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ABSTRACT This paper studies the decentralized adaptive tracking control problem for a class of
discrete-time multi-agent systems with unknown parameters and high-frequency gains using multi-model
method. Each agent is strong coupling with its neighbors by the historical outputs. All agents are interacted
either directly or indirectly. In the face of uncertainties, the projection algorithm as a normal adaptive method
is adopted. In order to improve quality of identification, the multi-model method is taken to identify unknown
parameters and high-frequency gains using switching sets of the multiple parameters’ and high-frequency
gains’ estimates, and the index switching functions. Using the certainty equivalence principle, the control law
for the hidden leader agent is designed by the desired reference signal; the control law for each follower agent
is devised by neighbors’ historical outputs. Moreover, the proposed decentralized adaptive control laws can
guarantee the following performances of the system: (1) the leader agent tracks the reference trajectory and
each follower agent follows the average value of its neighborhood historical outputs; (2) the synchronization
of all the follower agents to the leader agent is achieved; (3) all the agents track the reference trajectory,
and the closed-loop system eventually achieves strong synchronization. Finally, simulations validate the
effectiveness on improving control performance of multi-model adaptive algorithm by comparing with the
projection algorithm.

INDEX TERMS Adaptive tracking control, multi-agent system, multi-model method, discrete-time system.

I. INTRODUCTION
During the past decades, the control of multi-agent systems
(MASs) has attracted extensive attention due to its potential
applications in many fields, such as unmanned ground/air
vehicles [1], multiple spacecrafts [2], sensor networks [3]
and so on. The tracking control for MASs is a common
control problem, which has been widely studied [4]–[10].
Specifically, the adaptive tracking control for MASs has
been investigated as one of paradigms to deal with some
uncertainties [11]–[14].

Generally speaking, the continuous- or discrete-time
multi-agent system under consideration involves structured
uncertainty, parametric uncertainty, input uncertainty, envi-
ronmental uncertainty and so on. A variety of new treat-
ment methods have emerged. In this paper [15], a type of
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multi-agent system with time-delay, uncertainties and linear
feedback is adopted, and the LMI approach is taken to guaran-
tee the robust stability of the sliding surface. The consensus
problem of multi-agent systems with uncertainties and ran-
domly occurring nonlinearities is investigated in [16], which
designs an effective impulsive control protocol, and obtains
sufficient conditions to ensure consensus of multi-agent sys-
tems based on the Lyapunov stability theory and hybrid con-
trol theory. The work [17] develops a robust control method
for formation maneuvers of a leader-follower multi-agent
system with unknown bounded uncertainties, and uses the
technique of nonlinear disturbance observer to overcome the
adverse effects of the uncertainties.

When a multi-agent system independently faces to
unknown parameters, the researchers have presented many
estimation algorithms such as the gradient algorithm [18],
the maximum likelihood algorithm [19], the least-squares
algorithm [20], the backstepping approach [21], the observer

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 193717

https://orcid.org/0000-0002-9053-3251
https://orcid.org/0000-0001-7954-2125


X. Zhang et al.: Multi-Model Method Decentralized Adaptive Control

method and sliding mode technique [22] and so on. The stud-
ies mentioned above use single-model method. Multi-model
method is to track targets by combining different models.
To some extent, multi-model method can improve tracking
results to adapt to different target maneuvers. At present,
there are few research in the control of multi-agent systems
using multi-model method.

The strategies for formation tracking control can be clas-
sified into centralized strategy and decentralized strategy.
They all have their own merits and flaws. For instance, cen-
tralized control strategy is easier to realize but have flaws
of leader failure. Decentralized control strategy can read-
uce the communication data and improve the robustness.
However, decentralized control strategy is difficult to make
mathematical analysis and control design. [13], [23] study the
multi-agent systems with uncertainties, and a projection-type
algorithm is proposed to identify system, and then the decen-
tralized control strategries are designed. Reference [24] uses
I/O data and neural network to identify unknown dynamics,
an approximate model is established by the direct data-driven
method, the decentralized adaptive control is designed.

Motivated by the above observations, this paper addresses
the decentralized adaptive tracking control problem for a
class of discrete-time multi-agent systems with unknown
parameters and high-frequency gains. Agent dynamics are
described by the discrete-time nonlinearly parameterized
models. This work extends results presented in [23] using
the projection-type algorithm to identify system. This paper
is to study the tracking control of the multi-agent system
using not only involves the projection-type algorithm but
also uses multi-model method to identify unknown param-
eters and high-frequency gains. The control performance of
multi-agent system is improved using multi-model method
by comparing with the projection algorithm. Due to the com-
plex dynamics of the system, there are significant challenges
involved in the problem on the control of the multi-agent
systems with uncertainties in both algorithm design and the-
oretic analysis. The minimal value theorem, convergence
criterion of the positive series, limit and set knowledge and
so on. To address such challenges, in this paper, a discrete-
time MAS with unknown parameters and high-frequency
gains is investigated and the contributions are highlighted
as follows: (1) for the discrete-time MAS with the param-
eter uncertainties and completely unknown high-frequency
gains, the unknown internal parameters and unknown
high-frequency gains are dealt with by the projection-type
parameter estimation algorithm and multi-model method; (2)
the leader’s output tracks the desired reference trajectory
as time goes on, and each follower’s output asymptotically
tracks the mean value of its neighbors’ outputs; (3) each
follower’s output tends to the hidden leader’s output as time
goes by; (4) the MAS eventually achieves synchronization
in the presence of strong couplings. Although the system
without noise is addressed, this note makes the first step to
analyze the adaptive tracking problem of multi-agent systems
with unknown parameters and high-frequency gains under

TABLE 1. Nomenclature.

the assumptions that the interconnection topology is strong
connected. Our work will motivate future study of more
general cases that are not presently addressed in this note.

