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ABSTRACT The thermal dynamics of Li-ion batteries are very complicated, and the battery temperature is
spatially distributed imbalanced from the battery interior to the surface. The thermal dynamics are commonly
modeled by partial differential equations (PDEs); however, parameter identification for PDEs is difficult
and time consuming. In this work, a Karhunen-Loeve Galerkin method is proposed to obtain a simple but
effective low-order model for the distributed thermal dynamics of Li-ion batteries. The Karhunen-Loeve
decomposition method is applied to capture the most representative spatial modes of the dynamics, while the
Galerkin method is used to obtain the corresponding temporal modes. All the uncertain physical parameters
in the temporal modes are identified by the Levenberg-Marquardt algorithm. The updated temporal modes
synthesized with spatial modes can offer a fast estimation of the temperature distribution on the battery
surface and thus has the potential to provide distributed temperature prediction for the battery management
system. The proposed modeling scheme is tested on a 60Ah Li-ion battery cell, and the simulation result
shows an excellent match in the temperature distribution and a faster computing speed than the rigorous
physical model.

INDEX TERMS Li-ion batteries, Karhunen-Loeve Galerkin method, spatiotemporal separation, temperature
distribution, parameter identification.

NOMENCLATURE
A matrix of partial derivatives of the terminal voltage

with respect to the parameter vector, p
a specific area of the battery [m−1]
ap specific area of the positive electrode [m−1]
an specific area of the negative electrode [m−1]
Cp volume averaged specific heat capacity at constant

pressure [Jkg−1K−1]
d thickness of the battery cell in the direction perpen-

dicular to the parallel electrodes [m]
E cell voltage [V ]
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Eoc open-circuit potential of the cell [V ]
h convective heat-transfer coefficient on the battery

surface [Wm−2◦C−1]
J current density [Am−2]
kx effective thermal conductivities along the x direc-

tion [wm−1K−1]
ky effective thermal conductivities along the y direc-

tion [wm−1K−1]
nx number of measurements in the x direction
ny number of measurements in the y direction
nt number of measurements within the time
N order of the low order model
p parameter vector [p1, p2, p3]T

p1 representative of kx
/
ρCp

p2 representative of ky
/
ρCp
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p3 representative of 1
/
ρCp

1p parameter correction vector
q heat generation rate per unit volume [wm−3]
qconv heat dissipation rate through the battery surface by

convection [wm−3]
rp resistance of the positive electrode [�]
rn resistance of the negative electrode [�]
1t sampling interval for discretization [s]
T temperature [◦C]
Tair ambient temperature [◦C]
Z x-y coordinates (x, y)

GREEK SYMBOLS
λ algorithmic parameter value
γi i-th eigenvector
λi i-th eigenvalue
ζ x-y coordinates (x, y)
ρ density [kgm−3]
θ (t) time variable
θ̂ (t) estimated time variable
ϕ(x, y) spatial basis function
φp potential distribution of the positive electrode

[Vm−2]
φn potential distribution of the negative electrode

[Vm−2]

ACRONYMS
BMS battery management system
BF basis function
EV electric vehicle
FDM finite difference method
FEM finite element method
HEV hybrid electric vehicle
K-L Karhunen-Loeve
LIB Li-ion battery
LM Leverberg-Marquadt
NSVM nonlinear state variable modeling
ODE ordinary differential equation
PDE partial differential equation
POD proper orthogonal decomposition

I. INTRODUCTION
The ability to monitor and control the temperature of
Li-ion batteries (LIBs) is critical to avoid overheating. There
are many related works on the estimation of temperature,
which can be classified into two categories: lumped estima-
tions [1]–[3] and distributed estimations [4]–[6]. In lumped
estimations, equivalent-circuit models [7]–[9] are coupled
with a lumped thermal model to predict the average tem-
perature of the battery. This may lead to oversimplifica-
tion in the modeling of large-scale batteries used in electric
vehicles (EVs) and hybrid electric vehicles (HEVs), as sig-
nificant uneven temperature distribution in space can be
created depending on the driving conditions and the type
of heating and cooling. Artificial neural network has also

been applied to the development of empirical battery thermal
models [10], [11]. On the other hand, a physics-based elec-
trochemical model [12]–[16] coupled with distributed ther-
mal models can improve the model’s capability and capture
the thermal dynamics accurately. However, these models are
described in complex partial differential equations (PDEs),
and cannot be used directly for online estimation and con-
trol, due to the extensive computational load and uncertain
model parameters. A reliable model-reduction method and
an online-parameter identification scheme are particularly
desired to accurately estimate the temperature distribution in
different operating conditions.

