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ABSTRACT Cognitive radio sensor network (CRSN) is an intelligent and reasonable combination of
cognitive radio and wireless sensor networks. Clustering is an effective method to manage the network
topology of CRSN. In order to solve the optimal cluster head selection problem in clustering which is
proved to be NP-hard, inspired by ions motion optimization (IMO) algorithm, a novel centralized clustering
routing protocol, i.e., IMO-based clustering routing protocol (IMOCRP) which can adapt to the dynamic
characteristics of CRSN is presented in this paper. Optimal number of clusters and identity of cluster heads
are automatically determined by combining the excellent characteristics of IMO algorithm and the rich
resource, comprehensive information at the sink together. Thanks to its centralized structure, IMOCRP
proposed in this paper avoids excessive overhead in cluster head selection and cluster formation, which in
turn helps conserve energy. Available channel list at each living node is taken into consideration to perform
reasonable channel allocation for clusters, and the probability of collisionswith primary users can be reduced,
which promotes more successful information delivery. Simulation results have shown that IMOCRP can
balance network lifetime and effective information collection capability, and it is superior to other competing
protocols.

INDEX TERMS Cognitive radio sensor network, clustering algorithms, ions motion optimization,
computational complexity.

I. INTRODUCTION
Cognitive radio sensor network (CRSN) is an intelligent and
reasonable combination of cognitive radio (CR) and wire-
less sensor networks (WSNs) [1]. With the capability of
spectrum sensing, CRSN nodes can opportunistically access
the licensed spectrum bands when they are not occupied
by primary users (PUs), thereby alleviating the spectrum
scarcity faced by traditional WSNs and enhancing network
performance [2].

Clustering routing protocol is a type of energy-efficient
routing protocol in CRSN. In clustering, data aggregation at
cluster head (CH) reduces the number of data transmissions
throughout the whole network, and fewer data transmissions
mean lower energy consumption and smaller probability
of collisions with PUs. Additionally, cooperative spectrum
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sensing among nodes within a cluster can also help decrease
the probability of collisions with PUs due to miss detection in
spectrum sensing [3], [4]. In view of its importance in improv-
ing network performance, clustering routing protocol design
for CRSN has become a hot research area which is wildly
concerned by scholars [5]. CH selection, optimal number of
clusters and reasonable channel allocation are three important
aspects in clustering routing protocol design for CRSN.
• CH selection: CHs are responsible for data collection,
data aggregation, data transmission within the clus-
ter, and even data relay for other clusters. Therefore,
its energy consumption is usually higher than normal
nodes. Residual energy and number of available chan-
nels should be considered when selecting CHs [6].

• Optimal number of clusters: Factors such as node deaths
(caused by running out of energy) or transitions in PUs’
channel occupancy state will lead to network topology
changes in CRSN, therefore, the optimal number of
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clusters should adapt to the dynamic characteristics of
CRSN [7], 8].

• Reasonable channel allocation: Channel allocation
should satisfy intra-cluster communication requirements
and minimize the potential impact on PUs [9].

Inspired by ions motion optimization (IMO) algo-
rithm [10], a novel centralized clustering routing protocol,
i.e., IMO-based clustering routing protocol (IMOCRP) for
CRSN is proposed in this paper. IMO is chosen as the basis for
clustering routing protocol design due to the following rea-
sons: IMO has fewer input parameters which makes it simple
to implement, and it has powerful exploring and exploiting
capability than many other swarm intelligence-inspired opti-
mization algorithms [11]; The automatic adjustment of ion
positions by gravitation is consistent with the properties of
IMOCRP, which makes it very suitable for solving clustering
problem in CRSN [12]. IMOCRP makes full use of the
advantages of IMO, and the optimal number of clusters and
CHs are automatically determined to adapt to the dynamic
characteristic of CRSN. Simulation experiments show that
IMOCRP can extend the lifetime of CRSN and guarantee the
quality of network monitoring simultaneously.

The technical contributions and novelty of our work are
summarized as follows:
• By combining the excellent characteristics of IMO algo-
rithm and the rich resource, comprehensive informa-
tion at the sink together, IMOCRP can automatically
determine the optimal number of CHs and correspond-
ing clustering results while minimizing total control
overhead incurred during clustering process. Therefore,
IMOCRP is energy efficient and adaptable to dynamic
topology changes.

• Available channel list at each living node is taken into
consideration to perform reasonable channel alloca-
tion for clusters, and the probability of collisions with
PUs can be reduced, which promotes more successful
information delivery. Therefore, the effective monitor-
ing capability required by CRSN applications can be
guaranteed.

• The computational complexity of IMOCRP is analyzed
and its performance is confirmed through extensive
simulations. The simulation results have shown that
IMOCRP can balance network lifetime and effective
information collection capability, and it is superior to
other competing protocols.

The rest of this paper is organized as follows. Section II
summarizes existing works related to clustering routing pro-
tocols for CRSN and swarm intelligence-inspired algorithms
for clustering in WSNs. The network model and assump-
tions are given in Section III. Section IV briefly explains
the principles of original IMO algorithm which are the basis
for IMOCRP design. We explain the proposed IMOCRP in
details in terms of its frame structure, optimization target,
the mapping relationship between ions and clustering results,
the liquid and crystal iteration process and typical examples
in Section V. Section VI is the performance evaluation and

time complexity analysis of IMOCRP. Section VII concludes
the paper and indicates our future work.