This paper is organized as follows. Problem formulation
and some assumptions are introduced in Section II and the
projection algorithm and multi-model adaptive method are
described in Section III. As the estimates of the parameter and
high-frequency gain are known, the decentralized adaptive
control laws are designed based on the desired reference
trajectory and the mean value of the neighborhood agents
in Section IV. Section V proves the performances of the
closed-loop system eventually achieves strong synchroniza-
tion in the presence of strong couplings. A simulation exam-
ple is considered in Section VI to illustrate the improved con-
trol performance of the multi-agent system by multi-model
method. Finally, conclusions are drawn in Section VII. And
here we give the nomenclature in the following Table 1.

II. PROBLEM FORMULATION AND ASSUMPTIONS
A. ALGEBRAIC GRAPH THEORY
For anMAS consisting ofN agents, the topology is expressed
by a directed graph G = (V, ε,A), in which, V =

{1, 2, · · · ,N } is a set of all agents and i denotes agent i,
ε = V × V is a set of the ordered edges of the form (i, j),
representing that agent j has access to the information of
agent j, by the way, in this case agent j is called be a neighbor
of agent i; the matrix A(aij = 0, 1) ∈ RN×N is an adjacency
matrix, whose entries aii = 0, aij = 1 if (i, j) ∈ ε, and aij = 0
if (i, j) /∈ ε. The set of all neighbors of agent i is denoted by
Ni = {j ∈ V|(i, j) ∈ ε}.
Definition 1 [11]: An adjacency matrixA(aij = 0, 1) is a

strongly connected matrix if there exists a directed path such
that any two agents are connected.
Definition 2 [13]: The agent in one multi-agent system is

called one hidden leader if the agent knows the given signal,
while other agents are aware of neither given signal nor the
existence of the leader.

B. SYSTEM REPRESENTATION AND ASSUMPTIONS
TheMAS is consisted ofN agents, and the dynamics of agent
i is expressed as follows:

yi(k + 1) = fi(θi, yi(k), ϕi(k))+ giui(k), (1)

where parameter θi ∈ R and high-frequency gain gi ∈ R \ {0}
are unknown; the symbols yi(k + 1) and ui(k) are the output
and input of agent i at the time k , respectively; the vector ϕi(k)
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is consisted of the outputs from the neighbors of agent i at the
time k; the nonlinear mapping fi is a known function, which is
first-order continuously differentiable with respect to θi, and
the derivative is expressed by8i(k) =

∂fi(θ,yi(k),ϕi(k))
∂θ

|
θ=θ̂i(k)

.
Remark 1: For simplicity, this work that towards full

understanding to the decentralized adaptive control is pre-
liminary,, and the ideas may be generalized to more general
high-dimensional discrete-time systems using more technical
efforts.

In order to analyze multi-model adaptive control problem
of this MAS to be discussed, some technical assumptions are
introduced as follows.
Assumption A1: The MAS’s adjacency matrix is strongly

connected.
Assumption A2: The reference signal sequence {y∗(k)} is

bounded.
Assumption A3: Without loss of generality, the hidden

leader is supposed to be the agent 1.
Remark 2: The hidden leader know the reference signal,

while the followers are unware of either the reference signal
or who is the leader.
Assumption A4: The function 8i(·) is Lipschitz function

with respect to (yi(k), ϕi(k)).

III. MULTI-MODEL ADAPTIVE METHOD
A. THE PROJECTION ALGORITHM
An algorithm is chosen to identify the unknown parameter
and high-frequency gain for the nonlinear discrete-time
dynamics of agent i and this algorithm brings a number of
benefits, such as efficiency, good robustness, etc. Consider
an identification criterion function as follows.

Ji(θi, gi) = [yi(k)− fi(θi, yi(k − 1), ϕi(k − 1))

− giui(k − 1)]2 + µi(θi − θ̂i(k − 1))2

+ νi
(
gi − ĝi(k − 1)

)2
, (2)

where θ̂i(k − 1) and ĝi(k − 1) are estimates of θi and gi at
the instance time k , respectively; two constants µi and νi are
punishment factors of (θi − θ̂i(k − 1)) and

(
gi − ĝi(k − 1)

)
,

respectively, and 0 < max{µi, νi} < 2min{µi, νi}. And
define the errors {

θ̃i(k) = θ̂i(k)− θi
g̃i(k) = ĝi(k)− gi.

(3)

The estimates of θi and gi are seeking to minimize (2). Denote

Fi(θi, gi) , fi(θi, yi(k − 1), ϕi(k − 1))+ giui(k − 1).