Since physics-based models are quite computationally
expensive, several approximations have been made by
researchers. For example, the finite difference method
(FDM) [17] and finite element method (FEM) [18] are
used to discretize the PDE model into an ordinary dif-
ferential equation (ODE) model. These methods use local
spatial basis functions (BFs) to transform the infinite dimen-
sional model into a finite dimensional high-order tempo-
ral model, which are time consuming to compute and thus
not suitable for online monitoring of the battery manage-
ment system (BMS) [19]–[22]. To make it more com-
patible for online control, some reduced order modeling
approaches have been proposed for physics-based LIB mod-
els. For example, Subramian et al. [23] applied polynomial
approximation to electrolyte diffusion. Kumar [24] proposed
a volume average field equations framework in the electrodes.
Guo et al. [25] introduced a nonlinear state variable model-
ing (NSVM) algorithm, which maintains all of the nonlin-
ear features. Cai et al. [26] applied the proper orthogonal
decomposition (POD) method to develop a one-dimensional
reduced electrochemical-thermal model. Fan et al. [27] used
the Galerkin’s projection method to reduce the order of
the electrochemical model. Meng et al. [28] applied partial
least squares regression to linearize the equivalent-circuit
model. However, most of the research focused on the elec-
trochemical model or lumped thermal model. In recent
years, time/space separation-based spatiotemporal model-
ing methods have been successfully applied to simplify the
modeling of the distributed thermal dynamics among large
LIBs [29]–[32].

The simplified models need to be further validated to make
accurate predictions for the electric and thermal dynamics
of LIBs. The accuracy of the parameters plays a critical
role in model predictions. However, some parameters can-
not be measured directly through experiments [12]. Many
algorithms, including the gradient method [33], the gradient-
free method [34]–[38] and the Kalman filter method [4],
[39] have been proposed for the parameter identification of
LIBs. The Leverberg-Marquadt (LM) algorithm is a classic
gradient-based nonlinear regression method. LM can adjust
itself between gradient descent method and Gauss-Newton
method automatically to identify the parameters efficiently.
Jin et al. [40] applied the LM algorithm to a rigorous physics-
based model that can converge quickly to the optimum. Thus,
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it would be a good option to propose a simple but effective
low-order model to track distributed thermal dynamics.

Based on these discussions, we propose a spatiotempo-
ral separation modeling method with LM parameter iden-
tification to obtain an equivalent low-order thermal model
for a LIB cell. First, the Karhunen-Loeve (K-L) decompo-
sition, also known as principal component analysis (PCA),
is applied to compute the most characteristic spatial modes
of the dynamics. Then, the temporal modes are obta–ined by
Galerkin’s method. This approach can generate a lower-order
and more accurate model than FEM, FDM and other spec-
tral methods [22]. The uncertain physical parameters in the
temporal modes are identified by the Levenberg-Marquardt
(LM) algorithm. Then, the temporal modes are updated with
the identified parameters. Finally, the temporal modes are
synthesized with spatial modes and offer an accurate estima-
tion of the temperature distribution throughout the battery’s
surface. The main contributions of this paper are summarized
as follows:

1. The K-L Galerkin procedure is applied to nonlinear
distributed thermal systems of LIBs to obtain a lower dimen-
sional dynamicmodel, which can decouple the time and space
ties and is available for online estimation.

2. The LM algorithm is applied to identify the decomposed
model parameters to achieve satisfactory performance, which
demonstrates fast convergence and thus is suitable for the
online identifications.

3. Our experiments demonstrate the effectiveness of the
proposed method in achieving both better prediction perfor-
mance and less time consumption.

The rest of this paper is organized as follows: Section II
is the problem formulation. Section III introduces the K-L
decomposition-based identification process. Experimental
validation is given in Section IV, and the conclusions are
presented in Section V.

II. THERMAL MODEL AND PROBLEM FORMULATION
Due to the uneven electrochemical reaction inside the LIBs,
the heat generation rate is unevenly distributed. The two-
dimensional thermal distribution model is built by coupling
the uneven voltage distribution model with the transient two-
dimensional equation of heat conduction [41]. It is assumed
that the thickness dimension can be neglected comparing
to the width and length dimensions of the battery cell. The
schematic diagram of the thermal model is shown in Figure 1.

Based on the differential energy conservation for a battery,
the transient two-dimensional equation of heat conduction in
the cell domain is as follows:

ρCp
∂T
∂t
=

∂

∂x
(kx
∂T
∂x

)+
∂

∂y
(ky
∂T
∂y

)+ q− qconv, (1)

The detailed definition of each term of (1) is described
in [42].

The thermal parameters include the thermal conductiv-
ity, the heat capacity, and the density, which vary with the

FIGURE 1. Schematic diagram of the thermal model.

temperature. To achieve an accurate temperature distribution
for the BMS, it is critical to identify these parameters online.

To facilitate the deduction, equation (1) can be rewritten
as:

∂T
∂t
=

∂

∂x
(p1
∂T
∂x

)+
∂

∂y
(p2
∂T
∂y

)+ p3(q− qconv), (2)

The heat generation rate q is given as follows:

q = aJ
[
Eoc−E−T

dEoc
dT

]
+ap

∣∣∇φp∣∣2
rp
+an
|∇φn|

2

rn
, (3)

The detailed definition of each term on the right-hand side
of (3) is described in [43], [44]. The first item on the right
side of (3) is the electrochemical heat generated in the porous
electrode sub-domain; the second and third items are the
Joule heating rates in the current collectors.