II. RELATED WORK
This paper focuses on developing new clustering rout-
ing protocol IMOCRP for CRSN, and it utilizes swarm
intelligence-inspired algorithm IMO as its basis. Therefore,
in this section, we will survey related works from the follow-
ing two aspects: swarm intelligence-inspired algorithms for
clustering in WSNs and current clustering routing protocols
for CRSN.

A. SWARM INTELLIGENCE-INSPIRED ALGORITHMS FOR
CLUSTERING IN WSNs
Clustering has been a hot research topic in WSNs, and many
swarm intelligence-inspired algorithms are applied to solve
this problem. Here we only list some recent works in this
area. In [13], a new version of gravitational search algo-
rithm (GSA) is utilized to solve the energy-efficient cluster-
ing problem in WSNs. Fitness function which is composed
of efficient energy consumption and link quality is proposed
to evaluate the clustering results produced. By utilizing the
power distance sums scaling method to calculate the mass
values and fuzzy logic controller to identify corresponding
parameters, GSA finds the optimal number of clusters and
properly organizes these clusters. EECP based on genetic
algorithm [14] is proposed to perform energy-efficient CH
selection and balance energy consumption load among
routes. CHs are picked based on an enhanced search equation
to improve exploitation competences and convergence rate.
A quantum particle swarm optimization (PSO) algorithm [15]
is proposed to improve network lifetime of WSNs. It is com-
posed of 3 steps including position updating, CH selection
and cluster formation. After position updating, the fitness
function which is dependent on average distance among clus-
ters, average distance between CH and the sink, and total
energy of all selected CHs is used to find the best particle.
CH selection is done according to the best particle, and then
clusters are formed. Multi-objective Taylor crow optimiza-
tion algorithm is proposed to perform the optimal CH selec-
tion in [16]. The optimal CHs are determined by minimizing
its objective function which is the weighted combination of
factors such as distance between nodes in a cluster, energy
of nodes, traffic density of cluster and delay in transmitting
data packets. In [17], a hybrid method based on firefly algo-
rithm and PSO is proposed to find the optimal CH selection
in LEACH-C, in which PSO is exploited to help improve
the global search behavior of fireflies. In [18], a distributed
swarm artificial bee colony algorithm is proposed to optimize
the dynamics of CHs and normal nodes in WSNs. It can
minimize the energy dissipation of nodes and balance the
interference-aware energy consumption of the network. How-
ever, above works are specially designed for WSNs, and they
consider nothing about CR and available channels, therefore,
they cannot be applied to CRSN without any modification.
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B. CURRENT CLUSTERING ROUTING PROTOCOLS FOR
CRSN
CogLEACH [19] is a distributed and spectrum-aware exten-
sion of legacy LEACH protocol. It regards number of avail-
able channels as the weight function to be CH. Nodes with
larger number of idle channels have higher probability to
become CH. Ordinary nodes select the nearest CH which
shares common available channels with them to form clus-
ters. However, the number of CHs selected in CogLEACH
may be larger than the optimal value, and this will result in
unnecessary energy waste. In order to guarantee the optimal
number of CHs, centralized CogLEACH-C [20] is proposed
on the basis of CogLEACH. The sink selects the optimal
CHs from all living nodes according to the number of
vacant channels, residual energy and geographical location
of nodes. The cluster formation of CogLEACH-C is the same
as CogLEACH. Fuzzy C-means algorithm [21] divides the
whole network into K clusters by minimizing the sum of
the square of distances from each cluster member (CM) to
the cluster center. In each cluster, CH is selected based on
four parameters, that is, location within each cluster, location
with respect to the sink, signal-to-noise ratio of channels and
residual energy. Nodes acquire spectrum information through
cooperative sensing to avoid the influence of shadowing and
fading on sensing accuracy. In case of multihop communica-
tions, CHs are not only responsible for gathering intra-cluster
data, but also relaying data for other clusters. Therefore,
compared with CHs far away from the sink, CHs near the
sink consume more energy. LEAUCH [22] employs uneven
clustering method to reduce the size of clusters close to the
sink, thereby balancing energy consumption among CHs.
Among all candidate CHs within competition radius, the one
with the highest residual energy becomes final CH. Here,
competition radius concept is introduced to form uneven clus-
ters, and it becomes smaller as distance to the sink decreases.
IACUCAPTEEN [23] is also an uneven clustering routing
protocol which uses probability influence factors such as
remaining energy of nodes and number of available chan-
nels for candidate CHs selection. Ant colony algorithm is
employed to search inter-cluster paths with the purpose of
extending node usage time. In ESAUC [24], CRSN nodes
with higher number of available channels are more likely
to become candidate CHs. Among them, those with more
residual energy and common channels within competition
radius become final CHs. Here, competition radius is intro-
duced to implement unequal clustering and its definition is
different from LEAUCH by taking neighbor count and prob-
ability of idle channels into consideration further. ESAUC
uses a CogAODV based routing mechanism to perform
inter-cluster forwarding, and expected path reliability is used
to select the optimal routing path. WCM-based SAC proto-
col [25] is a spectrum-aware clustering routing protocol and it
obtains the optimal clustering results by solving optimization
model heuristically. It selects CHs according to temporal-
spatial correlation, sensing confidence and residual energy.