There are the partial derivatives of the functionFi with respect
to independent θi and gi. According to Taylor expanding
formula of dualistic function, for example, f (x, y),

f (x, y) = f (x0, y0)+ [(x − x0)
∂

∂x
+ (y− y0)

∂

∂y
]f (x0, y0)

+
1
2
[(x − x0)

∂

∂x
+ (y− y0)

∂

∂y
]2f (x0, y0)+ · · ·

where (x0, y0) is the centre of Taylor expansion. Thus, using
Taylor expansion in (θ̂i(k − 1), ĝi(k − 1)) to form a local cost

function, one has

Fi(θi, gi) ∼= Fi(θ̂i(k − 1), ĝi(k − 1))

+
∂Fi(θ, ĝi(k − 1))

∂θ
|
θ=θ̂i(k−1)

(θi − θ̂i(k − 1))

+
∂F(θ̂i(k − 1), g)

∂g
|g=ĝi(k−1)(gi − ĝ(k − 1))

= f (θ̂i(k − 1), yi(k − 1), ϕi(k − 1))
+ ĝi(k − 1)ui(k − 1)+ αi(k − 1)

× (θi − θ̂i(k − 1))+ βi(k − 1)(gi − ĝi(k − 1)),

(4)

where 
αi(k − 1) =

∂Fi(θ, ĝi(k − 1))
∂θ

|
θ=θ̂i(k−1)

βi(k − 1) =
∂Fi(θ̂i(k − 1), g)

∂g
|g=ĝi(k−1).

Applying (4) into (2), we have
Ji(θi, gi)
∼= [yi(k)− fi(θ̂i(k − 1), yi(k − 1), ϕi(k − 1))
− ĝi(k − 1)ui(k − 1)− αi(k − 1)(θi − θ̂i(k − 1))
−βi(k − 1)(gi − ĝi(k − 1))]2 + µi(θi − θ̂i(k − 1))2

+ νi(gi − ĝi(k − 1))2. (5)

Remark 3: In (5), neglected higher order terms have not
been ensured to be small, not even be bounded, by the pro-
posed adaptive law and control scheme. When they are not
small, the approximation is not good. Here we suppose that
the neglected higher order terms are convergent to zero as
time goes by.

In order to obtain θ̂i(k) and ĝi(k) to minimize (5), the easy
way is to apply the minimal value theorem, one has

∂Ji(θ, gi)
∂θ

|
θ=θ̂i(k)

= 0

∂Ji(θi, g)
∂g

|g=ĝi(k) = 0.

By (5), we get

[yi(k)− fi(θ̂i(k − 1), yi(k − 1), ϕi(k − 1))
−ĝi(k − 1)ui(k − 1)− αi(k − 1)(θ̂i(k)− θ̂i(k − 1))
−βi(k − 1)(ĝi(k)− ĝi(k − 1))]αi(k − 1)
−µi(θ̂i(k)− θ̂i(k − 1)) = 0
[yi(k)− fi(θ̂i(k − 1), yi(k − 1), ϕi(k − 1))
−ĝi(k − 1)ui(k − 1)− αi(k − 1)(θ̂i(k)− θ̂i(k − 1))
−βi(k − 1)(ĝi(k)− ĝi(k − 1))]βi(k − 1)
−νi(ĝ(k)− ĝi(k − 1)) = 0.

Arranging the above equations, it leads to the update laws
θ̂i(k) = θ̂i(k − 1)+

[yi(k)− ŷi(k)]νiαi(k − 1)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

ĝi(k) = ĝi(k − 1)+
[y(k)i − ŷi(k)]µiβi(k − 1)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

,

(6)
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where

ŷi(k) = fi(θ̂i(k − 1), yi(k − 1), ϕi(k − 1))

+ ĝi(k − 1)ui(k − 1).

Remark 4: Here, we only analyze the case that parameter
θi is a scalar. Similarly, the multi-parameters’ update laws can
be obtained
θ̂i(k) = θ̂i(k−1)+

[yi(k)− ŷi(k)]νiαi(k − 1)

νi ‖αi(k − 1)‖2 + µiβ2i (k − 1)+ µiνi

ĝi(k) = ĝi(k−1)+
[yi(k)− ŷi(k)]µiβi(k − 1)

νi ‖αi(k − 1)‖2 + µiβ2i (k − 1)+ µiνi
,

where θ̂i(·) ∈ Rn×1 and αi(·) ∈ Rn×1.

B. MULTIPLE ADAPTIVE PARAMETERS AND MODELS
Suppose that each parameter and high-frequency gain are
varying in their respective given convex sets. The following
gives a minute description.

Firstly, multiple adaptive parameter and high-frequency
gain of agent i are discussed. The unknown model param-
eter θi and unknown high-frequency gain gi satisfy θi ∈
�i ⊂ Rpi , gi ∈ Gi ⊂ Rqi , where �i and Gi are two given
nonempty convex sets. The sets�i andGi have the following
segmentations:
(1) Given sets �is1 and Gis2 satisfy that

�is1 ⊂ �i, Gis2 ⊂ Gi,

where
s1 = 1, 2, · · · , di1 , s2 = 1, 2, · · · , di2 ,

and
�is1 ,Gis2 , �i,Gi 6= ∅.

