes. The authors display that their
framework brings about more advanced outcomes in com-
parison to their conventional counterparts. In addition, this
method does not need to fine-tune a variety of datasets
separately. Zhang et al. [33] propose a computational color
constancy framework which reflects the likeness of the HVS.
The proposed framework is designed to resemble the color
processing mechanism of the retina. It means that this model
eliminates repercussions of the scene illuminant on the visual
perception instantly and automatically without going through
the illuminant estimation. They report competitive perfor-
mance relative to their state-of-the-art conventional counter-
parts. Akbarnia and Parraga [34] suggest a color constancy
model which causes multiple asymmetric Gaussian kernels
to overlap. The authors in this model intend to strengthen the
intensity of a given image bymaking use of the contrast of the
surrounding pixels, i.e. scaling kernels to the changing single-
neuron visual receptive field sizes. This model uses the out-
puts of the most activated receptive fields in order to predict
the illuminant. As outlined above, diverse color constancy
approaches have been proposed in efforts to achieve the color
balancing of images captured under non-white illumination
condition. The approaches perform reasonably well at the
fundamental illumination conditions. Nevertheless, because
of their dataset dependency, their performance has some
limitations. For example, when an image has a constant color
region, the overall color in the color-corrected image tends to
be skewed towards the dominant color.

In this respect, this article presents novel illumination
estimation DCNN architecture with the use of the Convoluted
Mixture of Deep Expert (CMoDE) which dynamically fuses
multiple spectra and modalities. The proposed CMoDE has
three parts: the experts which align modalities of spectra
domain with outputs of illuminant estimation, the CMoDE
which learns probability distributions and accordingly adapts
weights to class-specific features of expert networks, and
the fusion segment where learning of complementary fused
kernels takes place. Traditionally, single DCNN-based con-
ventional models use an easy and straightforward method
of stacking multiple layers linearly, but they come with two
problems: gradient distortion and overfitting. In contrast,
conventional residual networks use identity skip connection
and concatenatemultiple paths. Accordingly, they go shallow,
improve efficiency and solves overfitting, while maintaining
performance comparable with that of the previous single
DCNN-based models. However, shallow residual networks
tend to preserve gradient flow throughout the full depth of
the networks, thereby failing to help resolve the vanishing
gradient problem. In order to address unresolved problems
from earlier, conventional works, the proposed method is
meant to stay deeper by adding layers both in series and
in parallel, as well as improve efficiency by concatenating
a selection of effective paths. In this way, the proposed
network promises to bring much progress towards accuracy
and efficiency alike. As expected, the experimental results
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establish that the proposed network exceeds its state-of-the-
art conventional counterparts. With lowered gradient distor-
tion and overfitting, the proposed network is unlikely to make
large estimation errors. Color constancy aside, the proposed
network is further applicable to other vision problems such as
global estimate which responds to aggregated local inference.
To the best of our knowledge, this study is new and first
in the color constancy approach to build the Deep Experts
(CMoDE) fusion technique into scene illuminant estimation.
When it comes to the novelty of this study, the CMoDE
fusion technique stands in stark contrast to previous works
by navigating problems of shallow networks. The proposed
CMoDE fusion technique has also a distinct merit of extract-
ing features by region across the image to predict scene
illuminant locally, as opposed to its conventional counterparts
which extract features from the whole image, perform statis-
tics and predict the illuminant globally. Moreover, as there
have been only a few attempts to predict spatially changing
illuminants, the proposed architecture, as one of those rare
approaches to predicting regionally changing illuminants,
is of great importance. The residual network-based CMoDE
fusion technique promises to take illumination estimation to
a higher level of accuracy performance. The experimental
results support that the proposed architecture exceeds other
latest approaches in predicting illumination, with a sharp
decline in critical estimation errors. Now that the proposed
scheme has the distinct merit of aggregating local estimates
to produce global estimate, it carries the potential for being
applicable to further computer vision matters.