After clustering, CHs perform spectrum sensing instead of
their member nodes, thereby saving the energy consumption
of clusters. NSAC [26] integrates spectrum dynamics and
energy consumption into clustering protocol design. It sets
node weight according to remaining energy and quality of
available channels, and selects node with the largest weight
in neighborhood as CH. Other nodes in its maximum edge
biclique join the cluster as CMs, and the clustering process
continues until all nodes are clustered. HLEACH [27] is
applicable to heterogeneous CRSN which is composed of
ordinary nodes and cognitive nodes. HLEACH determines
cluster number with the goal of minimizing node energy
consumption. Cognitive nodes calculate competition radiuses
through the global information broadcasted by the sink and
confirmwhether they can be CHs. HLEACHhas superior per-
formance in terms of channel detection probability, network
lifetime and energy consumption among CHs. PROP [28]
is a clustering routing protocol for CRSN with energy het-
erogeneity, and it divides the whole network into different
regions according to the location of the sink. Weighted elec-
tion probability to be CH for each type of nodes is calculated
based on optimal probability value and average distance to
the sink. Multihop path is utilized to transmit data from
CHs far away from the sink. EACRP [29] is a distributed
event-driven clustering routing protocol for CRSN, and it
selects CH based on remaining energy, number of available
channels, number of neighbors and distance to the sink.
For inter-cluster communication, gateway nodes with more
residual energy, more common channels with neighbors and
closer to the sink are chosen to help route event data to the
sink. ESUCR [30] is another event-driven clustering routing
protocol for CRSN. A channel ranking algorithm is proposed
to calculate channel stability according to idle probability
and total number of transitions observed over a channel, and
the most stable one is used for communication. CHs are
selected and rotated based on residual energy, distance to
the sink, neighbor connectivity with other clusters and intra-
cluster channel stability. Neighboring clusters are merged
according to the number of commonly unoccupied channels
and measured distance between them until the optimal num-
ber of clusters is achieved. Primary and secondary gateways
are selected hop by hop for packet forwarding towards the
sink. ABCC [31] is a swarm intelligence-inspired clustering
routing protocol for CRSN, and it takes full advantages of the
cognitive behaviors of artificial bees which match perfectly
with the dynamics of CRSN. It automatically determines the
optimal number of clusters and CHs, and achieves the goal of
extending network usage time.

Through above literature review, we find that most clus-
tering routing protocols proposed for CRSN are heuristic
algorithms. They usually calculate the optimal number of
clusters based on assumptions such as CHs are at cluster
centers and uniform distribution of nodes. However, when
topology changes occur in CRSN due to node deaths, above
assumptions cannot hold, and it is difficult to determine
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the new number of optimal clusters. Other heuristic clus-
tering algorithms may rely on local information exchange
in neighborhood to determine which node should become
CH and which should be normal CMs. Decision made by
utilizing limited local information cannot guarantee good per-
formance from the whole network point of view. Therefore,
heuristic algorithms exhibit poor adaptability to dynamic
network changes. Swarm intelligence-based algorithms can
automatically determine the optimal number of clusters based
on network parameters and topology, which is consistent
with the dynamic characteristics of CRSN [32]. However,
existing swarm intelligence-based clustering protocols for
CRSN such as ABCC are limited by high computational
complexity and slow convergence speed. If algorithm com-
plexity can be reduced, their performance can be effectively
improved. Additionally, the sink node in CRSN usually has
rich hardware resources and is able to acquire comprehen-
sive network information. Compared with distributed pro-
tocols, centralized protocols have more advantages in small
or medium-sized CRSN. Therefore, IMOCRP which adopts
a centralized structure is proposed in this paper. The sink
automatically determines CHs and the optimal number of
clusters according to IMO algorithm, which can adapt to
dynamic changes of network topology.

III. SYSTEM MODEL AND ASSUMPTIONS
N homogeneous CRSN nodes are uniformly distributed in
the monitoring area, and one sink is located at the center
or (0, 0) position in the network. These CRSN nodes act
as secondary users (SUs) to P randomly distributed PUs in
the same region. PUs send data on licensed spectrum bands
intermittently, and Semi-Markov process is adopted to model
PUs’ behaviors. In this model, ON (Busy) and OFF (Idle)
states of licensed spectrum are assumed to be independent
of each other, and they both obey exponential distribution
with parameters qi and pi, respectively [2]. In ON state,
CRSN nodes within the interference protection range of PUs
(a circle centered at PU and with radius 20m) cannot use the
spectrum; in OFF state, nodes can use the spectrum for com-
munication opportunistically. As a result, spectrum scarcity
faced by traditional WSNs can be alleviated. As the spec-
trum usage of PUs is intermittent, channel occupancy state
switches between ON and OFF states constantly as shown
in Fig.1.

FIGURE 1. Semi-Markov ON/OFF process for modeling PUs’ behaviors.

For the development of our protocol, we make the follow-
ing basic assumptions in this paper:

• Each CRSN node has unique ID to distinguish from each
other, and its position (xi, yi) is kept unchanged once
deployed, unless it runs out of energy.