(2) Sets �is1 and Gis2 meet the certain conditions:

�i =

di1⋃
s1=1

�is1 , Gi =

di2⋃
s2=1

Gis2;

Obviously, di1 and di2 are the numbers of objects, which
are contained in the sets �i and Gi, respectively.

(3) Let θis1 , ris1 ≥ 0 stand the center and radius of �is1 ,
and gis2 , ris2 ≥ 0 represent the in respective the center
and radius of Gis2 . The mathematical expressions are
denoted∥∥θi − θis1∥∥ ≤ ris1 , ∥∥gi − gis2∥∥ ≤ ris2 ,
where θi ∈ �is1 and gi ∈ Gis2 .

Considering (1), for the dynamic model for agent i, some sets
of multiple fixed invariant parameters and high-frequency
gains respectively are established

2̂i(k) = {θis1 (k), s1 = 1, 2, · · · , di1}

and

Ĝi(k) = {gis2 (k), s2 = 1, 2, · · · , di2}.

For each agent, normal adaptive model is established to the
dynamics (1) using the projection parameter update law (6).

Denote normal adaptive parameter θ̂i1 (k) and high-frequency
gain ĝi1 (k) as θ̂i,di1+1(k) and ĝi,di2+1(k), respectively. That is

to say, sets 2̂i(k) and Ĝi(k) have been extended. They are
described with accurate mathematical linguistic forms:

2̂i(k) = {θis1 (k), s1 = 1, 2, · · · , di1 , θ̂i,di1+1(k)} (7)

and

Ĝi(k) = {gis2 (k), s2 = 1, 2, · · · , di2 , ĝi,di2+1(k)}, (8)

where θ̂i,di1+1(k) and ĝi,di2+1(k) are obtained from the normal
update laws (6).
For improving control performance to accelerate parameter

convergence, we draw into another adaptive model parameter
θ̂i,di1+2

(k) and high-frequency gain ĝi,di2+2(k), whose initial
values would be dynamically adjusted to the nearest model
parameter and high-frequency gain of the dynamics. The set
of multiple parameters with di1 + 2 elements is

2̂i(k) = {θis1 (k), s1 = 1, 2, · · · , di1 , θ̂i,di1+1(k), θ̂i,di1+2(k)}.

(9)

And the set of multiple high-frequency gains with di2 + 2
elements is

Ĝi(k) = {gis2 (k), s2 = 1, 2, · · · , di2 , ĝi,di2+1(k), ĝi,di2+2(k)}.

(10)

Thus, Cartesian product of the set 2̂i(k) and the set Ĝi(k)
can be expressed as follows:

2̂i(k)× Ĝi(k)
= {(θis1 (k), gis2 (k))|θis1 (k) ∈ 2̂i(k), gis2 (k) ∈ Ĝi(k)}

According to (6), (7), (8), (9) and (10), the adaptive multiple
models are established:

ŷis(k + 1) = fi(θ̂is1 (k), yi(k), ϕi(k))+ ĝis2 (k)ui(k),

where θ̂is1 is from 2̂i(k), ĝis2 is from Ĝi(k), and

s = {1, 2, · · · , di1di2 , · · · , (di1 + 1)(di2 + 1), · · · ,

(di1 + 2)(di2 + 2)}.

Remark 5: For agent i, (di1+2)(di2 +2) models are estab-
lished. Thus, for the whole system, the number of all models

is
N∑
i=1

(di1 + 2)(di2 + 2).

Facing to sets (di1 + 2) parameters and (di2 + 2)
high-frequency gains of agent i, how to choose the opti-
mal parameter and high-frequency gain for fast and accurate
tracking their respective true values. The details are as fol-
lows.

C. MULTI-MODEL ADAPTIVE OPTIMAL PARAMETER
For agent i, in order to establish one adaptive optimal param-
eter, two important definitions are given as follows:
Definition 3: Define output error as

eis(k) =

∥∥∥∥∥ ηis(k + 1)

[νiα2i (k − 1)+ µiβ2i (k − 1)+ µiνi]1/2

∥∥∥∥∥ ,
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where

s = {1, 2, di1di2 , · · · , (di1 + 1)(di2 + 1), · · · ,

(di1 + 2)(di2 + 2)},

and

ηis(k + 1) = yi(k + 1)− ŷis(k + 1)

= fi(θi, yi(k), ϕi(k))+ giui(k)

− fi(θ̂is, yi(k), ϕi(k))− ĝi(k)ui(k).

Definition 4: Define index switching function as

Jis(ki0, ki1) =
ki1∑
t=ki0

e2is(t),

where

s = {1, 2, di1di2 , · · · , (di1 + 1)(di2 + 1), · · · ,

(di1 + 2)(di2 + 2)}.

From Definition 4, it is obvious to get

Jis(ki0, ki1) = Jis(ki0, ki1 − 1)+ e2is(ki1),

where

s = {1, 2, di1di2 , · · · , (di1 + 1)(di2 + 1), · · · ,

(di1 + 2)(di2 + 2)}.