The heat dissipation rate qconv is expressed as follows:

qconv =
2h
d
(T − Tair ), (4)

The rate is rendered by approximating a three-dimensional
object to a two-dimensional one as shown in (1). The relevant
boundary conditions include the current and potential states
for Vp and Vn [45].

There are two challenges associated with the thermal
model identification for LIBs:

1) The model is described by PDEs with space-time cou-
pled and high nonlinearity, making it difficult to obtain
an analytical solution.

2) The computation for a numerical solution by
FDM/FEM of the rigorous model is time consuming,
which makes it difficult to achieve real time estimation
and control application in the BMS.

Thus, it is a great challenge to propose a solution that
results in time efficiency and enough accuracy to identify the
parameters for the thermal model.
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FIGURE 2. Block diagram of the K-L decomposition-based parameter
identification. — represents the identification process and — represents
the spatiotemporal modeling process.

III. K-L DECOMPOSITION-BASED
PARAMETER IDENTIFICATION
A spatiotemporal modeling-based method is proposed to
identify the parameters of the thermal model of LIBs. The
block diagram of the space-time separation-based parameter
identification is shown in Figure 2. This method consists of
four main steps:

1) K-L decomposition is applied to obtain the spatial BFs
{ϕi(x, y)}∞i=1 of the spatiotemporal variable T (x, y, t).

2) Galerkin’s method is used to calculate the temporal
model {θi(t)}∞i=1.

3) The identified physical parameters by the LM algo-
rithm are used to adjust the temporal models.

4) The updated temporal models are synthesized with
spatial BFs to estimate the temperature distribution on
the battery surface.

A. TIME/SPACE SEPARATION-BASED
LOW-ORDER MODELING
Motivated by the Fourier series, the spatiotemporal vari-
able T (x, y, t) can be expanded onto an infinite number
of orthonormal spatial BFs {ϕi(x, y)}∞i=1 with correspond-
ing time variables: {θi(t)}∞i=1 according to the formula

T (x, y, t) =
∞∑
i=1
ϕi(x, y)θi(t). The inner product, norm

and ensemble average are defined as (f (x), g(x)) =∫
�

f (x), g(x)dx, ‖f (x)‖ = (f (x), f (x))1/2 and 〈f (x, t)〉 =

(1/L)
∑L

t=1 f (x, t), respectively.
Because the spatial BFs are orthonormal, that is,(
ϕi(x, y), ϕj(x, y)

)
=

∫∫
�

ϕi(x, y)ϕj(x, y)dxdy=

{
0, i 6= j
1, i= j,

(5)

the time variable can be calculated from

θi(t) = (ϕi(x, y),T (x, y, t)), i = 1, . . . ,∞. (6)

In practice, it has to be truncated to a finite dimension for
approximation:

T̂N (x, y, t) =
N∑
i=1

ϕi(x, y)θ̂i(t), (7)

where θ̂i(t) is the estimated time variable by the LM algo-
rithm, which is discussed in Section 3.4.

B. K-L DECOMPOSITION
To obtain the spatial basis function, K-L decomposition
is applied to compute the most characteristic spatial func-
tions {ϕi(x, y)}Ni=1. The spatiotemporal observations of tem-
perature {T (xm, yl, tk )|xm, yl ∈ �, m = 1, . . . , nx ,
l = 1, . . . , ny, k = 1, . . . , nt } are usually called snapshots.
The observations are uniformly sampled from measurements
in space-time dimensions.

The typical {ϕi(x, y)}Ni=1 can be mathematically derived by
optimizing the following objective function:

min
ϕi(x,y)

〈∥∥∥T (x, y, t)− T̂N (x, y, t)∥∥∥〉 , (8)

subject to (ϕi, ϕi) = 1, ϕi ∈ L2(�), i = 1, . . . ,N . The
orthogonal constraint (ϕi, ϕi) = 1 is imposed to ensure that
the function ϕi(x, y) is unique. The solution of (8) can be
obtained through the following eigenvalue problem:∫

�

R(Z , ζ )ϕi(ζ )dζ = λiϕi(Z ), (9)

where R(Z , ζ ) = 〈T (Z , t)T (ζ, t)〉 is the spatial two-point
correlation function. By the method of snapshots, ϕi(Z ) can
be expressed as a linear combination of the snapshots as
follows:

ϕi(Z ) =
nt∑
t=1

γitT (Z , t). (10)

Substituting (10) into (9) gives the following eigenvalue
problem:∫
�

1
nt

nt∑
t=1

T (Z , t)T (ζ, t)
nt∑
k=1

γikT (ζ, k)dζ =λi
nt∑
t=1

γitT (Z , t).