This article has the following major contributions:

• Proposing novel end-to-end illuminant estimation net-
work architecture based on the residual network frame-
work with dilated convolutions in it

• Comparing the proposed expert network with the bench-
marked illumination estimation approaches

• Introducing the CMoDE fusion scheme where the net-
work learns complementary modalities and spectra from
robust kernels

II. TECHNICAL APPOACH
A. COLOR CONSTANCY APPROACH
For a Lambertian surface, an image has the intensity value of
red, green and blue components fc (x) = {fR, fG, fB} defined
by a function of the light source e(λ), the surface reflection
s(x, λ) and the camera sensitivity function c(λ):

fc (x) =
∫
ω

e (λ) s (x, λ) c (λ) dλ; c ∈ {R,G,B} , (1)

where ω refers to the visible spectrum of the wavelength λ
and x is the spatial coordinate of the captured image. As elab-
orated in the Introduction section, an image represents the
recorded color of a light source with the combined influence
of the color of a light source e(λ) and the camera sensitivity
function c(λ). The color of the light source is defined by the

following equation:

e =

 eR
eG
eB

 = ∫
ω

e(λ)c(λ)dλ (2)

The diagonal model is used to indicate changes in light
source conditions, especially their colors, as follows [20],
[35], [36]: Ru

Gu
Bu

 =
 eR 0 0

0 eG 0
0 0 eB

 Rc
Gc
Bc

 , (3)

where {Ru,Gu,Bu} refers to the recorded color of an
unknown light source under which an image is captured.
{eR, eG, eB} is the outcome of predicting the recorded color
of the unknown light source. {Rc,Gc,Bc} is the transformed
color of a canonical light source. The proposed method uses

the diagonal model and the perfect white,
(

1
√
3
, 1
√
3
, 1
√
3

)T
,

as the canonical illuminant.

B. THE PROPOSED MULTI-STREAM DEEP NEURAL
NETWORK
When it comes to the DCNN, a straightforward way of
improving performance is merely increasing the size of the
network architecture, both in depth and in width. As long as
the network is able to cope with a large amount of labeled
training dataset, it is an easy and secure way to extend the net-
work with a growing number of layers in parallel and in series
in order to develop high-quality models. Of course, it requires
much effort, time and cost to collect and provide massive
labeled training datasets for the network. When the network
expands in size and in the number of parameters, an overfit-
ting problem arises. This is especially true when the network
is given a limited amount of labeled training data. It is again
costly, challenging and time-consuming for professional eval-
uators to prepare and classify strong labeled datasets. It is
interesting to note that when the network increases in size, its
computational resource requirements expands exponentially
and enormously.When amultiple-convolutional layer DCNN
sees a uniform increase in the number of filters, the network
is required to cope with an exponentially expanding amount
of computation. If the network fails to make efficient use of
the expanded capacity such as near-zero weight, the network
could end up with wasting computation efforts. Given the fact
that the computational resources are always limited, efficient
resource allocation comes ahead of indiscriminate increase in
size [37].

To address the aforementioned issues of the fully
connected DCNN approaches such as AlexNet and
Vgg16 network, the proposed method put forwards a residual
network-based color constancy approach. A residual net-
work, as one of DCNNs, has each layer made up of a residual
module fi and a skip connection that bypasses the residual
module. The residual network can improve performance with
an increasing number of layers [38], [39]. A residual network
is also referred to as a residual block in the remainder of this
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FIGURE 1. The block diagram of the entire stages of the proposed illuminant estimation method.

paper now that the residual network has a large number of
convolutional layers. As the input data, yi−1, the recursive
output of the ith residual block is described below [40]:

yi ≡ fi (yi−1)+ yi−1, (4)

where fi(x) consists of a series of convolutions, batch nor-
malization, B(x) [41], and nonlinear Rectified Linear Units
(ReLU), σ (x) ≡ max(x, 0). In the latest formulation of
residual block [38], fi(x) is defined as follows:

fi(x) ≡ Wi · σ (B(W ′i · σ (B(x)))), (5)

where Wi and W ′i are weight matrices and convolution is
denoted by a dot, ·.
Residual blocks in Eq. (5) are combined to form a network

structure, described as follows:

y3 = y2 + f3 (y2) (6)

= [y1 + f2(y1)]+ f3(y1 + f2(y1)) (7)

= [y0 + f1 (y0)+ f2 (y0 + f1 (y0))]+ f3(y0
+ f1 (y0)+ f2 (y0 + f1 (y0))) (8)

According to the above equations, the input of each layer is
concatenated with the output of the previous layer. However,
residual blocks do not exactly follow the above-described
pattern due to its inherent nature of the structure. Instead,
a residual block provides data for each module fi(·) by gen-
erating a mixture of 2i−1 different distributions from every
possible configuration of the previous i− 1 residual block.