• Each CRSN node is configured with only one
transceiver. Due to hardware constraint, it cannot per-
form spectrum sensing and data transmission at the same
time.

• Each CRSN node can learn its geographical location
information and remaining energy in each round, which
is not in the scope of this paper. It can adjust its
transmission power according to the distance from the
destination.

• Perfect spectrum sensing is assumed, that is, each CRSN
node can accurately detect the spectrum occupancy of
PUs at its own location and determine its available
channel list. Sensing errors such as miss detection and
false alarm are ignored. Here, energy detection method
is adopted due to its simplicity [33].

• Network-wide common control channel (CCC) is avail-
able to exchange control information for CH selection,
cluster formation and network schedule [34].

FIGURE 2. The architecture of cluster-based CRSN.

• The architecture of our cluster-based CRSN is presented
in Fig.2. Each living CRSN node transmits its monitor-
ing data to corresponding CH periodically, one packet
per round. At CH, perfect aggregation [35] is done to
compress all data from its CMs into single outgoing
packet which is transmitted directly to the sink and onto
the network manager, i.e., the aggregation coefficient α
is the reciprocal of the number of CMs from which the
CH can receive data report. Here, network manager can
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retrieve the desired information from the sink or it can
request CRSN nodes for data collection.

The energy consumption model of CM is related to the
Euclidean distance to its corresponding CH. Distance thresh-
old d0 determines the loss model used to model the radio
wave propagation between the transmitter and receiver. Tak-
ing node i and its corresponding CH (denoted by CHj) as an
example, when their Euclidean distance dij is shorter than
or equal to threshold d0, free space loss model is applied.
Otherwise, multipath fading loss model is used [36]. The
energy consumption models of CM and CH are shown as
below, respectively.

E (CM)dissipate =

{
l × Eelec + l × Efs × d2ij, if dij ≤ d0
l × Eelec + l × Emp × d4ij, if dij > d0

(1)

E(CH )dissipate =



l × Eelec × Cnum+l × EDA
× (Cnum+1)+ l × Eelec + l
×Efs × d2tosink , if dtosink ≤ d0

l × Eelec × Cnum + l × EDA
× (Cnum + 1)+ l × Eelec + l × Emp
× d4tosink , if dtosink > d0

(2)

where l represents data packet size. Eelec is the electron-
ics energy. Efs is the amplifier energy consumption in
free space model, and Emp is the amplifier energy con-
sumption in multipath fading model. Distance threshold
d0 = (Efs/Emp)1/2 [37]. Cnum is the number of CMs in the
cluster. EDA is the energy required for data aggregation, and
dtosink is the Euclidean distance between the CH and the
sink node. Since CHs need to receive and aggregate data
from CMs in addition to sending information, their energy
consumption is usually higher than that of CMs. Table 1
summarizes the notations used in this paper.

IV. ORIGINAL IONS MOTION OPTIMIZATION
ALGORITHM
For a given optimization problem, IMO divides ion popula-
tion equally into two groups, namely the anion group and the
cation group. Due to attractive force between heterogeneous
ions, ions move continuously in the search space, and their
moving states can be divided into liquid phase and crystal
phase. These two phases can transform to each other, and ions
evolve continuously during the transformation process until
termination conditions are satisfied.

In liquid phase, anions move towards the direction of the
best cation (Cationbest ), and cations move towards the direc-
tion of the best anion (Anionbest ). Their position updating
formulas are shown in (3) and (4), respectively.

Anioni,j = Anioni,j + AFi,j × ADi,j (3)

Cationi,j = Cationi,j + CFi,j × CDi,j (4)

where Anioni,j is the jth dimension of anion i and Cationi,j
is the jth dimension of cation i. ADi,j is the Euclidean

TABLE 1. Notation description.

distance between Anioni,j and the best cation, therefore
ADi,j = |Anioni,j–Cationbest,j|. CDi,j is the Euclidean dis-
tance between Cationi,j and the best anion, and we have
CDi,j = |Cationi,j–Anionbest,j|. AFi,j and CFi,j represent
the gravitational attraction of the best cation to Anioni,j and
the gravitational attraction of the best anion to Cationi,j,
respectively. Their expressions are shown in (5) and (6),
respectively.

AFi,j =
1

1+ e
−0.1
ADi,j

(5)

CFi,j =
1

1+ e
−0.1
CDi,j

(6)

In crystal phase, ions have two small-scale search meth-
ods and one initialization method. Ions randomly choose
one of them to update their positions and avoid falling into
local optimum [38]. The two small-scale search methods
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are distinguished by a random number (ε[0, 1]) which is
generated for each ion. Taking anion Anioni as an example,
if the random number φa is larger than 0.5, Anioni is updated
according to the first part of (7), otherwise, Anioni is updated
according to the second part of (7) [10].