(11)

The temporal two-point correlation function is defined as

Ctk =
1
nt

∫
�

T (ζ, t)T (ζ, k)dζ. (12)

The eigenvalue problem (11) can be transformed to the
following form of an nt × nt matrix eigenvalue problem:

Cγi = λiγi, (13)

where γi =
[
γi1, . . . , γint

]T is the i-th eigenvector. The solu-
tion of the eigenvalue problem (13) yields the eigenvectors
γ1, . . . γnt , which can be used in (10) to calculate the spatial
BFs {ϕi(x, y)}Ni=1.
The eigenvalues obtained from (13) are λ1 > λ2 > · · · >

λnt and are applied to determine the orders of the spatial basis
function. The order of the low dimensional model N can be
determined using the following equation:

η =

N∑
i=1

λi

/ nt∑
i=1

λi. (14)
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FIGURE 3. Experimental setup: (a) thermal chamber for environment temperature setting,
(b) temperature measurement of the LIB, and (c) schematic plot of the locations of thermocouples.

A value of η ≥ 0.99 is always taken to capture the majority
characteristic [46].

C. TEMPORAL MODEL IDENTIFICATION
With the learned optimal spatial BFs {ϕi(x, y)}Ni=1, the value
of the corresponding time variables θi(t) can be obtained with
respect to the spatiotemporal data {T (xm, yl, tk )} from
(6), as follows:

θi(t) = (ϕi(x, y),T (xm, yl, tk )). (15)

Substituting the truncated expansion (7) into the physics-
based model (2), the equation residual can be obtained as

δ(x, y, t)

=
∂TN (x, y, t)

∂t

−

(
p1
∂2TN (x, y, t)

∂x2
+p2

∂2TN (x, y, t)
∂y2

+p3 (q− qconv)
)

(16)

and with Galerkin’s method,∫
δ(x, y, t)ϕj(x, y)d� = 0. (17)

Substituting (7) and (16) into (17) gives the following
equation:

∫
�


∂

(
N∑
i=1
ϕi(x, y)θ̂i(t)

)
∂t

− ℵ

ϕj(x, y)d� = 0, (18)

where ℵ = p1
∂2

(
N∑
i=1
ϕi(x,y)θ̂i(t)

)
∂x2

+ p2
∂2

(
N∑
i=1
ϕi(x,y)θ̂i(t)

)
∂y2

+ p3 (q− qconv)
The PDEs can be reduced to a set of ODEs as follows:

θ̇j(t) =
N∑
i=1

ψijθi(t)+ χjQ(t), (19)

FIGURE 4. Temperature data for model identification at different times:
(a) 3 min, (b) 6 min, (c) 8 min and (d) 13 min.

where ψij =
∫
�

(
p1∂2ϕi

/
∂x2 + p2∂2ϕi

/
∂y2

)
ϕjd�, χj =

p3
∫
�

ϕjdx, Q = q− qconv.

For practical application, a discrete form of (19) obtained
by Taylor expansion is often used:

θj(k) = θj(k − 1)+
N∑
i=1

ψijθi(k − 1)1t+χjQ(k − 1). (20)

D. PARAMETER IDENTIFICATION
The parameters in (2) need to be identified online and the
optimization procedure is as follows:
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FIGURE 5. Obtained spatial basis functions for model reduction in the
order of the corresponding eigenvalues: (a) first order, (b) second order,
(c) third order, (d) fourth order and (e) fifth order.

1) The time variables with parameter vector p = [p1, p2,
p3]T are synthesized with space functions (7) to estimate the
temperature distribution T̂N (xm, yl, tk ).
2) The objective/fitness function f is constructed for the

optimal identification of the parameter vector p in the thermal
model (2), which is a quadratic function of the difference
between the experimental temperature T (xm, yl, tk ) and the
predicted temperature T̂N (xm, yl, tk ):

f =
m=nx∑
m=1

l=ny∑
l=1

k=nt∑
k=1

(T (xm, yl, tk )− T̂N (xm, yl, tk ))2

= (T − T̂N )T (T − T̂N ). (21)

3) The LM algorithm is applied to calculate the parameter
correction vector 1p according to the objective function
in (23). The time variables are updated with the identified
parameter vector p = p + 1p. The procedure switches to
step 1 until the objective function value is less than the pre-
set value τset .

FIGURE 6. Comparison of the real and estimated time variable θi (k) at
the (a) first order, (b) second order, (c) third order, (d) fourth order and
(e) fifth order.

The parameter correction vector 1p is obtained based on
objective function (21) and the LM method as follows:

1p = (ATA+ λI)−1AT (T − T̂N ), (22)

where A is evaluated at all the experimental temperature
data. LM adaptively alters the algorithmic parameter value
λ between the gradient descent one and the Gauss-Newton
one. The parameter λ determines how the LM algorithm
works and is initialized to be large. If the iteration results
in a better approximation, then the parameter λ is decreased
to 0.1λ and LM is more like a Gauss-Newton update. If the
iteration provides a worse approximation, then the parameter
λ is increased to 10λ and LM approaches a gradient descent
update [47].