Fig. 1 is the block diagram of the entire stages of the
proposed illuminant estimation method. Estimation accuracy

is of vital importance in achieving and improving color con-
stancy performance. For this purpose, the proposed method
adopts the CMoDE fusion technique to achieve estimation
accuracy of the local illumination. This technique has a dis-
tinct merit of selecting and concatenating effective paths,
which therefore allows the network to go shallow. This is why
the use of CMoDE fusion technique contributes to increasing
the estimation accuracy of the proposed network and it is
proven in the Experimental Results and Evaluations section.
Fig. 2 depicts the proposed residual blocks of Eq. (6). The
proposed residual blocks have batch normalization and mul-
tiple layers with skip connections. In the proposed residual
blocks, the layers are able to select and concatenate effec-
tive paths, which allows the networks to go deeper while
avoiding gradient degradation. Therefore, the networks can
cover large-size receptive fields which often carry highly
identifiable features. The key driver behind the adoption of
the proposed CMoDE fusion technique is to achieve higher
accuracy of predicting the local illumination, which is cru-
cially important for the network to learn to optimize the com-
bination of local estimates and deliver the best performance
eventually.

III. EXPERIMENTAL RESULTS AND EVALUATIONS
This section discusses the comparative studies and experi-
mental results between the proposed color constancy method
and latest comparable methods. The experiments are con-
ductedwith the use of Gray-ball Dataset, andGehler and Shi’s
Dataset. For those benchmark illuminant image datasets,
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FIGURE 2. The proposed multi-stream deep convolutional neural network with atrous convolution, or called dilated convolution [42]: the
atrous convolution indicated in red and the convolution layer in black.

FIGURE 3. The experimental results of comparing different filter kernel
sizes in terms of (a) median angular error and (b) average angular error.

the images are taken under multiple illumination conditions
such as a single illuminant and a combination of several
illuminants in order to verify illuminant invariant. For the
color reproducibility purpose, Gray-ball Dataset, and Gehler
and Shi’s Dataset are obtained by placing a gray ball and a
Macbeth color checker chart, respectively, in front of video
cameras. The Gray-ball Dataset [43] consists of 11,340 dif-
ferent images in 360 × 240 pixels. The Gehler and Shi’s
Dataset [44], [46] consists of 568 indoor and outdoor scenes

TABLE 1. Cases of different filter kernel sizes of the residual blocks f1, f2
and f3 in Eq. (9).

including people, places and objects. For the experiments,
those dataset images are firstly resized in a smaller dimension
to 512× 512 pixels and randomly cropped into 224 × 224
image patches. Those patches are used to train the pro-
posed network model in an end-to-end fashion with back-
propagation.

In designing network architecture, one of recent trends is
using smaller-size filter kernels which takes the network to
a higher level of efficiency. On the one hand, small filter
kernels give the network the advantage of having a decreasing
number of parameters, facilitating faster and more efficient
performance, but small filter kernels come with a possible
drop in accuracy of the network, on the other hand. That
is, the size of the filter kernel carries a trade-off between
efficiency and accuracy. In this work, the experiments are
meant to find out and verify the optimal size of the filter
kernel in terms of efficiency and accuracy alike. As in Table 1,
the experiments test seven different filter kernel sizes on the
residual blocks f1, f2 and f3 in Eq. (9). Figure 3 illustrates
the experimental results of comparing 7 different filter kernel
sizes from the angular error perspective. The experiments
have set the numbers of filter kernels or channels at 32, 64,
128 and 256.