Anioni=

{
Anioni+φ1×(Cationbest − 1) if φa > 0.5
Anioni + φ1 × Cationbest else

(7)

where φ1 is a random number which belongs to [−1, 1].
Cationbest is the best cation in terms of fitness function value.
Similarly, cations are updated according to the randomly
generated number φc as below:

Cationi =

{
Cationi + φ2 × (Anionbest − 1) if φc > 0.5
Cationi + φ2 × Anionbest else

(8)

where φ2 is a random number which belongs to [−1, 1].
Anionbest is the best anion in terms of fitness function value.
After position updating, a random number φac is generated

for each ion again by IMO, and if φac ≤ 0.05, corresponding
ion will be initialized. Therefore, the original IMO algorithm
applies 3 update methods to each ion in crystal phase, here
taking Anioni as an example, the three update methods are
summarized below:

Anioni=



Anioni+φ1×(Cationbest−1) if φa > 0.5
∩ φac > 0.05

Anioni + φ1 × Cationbest if φa ≤ 0.5
∩ φac > 0.05

initialized else
(9)

In order to be consistent with the original IMO algorithm,
our IMOCRP also adopts 3 update methods in crystal phase.

V. PROPOSED IMO-BASED CLUSTERING ROUTING
PROTOCOL
A. FRAME STRUCTURE OF IMOCRP
Fig.3 shows the frame structure of proposed IMOCRP. The
frame is based on time division multiple access (TDMA)
scheduling to ensure conflict-free transmissions. The whole
frame can be divided into 3 phases, that is, spectrum sensing
phase (Phase 1), clustering phase (Phase 2), and data trans-
mission phase (Phase 3), whose duration is T1, T2 and T3,
respectively.
• Phase 1 Spectrum Sensing: each node performs spec-
trum sensing individually. Sensing errors are not taken
into consideration, i.e., perfect sensing is assumed.
There are C licensed channels in total, therefore
T1 = C × t1. Here t1 is the spectrum sensing time per
channel.

• Phase 2 Clustering: each living CRSN node sends its
available channel list obtained in Phase 1, its geographi-
cal location and its remaining energy to the sink on CCC.
Each node is assigned with a time slot whose length is
t2 according to the ID order to avoid interference among

FIGURE 3. Frame structure of IMOCRP.

these control message transmissions. The sink receives
the information in each slot. The final clustering results
are produced by the sink through running IMOCRP
(which is explained in detail in Algorithm1), as it is
assumed that the sink is rich in hardware resources,
the time of running IMOCRP can be neglected. At last,
the sink broadcasts final clustering results including the
role of each node, the cluster each node belonging to,
cluster channel and schedule time of each node in a
time slot, and each living CRSN node receives this
message immediately. Therefore, the time length of T2 is
(Nr + 1) × t2. Here, Nr is the number of living CRSN
nodes at the beginning of round r .

• Phase 3 Data Transmission: each CM sends its moni-
toring data to its CH in its assigned time slot whose
length is t3, and the CH receives data packet accord-
ingly. The time spent in data aggregation is neglected.
Hence, the time interval for intra-cluster data collection
is max{Cnum}×t3. Here, Cnum is the number of CMs in
one cluster, and max{Cnum} is the largest Cnum in all
clusters. After that, each CH sends the aggregated data
to the sink on its cluster channel in its exclusive time slot
determined by the sink. The sink can receive packets on
C licensed channels at the same time through its multiple
transceivers. CHs using the same channel cannot activate
at the same time, and they should occupy the channel
in sequence. However, CHs on different channels can
activate simultaneously as they do not interfere with
each other. Therefore, inter-cluster data transmission
takes max{CHc} × t3 length of time. Here, CHc is the
number of CHs using channel c, and max{CHc} is the
largestCHc on all licensed channels. Therefore, we have
T3 = (max{Cnum} + max{CHc}) × t3. Of course, it is
assumed that the available channels in Phase 1 are still
available in Phase 3, and nodes will not sense the spec-
trum again at the beginning of Phase 3. If the available
channels are reclaimed by PUs during the rest time of
this round, collisions occur. In this case, some CRSN
nodes cannot transmit their data to the sink successfully.

B. OPTIMIZATION TARGET OF IMOCRP
IMOCRP aims at prolonging network lifetime and improving
data collection capability of CRSN. On the one hand, CRSN
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nodes usually use micro-batteries with very limited capacity
for power supply, and due to environmental factors, it is
difficult to replace batteries after node deployment. There-
fore, energy consumption has become a key factor which
restricts the lifespan of CRSN. Reducing average energy con-
sumption of nodes AVG(Edissipate) is beneficial for network
lifetime expansion. On the other hand, due to their limited
coverage range, premature death of CRSN nodes will lead
to significant reduction in monitoring scope and information
collection capabilities. Reducing the standard deviation of
node residual energy STD(Eresidual) can delay deaths of high
energy-consuming nodes and improve information collection
capability of CRSN. Taking above two factors both into
consideration, the optimization target of IMOCRP is to max-
imize the following function:

OBJ (E) =
1

AVG
(
Edissipate_t

)
+ α × STD

(
Eresidual_t

) (10)

where AVG(Edissipate_t ) is node average energy consump-
tion in round t . STD(Eresidual_t ) is the standard deviation of
remaining energy in each node in round t . α is a tunable
weight assigned to STD(Eresidual_t ) to quantify its relative
effect on the whole function. The higher the value of α,
the more important STD(Eresidual_t ) in the entire objective is.