IV. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL SETUP
The LIB used in this study was purchased from Shenzhen
Changhe Power Technology Co., Ltd., Shenzhen, China (cell
dimensions: 240× 180× 30 mm3), with a nominal capacity
of 60Ah and a nominal voltage of 3.2 V. The active mate-
rials of the cathode and anode are LiFePO4 and graphite,
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FIGURE 7. Temperature distributions based on experimental data by
thermocouples (left) and modeling result by the identified parameters
(right) at discharge times of (a) 1 min, (b) 6 min and (c) 13 min at 3C.

respectively. The electrolyte material is mainly LiPF6. The
battery is first charged to the cut-off voltage of 3.65 V (theo-
retical capacity SOC=100%) at a constant current of C/8 rate
(C-rate is the measurement of the charge and discharge cur-
rent with respect to its nominal capacity), and then is charged
at a constant voltage 3.65 V until the current is down to 1/20C
rate [48]. The constant current constant voltage (CC/CV)
charging algorithm is applied to charge the lithium battery
to the fully charged state because of its simplicity and easy
implementation [49]–[50]. This is the battery’s fully charged
state. Then, the battery is discharged at a rate of 3C (180A)
until the cut-off voltage. As shown in Figure 3(a), a thermal
chamber is applied to provide a space-efficient arrangement
for effective thermal management of the battery while it is
charging or discharging. The environmental temperature can
be set to a certain value in the range of −20

◦

C ∼ 100
◦

C and
is set to 25

◦

C here in the experiment.
As shown in Figure 3(b), the battery is put in the ther-

mal chamber and electrically connected by an alligator clip.
A Hall effect sensor is applied to measure the current; the
terminal voltage is measured by the small alligator clip con-
nected to the voltage metre, while the temperature data are
collected by T-type thermocouples per second. There are
20 thermocouples evenly attached to the battery surface,

FIGURE 8. Temperature curve fitting of different thermocouples: (a) the
first column (#1-#5); (b) the third column (#11-#15). 1 is–the measured
temperature by the thermocouples and — is the predicted temperature.

which are represented by the dots (4coloums × 5 rows) in
Figure 3(c). #1∼#20 refer to the locations of thermocouples
attached on the battery surface.

B. RESULTS AND VALIDATION
The discharge time is 780 s and a total of 780 × 20 data
are collected from the battery’s experimental platform. The
measured surface temperatures at different times are shown
in Figure 4.

The measured surface temperature is taken for spatial BFs
learning and model identification. The KL decomposition is
then applied to these temperature data. The number of spatial
BFs is set to N, which can be determined by the truncation
criterion of the K-L method. According to (15), N is 5. Thus,
five spatial BFs are obtained as shown in Figure 5.

The original time variables can be obtained by (16) while
the truncated is also shown in Figures 6(a)-(e for comparison.
The identified thermal parameters with the proposed method
are shown in Table 1.

A contour function creates the temperature distribu-
tion from the discretized experimental data in MATLAB.
As shown in Figure 7, the overall temperature distributions
obtained from the experiment and the model show a good
match. It is obvious that the temperature near the current-
collecting tab of the positive electrode is higher than that
of the negative electrode, because the comparatively larger
ohmic resistance of the active material on the positive elec-
trode is higher than that on the negative electrode. There
will be more heat generated near the tabs of the positive
electrode than the negative electrode with a similar current
flow according to Ohm’s law.
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TABLE 1. Thermal parameter value.

Figure 8 compares the temperatures predicted by the pro-
posed method and the temperatures measured by the 10 ther-
mocouples (as shown in Figure 3
, #1-#5, #11-#15) during
the 3 C discharge experiment. It can also be seen that the
temperature near the positive tab (#1 and #11) increases faster
than in any other location.

V. CONCLUSION
In this paper, a KL-Galerkin online modeling approach
has been developed for the thermal model of a LIB cell.
The Karhunen–Loève decomposition method and Galerkin’s
method are combined to obtain a space/time separation-based
analytical model, which greatly reduces the complexity of
the PDEs-based thermal model. The LM algorithm is first
used to cooperate with the K-L decomposition-based model
to identify the physical parameters of LIBs. The experimen-
tal results demonstrate the effectiveness of this method in
estimating the temperature distribution of LIBs. A promising
future research direction is to optimize the sensor placement
with the proposed method.

REFERENCES
[1] C. Park and A. K. Jaura, ‘‘Dynamic thermal model of Li-ion battery for

predictive behavior in hybrid and fuel cell vehicles,’’ Warrendale, PA,
USA, SAE Int., Tech. Paper, 2003, p. 2003-01-2286.

[2] X. Lin, A. G. Stefanopoulou, H. E. Perez, J. B. Siegel, Y. Li, and
R. D. Anderson, ‘‘Quadruple adaptive observer of the core temper-
ature in cylindrical li-ion batteries and their health monitoring,’’ in
Proc. Amer. Control Conf. (ACC), Jun. 2012, pp. 578–583.