Figure 3 (a) compares the median angular errors of seven
different filter kernel sizes. Experiments in each case run
10K epochs and the median angular errors are recorded every
20 epochs. The experiments use Geforce TITENXPGPU and
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TABLE 2. Comparative evaluation between the proposed method and various conventional methods with Shi’s Reprocessed Dataset (The lower, the
better).

take one and a half days. As Figure 3 (a) exhibits, Case_3×5
delivers the best performance, resulting in the lowest median
angular error. Figure 3 (b) compares the average angular
errors of seven different filter kernel sizes. Experiments in
each case also run 10K epochs and the average angular errors
are recorded every 20 epochs. As in their comparative results,
Case_3× 5 also turns out to be the optimal filter kernel size.
The experiments use the error metric proposed by Hordley
and Finlayson [46]. The error metric represents the angle
between the red, green and blue triplets of estimated illu-
minant (ρw) and the measured ground truth illuminant (ρ̂w),
described as follows:

eANG = arccos

(
ρTw ρ̂w

‖ρw‖
∥∥ρ̂w∥∥

)
(9)

As Figure 4 shows, experiments continue to test the effects
of different parameters on the illumination estimation perfor-
mance. Figure 4 (a) compares the median angular errors of
different initial training rates. The symbol ‘‘3.00E-2’’ trans-
lates into 3× 10−2. In this experiment, the proposed DCNN
makes the lowest median error at the initial learning rate of

3 × 10−4. Figure 4 (b) is the comparative experiment of the
estimation performance with the multi-stream versus with-
out main-stream in Eq. (6). As a result, the proposed color
constancy method performs better with the multi-stream.
In continuing efforts to search for the optimal condition,
the proposed network employs Adam [47] with a batch size of
16. To avoid overfitting, the proposed method sets parameters
for all its layers, for instance, a 0.5 dropout probability for
f3 convolution layer in Figure 2, a weight decay for 5× 10−5

and a momentum of 0.9. Figure 5 plots the impact of learning
rates on learning behavior or convergence, and the impact of
total training loss during learning on the performance of the
proposed network. In Figure 5, the experiments use Gehler
and Shi’s Dataset to test the proposed network. In result,
the proposed network makes the lowest total training loss at
the learning rate of 3× 10−4.

To verify the illumination invariant, the angular errors
and their distributions are compared between the proposed
network and the latest 28 diverse approaches. In the com-
parative experiment, the proposed network is set at the opti-
mal parameter conditions based on the experiments above.
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TABLE 3. Comparative evaluation between the proposed method and various conventional methods with Gray-Ball Dataset (The lower, the better).

FIGURE 4. The experimental results of (a) comparing different initial
training rates from the median angular error perspective and
(b) comparing median errors with multi-stream versus without
multi-stream in Eq. (6).

The 28 different methods consist of both unitary and com-
binational methods: Gray-world, WP, SoG, 1st- and 2nd-
order Gray Edge and CNN-based methods. Their source