AVG
(
Edissipate_t

)
=

( Nt∑
n=1

E (n)dissipate_t

)
/Nt (11)

STD
(
Eresidual_t

)
=

√√√√ 1
Nt

Nt∑
n=1

(
E (n)residual_t − AVG

(
Eresidual_t

))2 (12)

where E(n)dissipate_t is the energy consumption of node n
in round t , which can be calculated by (1) or (2). Nt (6=0)
is the number of nodes alive at the beginning of round t .
E(n)residual_t is the residual energy of node n at the end of
round t , and its definition is shown in (13).

E (n)residual_t = E (n)residual_t−1 − E (n)dissipate_t (13)

If t = 1, E(n)residual_t−1 is defined as node initial energy EJ .
AVG(Eresidual_t ) is the average remaining energy of all living
nodes at the end of round t , and it is expressed as:

AVG
(
Eresidual_t

)
=

1
Nt

Nt∑
n=1

E (n)residual_t (14)

C. MAPPING RALATIONSHIP BETWEEN IONS AND
CLUSTERING RESULTS IN IMOCRP
IMOCRP uses each anion or cation as possible clustering
result. Each anion or cation is represented by a binary vector
with Nt dimensions, and each element in it represents the
identity of a living CRSN node, that is, value 1 indicates CH
role, and 0 means CM. Taking CRSN A in 10 m × 10 m
area as an example, 10 CRSN nodes and 3 PUs are randomly

distributed in it. Positions of CRSN nodes and PUs are shown
in Table 2. Anion1 and Cation1 are randomly generated for
network A, as shown in Table 3.

TABLE 2. Locations of CRSN nodes and PUs.

TABLE 3. Values of Anion1 and Cation1.

When clustering the network according to Anion1, it can
be known from Anion1,3 = 1, Anion1,9 = 1 that the
third and ninth nodes are CHs, and remaining nodes are
CMs. Similarly, when clustering the network with the result
shown by Cation1, it can be known from Cation1,5 = 1 and
Cation1,6 = 1 that the fifth and sixth nodes are CHs, and
remaining nodes are CMs.

D. OPERATION PROCESS OF IMOCRP
IMOCRP aims at maximizing OBJ(E) in (10) and its pseudo
code is shown in Fig.4.

Network parameters are initialized in the first line. These
parameters include node initial energy EJ , electronic circuit
energy consumption Eelec, node amplifier energy consump-
tion Efs (in free space loss model) and Emp (in multipath
fading loss model), data aggregation energy EDA, data packet
size l, control packet size l1, population number of ions IN.

Spectrum sensing phase is shown in lines 2-3. Each node
senses spectrum through energy detection method, and then
sends its remaining energy, geographical location, and current
spectrum detection results to the sink on CCC.

In clustering phase (lines 4-16), the sink randomly gen-
erates IN/2 anions {Anion1, Anion2 . . . AnionIN/2} and
IN/2 cations {Cation1, Cation2 . . . CationIN/2}. CRSN is
clustered by these anions and cations and the sink evaluates
their fitness values, i.e., the OBJ(E) defined by (10). The
higher the value of OBJ(E) goes, the better the clustering
result of ion is. In order to obtain the fitness value of each ion,
the connection relationship between each normal node and
the CHs should be determined first. In other words, we need
to find proper CMs for each CH to form clusters according
to adjacency relationship and common available channels.
This process is done according to Algorithm2 which is shown
in Fig.5. Only in this case, we can know the Euclidean dis-
tance between any CM and its corresponding CH. Based on
the Euclidean distance obtained, we can calculate energy con-
sumption of each node E(n)dissipate_t and its residual energy
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FIGURE 4. Pseudo-code of IMOCRP.

E(n)residual_t , and then AVG(Edissipate_t ), STD(Eresidual_t ) and
fitness value at last. Of course, these connection relation-
ships are only temporary and used for ions evolution. The
connection relationships in the final best ion of this round
Ionbest (iter) are used to form actual clusters.
Algorithm2 is composed of three execution steps. In step 1,

as shown in lines 1-8, assuming that there are Q CHs in the
network, each ordinary node becomes tentative CM of the
closest CH with common channels. Then, the sink records
the available channels in each cluster. In step 2, as shown
in lines 9-11, IMOCRP selects the channel with the largest
number of covered nodes from the CH’s available channel
list as cluster channel. Randomly selection is used to break
the tie. In step 3, as shown in lines 12-22, for normal node,
say i, the CH which is closest to it and whose cluster channel
is contained in the available channel list of i is chosen as its
final CH. If the CH thatmeets above conditions does not exist,
the node itself becomes an isolated CH and communicates
with the sink directly.

Taking CRSN A as an example again, it is assumed that
interference protection range of each PU is 2 m and PUs are

FIGURE 5. Sub-algorithm for cluster formation in IMOCRP.

TABLE 4. Node channel information for CRSN A.

in ON state. The corresponding channel information is listed
in Table 4 in which ‘‘

√
’’ indicates that the corresponding

channel is currently available to the node. The node distribu-
tion and available channels of CRSN A are shown in Fig.6(a).