[3] A. Subramaniam, S. Kolluri, C. D. Parke, M. Pathak, S. Santhanagopalan,
and V. R. Subramanian, ‘‘Properly lumped lithium-ion battery models:
A tanks-in-series approach,’’ J. Electrochem. Soc., vol. 167, no. 1,
Jan. 2020, Art. no. 013534.

[4] M. L. Wang and H. X. Li, ‘‘Real-time estimation of temperature distribu-
tion for cylindrical lithium-ion batteries under boundary cooling,’’ IEEE
Trans. Ind. Electron, vol. 64, no. 3, pp. 966–977, Mar. 2017.

[5] Z. Liu and H.-X. Li, ‘‘A spatiotemporal estimation method for temperature
distribution in lithium-ion batteries,’’ IEEE Trans. Ind. Informat., vol. 10,
no. 4, pp. 2300–2307, Nov. 2014.

[6] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, ‘‘Ther-
mal modeling and validation of temperature distributions in a prismatic
lithium-ion battery at different discharge rates and varying boundary con-
ditions,’’ Appl. Thermal Eng., vol. 96, pp. 190–199, Mar. 2016.

[7] X. Lin, H. E. Perez, S. Mohan, J. B. Siegel, A. G. Stefanopoulou,
Y. Ding, and M. P. Castanier, ‘‘A lumped-parameter electro-thermal model
for cylindrical batteries,’’ J. Power Sources, vol. 257, pp. 1–11, Jul. 2014.

[8] K. S. Hariharan, ‘‘A coupled nonlinear equivalent circuit—Thermal model
for lithium ion cells,’’ J. Power Sources, vol. 227, pp. 171–176, Apr. 2013.

[9] T. Yamanaka, D. Kihara, Y. Takagishi, and T. Yamaue, ‘‘Multi-physics
equivalent circuit models for a cooling system of a lithium ion battery
pack,’’ Batteries, vol. 6, no. 3, p. 44, Aug. 2020.

[10] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, ‘‘Exper-
imental and theoretical investigation of temperature distributions in a
prismatic lithium-ion battery,’’ Int. J. Thermal Sci., vol. 99, pp. 204–212,
Jan. 2016.

[11] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler,
‘‘Experimental and theoretical investigations of heat generation rates for
a water cooled LiFePO4 battery,’’ Int. J. Heat Mass Transf., vol. 101,
pp. 1093–1102, Oct. 2016.

[12] V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan,
R. D. Braatz, and V. R. Subramanian, ‘‘Modeling and simulation of
lithium-ion batteries from a systems engineering perspective,’’ J. Elec-
trochem. Soc., vol. 159, no. 3, pp. R31–R45, Jan. 2012.

[13] W. B. Gu and C. Y. Wang, ‘‘Thermal-electrochemical modeling of battery
systems,’’ J. Electrochem. Soc., vol. 147, no. 8, pp. 2910–2922, May 2000.

[14] K. Kumaresan, G. Sikha, and R. E. White, ‘‘Thermal model for a li-ion
cell,’’ J. Electrochem. Soc., vol. 155, no. 2, p. A164, 2008.

[15] U. S. Kim, C. B. Shin, and C.-S. Kim, ‘‘Modeling for the scale-up
of a lithium-ion polymer battery,’’ J. Power Sources, vol. 189, no. 1,
pp. 841–846, Apr. 2009.

[16] R. E. Gerver and J. P. Meyers, ‘‘Three-dimensional modeling of elec-
trochemical performance and heat generation of lithium-ion batteries in
tabbed planar configurations,’’ J. Electrochem. Soc., vol. 158, no. 7,
p. A835, 2011.

[17] L. Guo and S. A. Billings, ‘‘State-space reconstruction and spatio-temporal
prediction of lattice dynamical systems,’’ IEEE Trans. Autom. Control,
vol. 52, no. 4, pp. 622–632, Apr. 2007.

[18] D. Coca and S. A. Billings, ‘‘Identification of finite dimensional models
of infinite dimensional dynamical systems,’’ Automatica, vol. 38, no. 11,
pp. 1851–1865, Nov. 2002.

[19] S. C. Chen, C. C. Wan, and Y. Y. Wang, ‘‘Thermal analysis of lithium-ion
batteries,’’ J. Power Sources, vol. 140, no. 1, pp. 111–124, 2005.

[20] M. W. Verbrugge, ‘‘Three-dimensionai temperature and current distri-
bution in a battery module,’’ AIChE J., vol. 41, no. 6, pp. 1550–1562,
Jun. 1995.

[21] K.-K. Xu, H.-X. Li, and H.-D. Yang, ‘‘Dual least squares support vector
machines based spatiotemporal modeling for nonlinear distributed thermal
processes,’’ J. Process Control, vol. 54, pp. 81–89, Jun. 2017.