From Definitions 3 and 4, using an linearization technique,
based on multi-model adaptive control strategy, the optimal
parameter estimate and high-frequency gain estimate are
designed in detail.
(1) When k = ki0, for given enough small one positive real

number εi > 0, let the difference set Ii(0) be that

Ii(k) = Ii(0) = s/{(di1+1)(di2+1), (di1 + 2)(di2+2)}.

(11)

(2) When k > ki0, we calculate index switching functions

Îi(k) = {s|
∥∥yi(k)− ŷis(k)∥∥ ≤ ris1 ‖αi(k − 1)‖

+ gis2 ‖βi(k − 1)‖ , s ∈ Ii(k − 1)}, (12)

where

s1 = 1, 2, · · · , di1 , s2 = 1, 2, · · · , di2 , (13)

and

Ii(k) = Îi(k)
⋂

Ii(k − 1). (14)

We denote the index si(k) as

si(k) = arg min
l∈{Ii(k),(di1+1)(di2+1),(di1+2)(di2+2)}

Jil(ki0, ki).

(15)

Let

θ̂i,di+2(k) = θ̂i,si(k), ĝi,di+2(k) = ĝi,si(k) (16)

and

Ji,di+2(ki0, ki) = Ji,si(k)(ki0, ki). (17)

The time is calculated by

ki1 = min{k ′i |k
′
i > ki0, esi(k ′i ) < εi}. (18)

If k < ki1, then the parameter estimate θ̂i(k) and
high-frequency gain estimate ĝi(k) are chosen, and back to
step (2) for calculating the next time output yi(k + 1).
If k ≥ ki1, then adaptive model (di1 + 2)(di2 + 2) will

degenerate into normal adaptive identifier or better identifier,
that is to say, the worst identifier is

θ̂i(k) = θ̂di1+2(k), ĝi(k) = ĝdi2+2(k).

Remark 6: For agent i, the optimal parameter estimate
θ̂i(k) and optimal high-frequency gain estimate ĝi(k) have
been chosen by two index switching functions.

Remark 7: The error
ki1∑
t=ki0

e2is(t) can be obtained by optimal

parameter and optimal high-frequency gain is not more than
the error that can be the projection algorithm.
Facing to each optimal parameter and optimal high-frequency

gain, our objective is to design the decentralized adaptive
control laws such that all agents among this system (1) track
the given reference signal.

IV. DECENTRALIZED ADAPTIVE CONTROL LAWS
By Assumption A3, the first agent is to track the reference
trajectory y∗(k). Using the certainty equivalence principle and
the reference trajectory, we design the control law for the first
agent as follows:

u1(k) =
1

ĝ1(k)
(−f1(θ̂1(k), y1(k), ϕ1(k))+ y∗(k + 1)). (19)

As for other agents, since each follower agent only knows its
own and its neighbors’ historical information and is unaware
of the existence of the leader. Using the certainty equivalence
principle and the mean value of the neighbors’ agents, the
local control law for each follower agent is designed as
follows:

ui(k) =
1

ĝi(k)
(−fi(θ̂i(k), yi(k), ϕi(k))+

1
di

∑
l∈Ni

yl(k)). (20)

In the decentralized adaptive control laws (19) and (20),
there exists singularity problem for any ĝi(k) = 0. Thus,
we can assume that

ĝi(k) =

{
ĝi(k − 1), if |gi(k)| < ri(k),
ĝi(k), otherwise,

where ri(k) is a dead zone for gain update and can be a smaller
real number.

The error between the output of the leader agent and the
reference signal at the time instant (k + 1) is denoted by
ỹ1(k + 1), which is expressed in mathematical language

ỹ1(k + 1) = y1(k + 1)− y∗(k + 1). (21)

As for the follower agent i, the error between the output and
the average values of the outputs of neighbors at the time
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(k + 1) are denoted by ỹi(k + 1), i = 2, 3 · · · ,N . The
mathematical expression is

ỹi(k + 1) = yi(k + 1)− zi(k), i = 2, 3 · · · ,N , (22)

where

zi(k) =
1
di

∑
l∈Ni

yl(k), i = 2, 3 · · · ,N .

Combining (21), (22) with (1), (19), (20), we can get

ỹi(k + 1) = fi(θi, yi(k), ϕi(k))− fi(θ̂i(k), yi(k), ϕi(k))

+ giui(k)− ĝi(k)ui(k), (23)

which together with (4) yields

ỹi(k + 1) ∼= −αi(k)θ̃i(k)− βi(k)g̃i(k), (24)

where {
θ̃i(k) = θ̂i(k)− θi
g̃i(k) = ĝi(k)− gi.

V. TRACKING PERFORMANCE OF THE MULTI-AGENT
SYSTEM
A. SEVERAL AUXILIARY LEMMAS
Lemma 1: The projection algorithm satisfies the following

properties:
(1) There is a positive real number Mi1 and Mi2 such that∥∥∥θ̂i(k)− θi∥∥∥ ≤ Mi1,

∥∥ĝi(k)− gi∥∥ ≤ Mi2.

(2) The series consisting of output errors is convergent, that
is

lim
k→∞

k∑
t=1

‖ηi(t + 1)‖2

νiα
2
i (t − 1)+ µiβ2i (t − 1)+ µiνi

<∞.