Suppose Anion1 is used to cluster CRSN A. In tentative
cluster formation step, nodes 2, 4, 5, 6, and 8 become tentative
CMs of CH node 3, and nodes 1, 7, and 10 become tentative
CMs of CH node 9. In cluster channel selection step, for CH
node 3, its available channel 1 covers four nodes 2, 5, 6, 8,
and channel 2 covers four nodes 2, 4, 5, 8, while channel
3 covers three nodes 4, 6, 8. As equal number of nodes
operate on channel 1 and channel 2, CH node 3 randomly
selects one from them, say channel 2, as final cluster channel.
Similarly, suppose CH node 9 selects channel 1. In final
cluster formation step, channel 2 is included in the available
channel lists of nodes 2, 4, 5, 8, and they are closest to CH
node 3, so they form cluster with CH node 3. In the same
way, nodes 1, 6, 7, 10 are clustered with CH node 9. The final
clustering result of CRSN A is shown in Fig.6(b).

The original best anion Anionbest (0) and the original best
cation Cationbest (0) are selected from all anions and cations
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FIGURE 6. Node distribution and final clustering results of CRSN A.

generated above, and the one with larger fitness value among
them is selected as the original best ion Ionbest (0). Line 10
shows the liquid phase, and anions and cations in it are
updated as follows:

Anioni,j (iter)

=


Anioni,j (iter − 1) if i = best
mod

(
Anioni,j (iter − 1)

+ f
(
AFi ×

∣∣Cationbest,j (iter − 1)
−Anioni,j (iter − 1)

∣∣) , 2) else

(15)

Cationi,j (iter)

=


Cationi,j (iter − 1) if i = best
mod

(
Cationi,j (iter − 1)

+ f
(
CFi ×

∣∣Anionbest,j (iter − 1)
−Cationi,j (iter − 1)

∣∣) , 2) else

(16)

where mod(y, 2) takes the remainder when y is divided by 2.
f (x) means a randomly generated integer 0 or 1, where x
is the probability of 1. |Cationbest,j(iter–1)–Anioni,j(iter–1)|
represents the Euclidean distance between the jth dimen-
sion of Anioni and Cationbest in iteration iter–1. For exam-
ple, when Anioni,j(iter–1) = 1, Cationbest,j(iter–1) = 0,
|Cationbest,j(iter –1)–Anioni,j(iter–1)| = 1. AFi is the gravity
between Cationbest (iter–1) and Anioni(iter–1), which is cal-
culated by:

AFi=

Nt∑
j=1

(
Cationbest,j (iter−1)−Anioni,j (iter − 1)

)
Nt

(17)

Similarly, |Anionbest,j(iter–1)–Cationi,j(iter–1)| represents
the Euclidean distance between the jth dimension of Cation i

and Anionbest in iteration iter–1. CFi is the gravity between
Anionbest (iter–1) and Cationi(iter–1).

CFi =

Nt∑
j=1

(
Anionbest,j (iter − 1)− Cationi,j (iter − 1)

)
Nt

(18)

The crystal phase (line 11) divides anions and cations into
3 groups, namely group1, group2, and group3. In group1, ions
randomly select dimension jwith value 1 and change its value
to 0. The expressions are Anion = G1(Anion) and Cation =
G1(Cation). In group2, ions randomly select dimension k
with value 0 and change its value to 1. The expressions are
Anion = G2(Anion) and Cation = G2(Cation). In group3,
ions randomly select dimension j with value 1 and dimension
k with value 0 and exchange them. The expressions are
Anion=G3(Anion) andCation=G3(Cation). Taking Anion1
(in Table 3) as an example, the values of different groups after
updating are shown in Table 5.

TABLE 5. Update table of Anion1 in crystal phase.

After crystal phase, candidate best anion Anionprebest (iter)
and candidate best cation Cationprebest (iter) for this iter-
ation are selected according to (10). Then, the best
anion Anionbest (iter) is selected from Anionprebest (iter)
and Anionbest (iter–1), and the best cation Cationbest (iter)
is selected from Cationprebest (iter) and Cationbest (iter–1).
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Finally, the best ion Ionbest (iter) of this iteration is picked out
from Anionbest (iter) and Cationbest (iter). The iterative cycle
is performed at least 3N /IN times and at most 2N times.
When the number of cycles is greater than or equal to 3N /IN,
if the best ion Ionbest does not change in consecutive 3N /IN
iterations, the liquid to crystal cycle ends ahead of time,
and Ionbest (iter) is the final clustering result of this round.
Here, 3N /IN is set to ensure sufficient local search and avoid
falling into local optima, and 2N is set to strike a compromise
between network performance and computational complexity
according to extensive simulation results.

In data transmission phase (lines 17-19), CMs send data
to their CH in corresponding time slot on cluster channel.
The CH aggregates all received data and sends it to the sink
directly. The completion of all data transmissions marks the
end of this round. Spectrum sensing, clustering, and data
transmission phases of IMOCRP are repeated until the end
of network lifetime.