[22] L.-Q. Chen, H.-X. Li, and H.-D. Yang, ‘‘Dimension embedded basis
function for spatiotemporal modeling of distributed parameter system,’’
IEEE Trans. Ind. Informat., vol. 16, no. 9, pp. 5846–5854, Sep. 2020.

[23] V. R. Subramanian, V. Boovaragavan, and V. D. Diwakar, ‘‘Toward real-
time simulation of physics based lithium-ion battery models,’’ Elec-
trochem. Solid-State Lett., vol. 10, no. 11, p. A255, 2007.

[24] V. Senthil Kumar, ‘‘Reduced order model for a lithium ion cell with
uniform reaction rate approximation,’’ J. Power Sources, vol. 222,
pp. 426–441, Jan. 2013.

[25] M. Guo, X. Jin, and R. E. White, ‘‘An adaptive reduced-order-modeling
approach for simulating real-time performances of li-ion battery systems,’’
J. Electrochem. Soc., vol. 164, no. 14, pp. A3602–A3613, Nov. 2017.

[26] L. Cai and R. E. White, ‘‘An efficient electrochemical–thermal model for
a lithium-ion cell by using the proper orthogonal decomposition method,’’
J. Electrochem. Soc., vol. 157, no. 11, p. A1188, 2010.

[27] G. Fan, X. Li, and M. Canova, ‘‘A reduced-order electrochemical model of
li-ion batteries for control and estimation applications,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 1, pp. 76–91, Jan. 2018.

[28] J. Meng, D.-I. Stroe, M. Ricco, G. Luo, and R. Teodorescu, ‘‘A simplified
model-based state-of-charge estimation approach for lithium-ion battery
with dynamic linear model,’’ IEEE Trans. Ind. Electron., vol. 66, no. 10,
pp. 7717–7727, Oct. 2019.

[29] B.-C. Wang, H.-X. Li, and H.-D. Yang, ‘‘Spatial correlation-based incre-
mental learning for spatiotemporal modeling of battery thermal process,’’
IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2885–2893, Apr. 2020.

[30] B.-C. Wang and H.-X. Li, ‘‘A sliding window based dynamic spatiotem-
poral modeling for distributed parameter systems with time-dependent
boundary conditions,’’ IEEE Trans. Ind. Informat., vol. 15, no. 4,
pp. 2044–2053, Apr. 2019.

[31] K.-K. Xu, H.-X. Li, and H.-D. Yang, ‘‘Local-properties-embedding-
based nonlinear spatiotemporal modeling for lithium-ion battery thermal
process,’’ IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9767–9776,
Dec. 2018.

187900 VOLUME 8, 2020



W. Shen et al.: Karhunen-Loeve Galerkin Online Modeling Approach for the Thermal Dynamics of Li-Ion Batteries

[32] K.-K. Xu, H.-X. Li, and Z. Liu, ‘‘ISOMAP-based spatiotemporal model-
ing for lithium-ion battery thermal process,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 2, pp. 569–577, Feb. 2018.

[33] S. Santhanagopalan, Q. Zhang, K. Kumaresan, and R. E. White, ‘‘Parame-
ter estimation and life modeling of lithium-ion cells,’’ J. Electrochem. Soc.,
vol. 155, no. 4, p. A345, 2008.

[34] J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, ‘‘Genetic identi-
fication and Fisher identifiability analysis of the Doyle–Fuller–Newman
model from experimental cycling of a LiFePO4 cell,’’ J. Power Sources,
vol. 210, pp. 263–275, Jul. 2012.

[35] M. A. Rahman, S. Anwar, and A. Izadian, ‘‘Electrochemical model param-
eter identification of a lithium-ion battery using particle swarm optimiza-
tion method,’’ J. Power Sources, vol. 307, pp. 86–97, Mar. 2016.

[36] M. Luzi, M. Paschero, A. Rizzi, and F. M. Frattale Mascioli, ‘‘A PSO algo-
rithm for transient dynamic modeling of lithium cells through a nonlinear
RC filter,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Vancouver, BC,
Canada, Jul. 2016, pp. 279–286.

[37] W.-J. Shen and H.-X. Li, ‘‘A sensitivity-based group-wise parameter iden-
tification algorithm for the electric model of li-ion battery,’’ IEEE Access,
vol. 5, pp. 4377–4387, Mar. 2017.

[38] A. Chandra Shekar and S. Anwar, ‘‘Real-time state-of-charge estimation
via particle swarm optimization on a lithium-ion electrochemical cell
model,’’ Batteries, vol. 5, no. 1, p. 4, Jan. 2019.

[39] M. Paschero, G. L. Storti, A. Rizzi, F. M. F. Mascioli, and G. Rizzoni,
‘‘A novel mechanical analogy-based battery model for SoC estimation
using a multicell EKF,’’ IEEE Trans. Sustain. Energy, vol. 7, no. 4,
pp. 1695–1702, Oct. 2016.