(3) The sequence consisting of output errors is convergent,
that is

lim
k→∞

‖ηi(k + 1)‖2

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

= 0,

where

ηi(k + 1) = yi(k + 1)− ŷi(k + 1)

= fi(θi, yi(k), ϕi(k))− fi(θ̂i(k), yi(k), ϕi(k))

+ giui(k)− ĝi(k)ui(k).

Proof:
(1) Consider a Lyapunov function

Vi(k) = θ̃2i (k)+ g̃
2
i (k).

The difference 1Vi(k) is that

1Vi(k) = Vi(k)− Vi(k − 1)

= θ̃2i (k)− θ̃
2
i (k − 1)+ g̃2i (k)− g̃

2
i (k − 1)

= (θ̃i(k)− θ̃i(k − 1))2 + 2θ̃i(k − 1)(θ̃i(k)

− θ̃i(k − 1))+ (g̃i(k)− g̃i(k − 1))2

+ 2g̃i(k − 1)(g̃i(k)− g̃i(k − 1)). (25)

From (25), it is easy to get{
θ̃i(k)− θ̃i(k − 1) = θ̂i(k)− θ̂i(k − 1)
g̃i(k)− g̃i(k − 1) = ĝi(k)− ĝi(k − 1).

(26)

Substituting (26) into (25), we have

1Vi(k) = (θ̂i(k)− θ̂i(k − 1))2 + 2θ̃i(k − 1)(θ̂i(k)

− θ̂i(k − 1))+ (ĝi(k)− ĝi(k − 1))2

+ 2g̃i(k − 1)(ĝi(k)− ĝi(k − 1)). (27)

By the update laws in (6), one has
θ̂i(k)−θ̂i(k−1) =

[yi(k)− ŷi(k)]νiαi(k − 1)

νiα
2
i (k−1)+µiβ

2
i (k−1)+µiνi

ĝi(k)−ĝi(k−1) =
[yi(k)− ŷi(k)]µiβi(k − 1)

νiα
2
i (k−1)+µiβ

2
i (k−1)+µiνi

,

(28)

where

ŷi(k) = fi(θ̂i(k − 1), yi(k − 1), ϕi(k − 1))
+ ĝi(k − 1)ui(k − 1)

αi(k − 1) =
∂fi(θ, yi(k − 1), ϕi(k − 1))

∂θ
|
θ=θ̂i(k−1)

βi(k − 1) =
∂(gui(k − 1))

∂g
|g=ĝi(k−1) = ui(k − 1).

Putting (23), (28) into (27) yields

1Vi(k)

=
ỹ2i (k)(α

2
i (k − 1)ν2i + µ

2
i β

2
i (k − 1))

(νiα2i (k − 1)+ µiβ2i (k − 1)+ µiνi)2

+
2ỹi(k)[νiαi(k−1)θ̃i(k−1)+µiβi(k−1)g̃i(k−1)]

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

.

Our objective in this step is to deduce 1Vi(k) ≤ 0.
By the above equation, it is clear to get

1Vi(k)

≤
max{µi, νi}[ỹ2i (k)νiα

2
i (k−1)+ ỹ

2
i (k)µiβ

2
i (k−1)]

(νiα2i (k − 1)+ µiβ2i (k − 1)+ µiνi)2

+
2ỹi(k)[νiαi(k−1)θ̃i(k−1)+µiβi(k−1)g̃i(k−1)]

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

,

which together with (24), it immediately leads to

1Vi(k) ≤
max{µi, νi}ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

−
2min{µi, νi}ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

= −
[2min{µi, νi} −max{µi, νi}]ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

. (29)

Noticing 0 < max{µi, νi} < 2min{µi, νi}, it is easy
to conclude that 1Vi(k) ≤ 0. According to Lyapunov
theory, it is clear to get that Vi(k) is bounded. So θ̃i(k)
and g̃i(k) are bounded.
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(2) From (29), we know

1Vi(k) ≤ −
[2min{µi, νi} −max{µi, νi}]ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

. (30)

Taking summation on both sides of (30), one has

lim
k→∞

Vi(k)− Vi(0)

≤ −

∞∑
k=1

[2min{µi, νi} −max{µi, νi}]ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

.

Since max{µi, νi} ≤ 2min{µi, νi} and
lim
k→∞

Vi(k) ≥ 0,

we have
∞∑
k=1

[2min{µi, νi} −max{µi, νi}]ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

≤ Vi(0).

(3) When 2min{µi, νi} > max{µi, νi}, according to the
convergence criterion of the positive series, the positive
series

∞∑
k=1

[2min{µi, νi} −max{µi, νi}]ỹ2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

is a convergent. And by a necessary condition for
convergence of series, it is easy to get

lim
k→∞

η2i (k)

νiα
2
i (k − 1)+ µiβ2i (k − 1)+ µiνi

= 0.