codes are conducted by matlab and tensorflow [47] and their
parameter conditions are set as suggested in their respective
articles. Table 2 compares the 28 methods and the proposed
method from the angular error perspective: mean, median,
trimean, best-25% and worst-25% and the comparative study
uses Gehler and Shi’s Dataset of real-world scene images
mostly. Among the 28 methods, the CNN-based method [54]
proposed by S. Bianco et al uses a specially designed CNN
for estimating multiple local illuminates. This method uses a
multi-illuminant detector to decide whether or not it is neces-
sary to aggregate local outputs to produce a single estimate.
More recently, Choi et al. [60] propose another color con-
stancy approach based on the residual network architecture
to overcome several problems with Alexnet-FC4 [56] such as
overfitting, gradient degradation and gradient vanishing and
the method delivers advanced performance. Yet this method
is designed to stack the residual blocks with skip connection
in depth only, not in width. For this reason, the approach still
has room to improve computational efficiency, as well as take
estimation accuracy to a higher level, even though Choi’s
method performs higher accuracy than Alexnet-FC4. In order
to improve both efficiency and accuracy, this article proposes
novel CMoDE fusion technique-based CNNs. The proposed
CMoDE fusion technique has the primary advantage of taking
local illumination estimation to a higher level of accuracy,
which is of vital importance in training the network to achieve
the optimal combination of the local estimates and contribut-
ing to the final performance. In detail, the multiple paths in
the proposed architecture are trained all at once, but they
function individually and independently from one another,
which gives the network the flexibility to select and con-
catenate effective paths alone. The select valid paths engage
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TABLE 4. Comparative evaluation between the proposed network (PN) and Grey World (GW), White Patch (WP) 4, Shades of Grey (SoG), General Grey
World (GGW), 1st-order Grey Edge (GE1), 2nd-order Grey Edge (GE2), Local Surface Reflectance Statistics (LSR), Pixels-based Gamut (PG), Bayesian
framework (BF), Spatio-spectral Statistics (SS), Natural Image Statistics (NIS) and Choi’method (CM) with NUS-8 Camera Dataset.
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FIGURE 5. Comparative evaluation of the total training loss in the
logarithm space with four different initial learning rates to decide on the
optimal learning rate.

FIGURE 6. The angular error distribution of ‘real-world scene’ Gehler and
Shi’s Dataset images.

in implementing the network smoothly. So, despite a large
number of layers in the proposed network, they go shallow
through the selective use of effective paths only. Therefore,
the proposed architecture is designed to improve accuracy
and computational efficiency alike. In result, the proposed
network makes the lowest angular errors. Next, in order to
compare angular error distributions, several high-performing
methods such as CNN, ExamplarCC, ED and SqueezeNet-
FC4 are picked from Table 2 and compared with the proposed
network. Figure 6 exhibits the comparative results.

To verify illumination invariant, another comparative
experiment is conducted between the proposed network and
14 different methods, with the use of Grey-ball Dataset and
in the aspects of the mean, median and trimean angular error.
Table 3 summarizes the experimental outcomes. As a result,
the proposed method produces lower angular errors than the
14 different methods.

To verify camera invariant, the proposed network is
assessed with the use of the latest and well-known color
constancy dataset, the NUS-8 camera image dataset [61].
The dataset includes total 1,736 images resulting from taking
pictures of 210 individual scenes with eight cameras. In the
experiment with the NUS-8 camera dataset, the proposed
network is compared to 13 conventional methods. Table 4
illustrates the comparison results of camera-invariant perfor-
mance between the 13 methods and the proposed network.
The proposed network proves to exhibit robust performance

regardless of the camera conditions by exceeding the 13 com-
parison methods.

IV. CONCLUSION
This article presents a deep learning-based computational
color constancy method which trains the CMoDE fusion
technique-based CNNs to estimate real illuminant colors.
To highlight the distinctive merits of the proposed method,
first, it organizes the CMoDE fusion technique-based CNNs
in series and in parallel alike. This architecture gives the
network to enhance accuracy and efficiency at the same
time. The multiple paths in the CMoDE fusion technique
function individually and independently one another which
enables the network to choose effective paths. Consequen-
tially, the residual blocks of the proposed method help avoid
overfitting and make efficient computation, as opposed to a
single ultra-deep network whose structure is vulnerable to
overfitting and computational efficiency deterioration. Sec-
ond, the select effective paths are simultaneously trained to
estimate illumination, which also contributes to efficiency
enhancement and smooth implementation of the network.
Finally, the proposed network has multiple layers, but the
bottom line is that it goes shallow by using a selection of
effective paths only in the end. While a large number of paths
are the potential source of the gradient, the proposed network
uses shorter-than-expected paths. Accordingly, the proposed
method can steeply reduce the training time cost. Further,
to verify illumination and camera invariants, the proposed
network is compared with various advanced methods, using
multiple datasets such as Gehler and Shi’s, Gray-ball and
NUS-8 camera datasets. The experimental results demon-
strate that our proposed network surpasses its comparable
counterparts. Notwithstanding, there is still much to be done
and this study will continue towards optimizing the structure
of CNNs for color constancy.
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