[40] N. Jin, D. L. Danilov, P. M. J. Van den Hof, and M. C. F. Donkers,
‘‘Parameter estimation of an electrochemistry-based lithium-ion battery
model using a two-step procedure and a parameter sensitivity analysis,’’
Int. J. Energy Res., vol. 42, no. 7, pp. 2417–2430, Jun. 2018.

[41] U. S. Kim, J. Yi, C. B. Shin, T. Han, and S. Park, ‘‘Modeling the thermal
behaviors of a lithium-ion battery during constant-power discharge and
charge operations,’’ J. Electrochem. Soc., vol. 160, no. 6, pp. A990–A995,
2013.

[42] J. Yi, U. S. Kim, C. B. Shin, T. Han, and S. Park, ‘‘Three-dimensional
thermal modeling of a lithium-ion battery considering the combined effects
of the electrical and thermal contact resistances between current collecting
tab and lead wire,’’ J. Electrochem. Soc., vol. 160, no. 3, pp. A437–A443,
2013.

[43] V. Srinivasan and C. Y. Wang, ‘‘Analysis of electrochemical and ther-
mal behaviour of li-ion cells,’’ J. Electrochem. Soc., vol. 150, no. 1,
pp. A98–A106. 2003.

[44] W.-J. Shen and H.-X. Li, ‘‘Multi-scale parameter identification of lithium-
ion battery electric models using a PSO-LM algorithm,’’ Energies, vol. 10,
no. 4, p. 432, Mar. 2017.

[45] U. S. Kim, C. B. Shin, and C.-S. Kim, ‘‘Effect of electrode configuration
on the thermal behavior of a lithium-polymer battery,’’ J. Power Sources,
vol. 180, no. 2, pp. 909–916, Jun. 2008.

[46] Z. Liu and H.-X. Li, ‘‘Extreme learning machine based spatiotemporal
modeling of lithium-ion battery thermal dynamics,’’ J. Power Sources,
vol. 277, pp. 228–238, Mar. 2015.

[47] A. Constantinides and N. Mostoufi, Numerical Methods for Chemical
Engineers With MATLAB Applications, vol. 4. Upper Saddle River, NJ,
USA: Prentice-Hall, 1999, ch. 7, sec. 7.7, pp. 493–494.

[48] Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma, and Y. Jiang, ‘‘Lithium-
ion battery aging mechanisms and life model under different charging
stresses,’’ J. Power Sources, vol. 356, pp. 103–114, Jul. 2017.

[49] W. X. Shen, T. T. Vo, and A. Kapoor, ‘‘Charging algorithms of lithium-
ion batteries: An overview,’’ in Proc. IEEE Conf. Ind. Electron. Appl.,
Jul. 2012, pp. 1567–1572.

[50] X. Wu, C. Hu, J. Du, and J. Sun, ‘‘Multistage CC-CV charge method for
li-ion battery,’’ Math. Problems Eng., vol. 2015, pp. 1–10, Sep. 2015.

WENJING SHEN (Member, IEEE) received the
B.E. and M.E. degrees in mechatronics engineer-
ing from Central South University, Changsha,
China, in 2006 and 2009, respectively, and the
Ph.D. degree in systems engineering and engi-
neering management from the City University of
Hong Kong, in 2017.

She is currently an Assistant Professor with
the Sino-German College of Intelligent Man-
ufacturing, Shenzhen Technology University,

Guangdong, China. Her current research interests include modeling of
thermal distribution in industrial processes, data-based modeling, and
optimization.

KANGKANG XU (Member, IEEE) received the
B.E. and Ph.D. degrees in mechatronics engi-
neering from Central South University, Changsha,
China, in 2012 and 2017, respectively.

He is currently a Lecturer with the School
of Electro-Mechanical Engineering, Guangdong
University of Technology, Guangzhou, China. His
research interests include distributed parameter
systems and intelligent modeling.

LIMING DENG received the B.E. degree in
mechanical engineering from Nanchang Univer-
sity, in 2011, and the M.E. degree from Shanghai
Jiao Tong University, China, in 2014, and the
Ph.D. degree in systems engineering and engi-
neering management from the City University of
Hong Kong, in 2018.

He is currently a Research Scientist with Ping
An Technology at Shenzhen. His research inter-
ests include prognostics and health management,
bioinformatics, and natural language processing.

SHUPENG ZHANG (Member, IEEE) received
the B.S. and M.S. degrees in automotive engi-
neering from Tsinghua University, Beijing, China,
in 2006 and 2009, respectively, and the Ph.D.
degree in mechanical engineering from Michigan
State University, MI, USA, in 2014.

He is currently an Associate Professor with the
College of Urban Transportation and Logistics,
Shenzhen Technology University, Guangdong,
China. Prior to joining the university, he was a

Control System Engineer of vehicle control with Karma Automotive LLC,
California, USA. His current research interests include modelling and con-
trol of internal combustion engines, hybrid vehicle powertrain control and
optimization, advanced control theory and applications, and so on.

VOLUME 8, 2020 187901