Under the decentralized adaptive control, the closed-loop
stability is summarized in the following lemma.
Lemma 2 [13]: Suppose that the MAS consisting of N

agents satisfies Assumptions A1 - A4, then under the decen-
tralized adaptive control based on the projection-type param-
eter estimation algorithm, the closed-loop system has the
following properties:

1) The error between the first agent’s output and the
desired reference signal tends to zero as time goes on.
And each follower agent’s output can track the mean
value of its neighbors’ outputs, i.e.,

lim
k→∞

(y1(k)− y∗(k)) = 0

and

lim
k→∞

(yi(k)−
1
di

∑
l∈Ni

yl(k)) = 0, i = 2, · · · ,N ,

where di is the number of ith agent’s neighbors.
2) At the time k , the error between ith agent’s output and

the first agent’s output is denoted by ei1(k), then the
error approaches to zero as time goes by, i.e.,

lim
k→∞

ei1(k) = lim
k→∞

(yi(k)− y1(k)) = 0.

3) At the time k , the error between ith agent’s output yi(k)
and the reference signal y∗(k) is denoted by ei(k), then
the error converges to zero as time passes, i.e.,

lim
k→∞

ei(k) = lim
k→∞

(yi(k)− y∗(k)) = 0.

4) The whole system can achieve synchronization, i.e.,

lim
k→∞

(yi(k)− yj(k)) = 0.

As space is limited, the detailed proving steps will not be
written here. Please see [13].
Lemma 3: For agent i, using the multi-model adaptive

parameters (11)-(18) and decentralized adaptive laws (19),
(20), there exists the time ki4, when k > ki4, the multi-model
adaptive controllers are converted into normal single one.

Proof: When k > ki0, for fixed models s ∈ Ii(k),
the index switching function has two cases: bounded and
divergent. Consider the (di1di2+ 1)th model, according to (3)
of Lemma 1, the index switching satisfies

lim
k→∞

Jdi+1(ki0, k) = lim
k→∞

k∑
t=1

e2is(t) <∞.

Then, for the subset of dynamic system

I ′i (k) = {j|j ∈ Ii(k)and lim
k→∞

Ji,j(ki0, k)→∞},

there is the time ki3, when k > ki3, one has

Ji,j(ki0, k) > Ji,di+1(ki0, k), j ∈ I ′i (k),

which implies that index functions in the set of dynamic
model cannot take part in switching. In other words, when
k > ki3, multi-model adaptive controllers are in the subset of
dynamic models

I ′′i (k) = {j|j ∈ Ii(k)and lim
k→∞

Ji,j(ki0, k) <∞}

and adaptive models di1di2+1, di1di2+2. So, identifying the
parameter θ̂i(k) is switching in the parameters θ̂Si(k)(Si(k) =
{I ′′i (k), (di1 + 1)(di2 + 1), (di1 + 2)(di2 + 2)}). According to
Definitions 3, 4, (4) of Lemma 1 and (28), one has

lim
k→∞

eSi(k) = 0.

Thus, there exists the time ki4 > ki3, when k > ki4, one has

eSi(k) < εi, Si(k) ∈ {I ′′i (k), (di1 + 1)(di2 + 1),

(di1 + 2)(di2 + 2)}.

At this time multi-model adaptive controllers can be con-
verted into normal single one.
Lemma 4: For the whole system, using the multi-model

adaptive parameters (11)- (18) and decentralized adaptive
laws (19), (20), there exists the time k4, when k > k4, for each
agent the multi-model adaptive controllers are converted into
normal single one.

Proof: From Lemma 3, we see that there is the time

k4 = max(k14, k24, · · · , kn4),

when k > k4, for the whole system, the multi-model adaptive
controllers can ultimately be converted into normal adaptive
controllers.
Remark 8: For a discrete-time non-linearly parameterized

heterogeneous MAS, using the control laws (19) and (20),
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the multi-model adaptive controllers are established. The sys-
tem is guaranteed to track the desired signal if each identifi-
cation parameter satisfies that

∥∥∥θ̂i(k)− θi∥∥∥ is bounded. Thus,
it is guaranteed to each identification parameter does not
jump by multi-model adaptive controllers, which is why that
multi-model adaptive controllers can ultimately be converted
into normal single one.

B. MAIN THEORETICAL RESULTS
From Remark 8, Lemmas 2, 3, 4, we have the following
theorem:
Theorem 1: If a discrete-time non-linearly parameter-

ized heterogeneous MAS (1) satisfies Assumptions A1-A4,
under the multi-model adaptive parameters (11)- (18) and
decentralized adaptive laws (19), (20), then
(1) the hidden leader agent tracks the desired reference

trajectory lim
k→∞

(y1(k) − y∗(k)) = 0, and each follower

agent follows the average value of its own neighbor-
hood historical outputs lim

k→∞
(yi(k)−zi(k−1)) = 0, i =

2, 3, · · · ,N ;
(2) the synchronization of all the follower agents to the

hidden leader agent is achieved, that is, lim
k→∞

(yi(k) −

y1(k)) = 0, i = 2, 3, · · · ,N ;
(3) all the agents track the desired trajectory, that is,

lim
k→∞

(yi(k)− y∗(k)) = 0, i = 2, 3, · · · ,N .

Remark 9: Although multi-model adaptive controllers can
ultimately be converted into normal single one for each agent,
before this, switching mechanism of multi-model adaptive
controllers the performance of designed controllers based
on the identification parameters θ̂i(k) fast approach for one
of designed controllers based on the true parameters θi.
Thus, it extremely improves transient response of the control
system.

VI. SIMULATIONS
In this section, a simulation example is provided to verify
the illustrate the efficiency and feasibility of the proposed
theoretical results. This strategy can be applied to multi-robot
system and high-speed electric multiple units and so on. An
example is refered to system in general, not to anyone in
particular. A group of five discrete-time nonlinear agents with
unknown parameters and high-frequency gains is expressed
as follows:

yi(k + 1) = fi(θi, ϕi(k))+ giui(k), (31)

where

y1(k + 1) = 0.8θ1y1(k)+ 0.2θ1y2(k)− 0.1θ1y5(k)
+ g1u1(k)

y2(k + 1) = θ2y2(k)− sin(θ2y5(k))+ g2u2(k)
y3(k + 1) = 0.9θ3y3(k)+ 0.2θ3y1(k)− cos(θ3y4(k))

+ g3u3(k)
y4(k + 1) = 0.5θ4y4(k)+ 0.5θ4y1(k)− e−|y3(k)|

+ g4u4(k)
y5(k + 1) = θ5y5(k)− θ5 sin(y3(k))+ g5u5(k)

(32)

FIGURE 1. Architecture graph.

and 

θ1 = 3, g1 = 5
θ2 = 2, g2 = 4
θ3 = 3.5, g3 = 3
θ4 = 4, g4 = 2
θ5 = 2, g5 = 3.

The adjacency matrix and architecture diagram from (32) are

A =


0 1 0 0 1
0 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 0 1 0 0

 .
and this system is one leader-follower MAS consists of five
agents. At any time, each agent has its own neighbors. The
desired objective is to make agents be uniformly distributed
on the line. From the dynamics of the system, the unknown
parameters and high-frequency gains are estimated. Under
the decentralized control laws, the system achieves the per-
formance index. We assume that the first agent is the leader,
and the desired signal is y∗(k) = 15 + 1

k , it is easy to check
that Assumptions A1− A4 hold in this MAS.

We will make simulations using the projection algorithm
and multi-model method to estimate parameters and
high-frequency gains respectively and demonstrate
corresponding graphs of inputs and outputs.

A. THE SIMULATION RESULTS BASED ON
PROJECTION-TYPE ESTIMATION ALGORITHM
In this subsection, the simulation results according to the
projection algorithm are provided.

We use the update laws defined by (6) with µi = 0.3, νi =
0.5, i = 1, 2, · · · ,N to estimate unknown parameters and
unknown high-frequency gains. It is noted that max{µi, νi} <
2min{µi, νi}.

From Figs. 2 and 3, based on the projection algorithm each
parameter estimate and each high-frequency estimate are
convergent, each parameter error and high-frequency error
are bounded. The leader agent tracks the desired signal and
each following agent follows the mean value of the historical
outputs for its neighbors as shown in Fig.5. And the whole
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FIGURE 2. θi , θ̂i based on projection algorithm.

FIGURE 3. gi , ĝi based on projection algorithm.

FIGURE 4. ui based on projection algorithm.

system achieves strong synchronization in the presence of
strong couplings.

B. THE SIMULATION RESULTS BASED ON MULTI-MODEL
METHOD
In this subsection, the simulation results for the simulation
example (31) and (32) using multi-model method based on
Section IV are given. Under the same conditions of Sub-
section VI-A, parameter estimates and high-frequency gain
estimates almost tracks the true values from Figs. 6 and 7.
Under the different application backgrounds control input

FIGURE 5. yi , y∗ based on projection algorithm.

FIGURE 6. θi , θ̂i based on multi-model method.

FIGURE 7. gi , ĝi based on multi-model method.

range is different. The saturated restriction could be imposed
on control input. The each control input range is chosen in
[−50, 50] in the simulations, and the range could be adjusted
as needed. By Fig. 8, the local control is bounded. And the
whole system achieves strong synchronization in the presence
of strong couplings by the Fig. 9.

To sum up, under the decentralized adaptive control the
whole system achieves strong synchronization using either
the projection algorithm or multi-model method to identify
parameters and high-frequency gains. It is not difficult to
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FIGURE 8. ui based on multi-model method.

FIGURE 9. yi , y∗ based on multi-model method.

see from the simulations that the multi-model adaptive con-
trol algorithm is effectiveness on improving control perfor-
mance on identifying parameters and high-frequency gains
by comparing with the normal projection algorithm through
simulation results.

VII. CONCLUSION
In this paper, the problem of decentralized adaptive tracking
control has been discussed for a class of leader-following
MASs, in which each agent is modeled by the discrete-time
nonlinear system with unknown parameter and unknown
high-frequency gain. The multi-model adaptive method is
adopted to identify uncertainties. Each agent can obtain the
historical information of its neighbors in the model, the local
control law based on the certainty equivalence principle are
designed. Through analysis, it has been proven that all the
agents track the desired trajectory, and the closed-loop system
eventually achieves strong synchronization in the presence of
strong couplings. Finally, the effectiveness of the proposed
control method is further verified by a simulation example.
The study on the asynchronous decentralized tracking con-
trol of discrete-time nonlinear MASs can be also extended
to more general cases such as noise and switching topolo-
gies, which would be some interesting topics for our future
work. Furthermore, the autonomous mobile robots moving

in the plane is also an interesting topic that needs to be
developed.
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