VI. SIMULATION RESULTS AND ANALYSIS
In this section, our proposed protocol is studied and
analyzed by using MATLAB tool. Performance compar-
isons with existing protocols, such as CogLEACH [19],
CogLEACH-C [20], LEAUCH [22], Fuzzy C-means [21],
NSAC [26], WCM-based SAC [25], and ABCC [31], verify
the advantages of IMOCRP in energy efficiency and infor-
mation collection capability. Among them, Fuzzy C-means
and ABCC leave channel occupancy out of consideration,
while others all consider about channel availability at each
node and the PUs activity. In order to further substantiate the
superiority of our proposed IMOCRP, we improved Fuzzy
C-means and ABCC by performing spectrum sensing at the
beginning of each round and taking channel availability into
account while forming clusters and selecting cluster channel.
The improved ones are denoted as i-Fuzzy C-means and
i-ABCC, respectively. Simulations are conducted in a square
network of 100 m × 100 m with the sink located at the
center and (0, 0), respectively. Simulation parameters are
shown in Table 6. For fair comparisons, the input param-
eters of ABCC are set according to [31], i.e., SN = 20,
MaxCycle = 1500.

A. THE OPTIMAL VALUE OF WEIGHT α

In the optimization target of IMOCRP (see (10)), weight α
is assigned to the component STD(Eresidual_t ) to quantify its
relative effect on the whole function. AVG(Edissipate_t ) and
STD(Eresidual_t ) both change round by round, and it is difficult
to provide theoretical analysis for determining the optimal
value of α. Therefore, we conduct extensive simulations
and observe the performance of IMOCRP while changing α
from small value (such as 0.2) to large value (such as 100).
We also consider about minimizing total energy consumption
(denoted by Obj1, equivalent to α → 0) and minimizing
standard deviation of node remaining energy (denoted by
Obj2, equivalent to α → ∞) separately, and the simulation
results are shown in Fig.7 below.

TABLE 6. Simulation parameters.

FIGURE 7. Effect of α value on the number of living nodes for IMOCRP.

Through simulations, we can observe that for low-power
CRSN nodes, usually AVG(Edissipate_t ) is not more than
STD(Eresidual_t ). Therefore, if α > 1, STD(Eresidual_t ) dom-
inates the objective function and all nodes almost die in
the same round. While α < 1, AVG(Edissipate_t ) domi-
nates the objective function and the round difference between
the first-dead node and the last-dead node becomes larger.
In other words, in this case IMOCRP cares more about
AVG(Edissipate_t ) and less about the energy consumption bal-
ance among different nodes. Some nodes may die earlier due
to faster energy consumption than others. This will negatively
affect the network lifetime. According to the above simula-
tion results and analysis, we set α = 1 to take average energy
consumption of nodes and their energy balance comprehen-
sively into consideration, and this configuration is applied to
all the simulations in this paper below.

B. NETWORK LIFETIME
In this section, we show the relationship between the number
of surviving nodes with the running time (represented by
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rounds) when the sink is located at the center and location
(0,0), respectively. The results are given in Fig.8 and Fig.9.

FIGURE 8. Number of living nodes in each round (with the sink located
at the center).

FIGURE 9. Number of living nodes in each round (with the sink located
at (0, 0)).

We can know from Fig.8 and Fig.9 that: Firstly, rounds
in which the first node dies under IMOCRP are 5594 and
4315 respectively, which are significantly larger than major-
ity protocols except ABCC and Fuzzy C-means. It means
that IMOCRP can reduce energy consumption of nodes
and postpone first node death time. The reduction of node
energy consumption is mainly achieved by reducing the
overhead of control information exchange during CH selec-
tion and cluster construction. In CogLEACH, CHs need
to broadcast temporary CH announcements and final CH
announcement messages in cluster construction; CMs send
temporary join requests and final confirmation requests

to corresponding CHs. Therefore, the total overhead of
CogLEACH protocol in CH selection and cluster construc-
tion is twice the number of living nodes. CogLEACH-C
requires all nodes to send node information (including their
energy level, geographic location and number of available
channels) to the sink when selecting CHs. The sink deter-
mines and broadcasts node identity according to the node
information. CHs broadcast cluster channel information;
CMs send temporary joining requests and final confirmation
requests to corresponding CHs. The CH selection and cluster
construction cost of CogLEACH-C protocol is the sum of
two times the number of living nodes and the number of
CMs. In LEAUCH, candidate CHs compete for final CHs
by comparing remaining energy within competition radius
and exchanging information. The cluster constructionmethod
of LEAUCH is the same as that of CogLEACH protocol,
so the total overhead of LEAUCH in CH selection and clus-
ter construction is twice the number of candidate CHs plus
twice the number of living nodes. WCM-based SAC proto-
col requires all CRSN nodes to exchange spectrum sensing
informationwith neighboring nodes and calculate CHweight.
Nodes exchange weight information to select CHs and build
initial clusters. The optimal number of clusters is reached
by continuously merging clusters with high temporal-spatial
correlation. Therefore, the total cost of WCM-based SAC in
CH selection and cluster construction is about 4 times the
number of living nodes. InNSACprotocol, all nodes that have
not been clustered continuously update and broadcast node
weight information, select CHs throughweight comparison in
neighborhood, and build clusters until all nodes are clustered.
Both WCM-based SAC and NSAC protocol require a large
amount of control information exchange between nodes,
which increases energy consumption of nodes. IMOCRP only
requires each living CRSN node to send node information to
the sink once during cluster formation phase. If the rich hard-
ware resource at the sink is taken into consideration, the total
cost in CH selection and cluster construction is approximately
the number of living nodes in the network, which is sig-
nificantly lower than that of CogLEACH, CogLEACH-C,
LEAUCH, WCM-based SAC, etc. Secondly, when compar-
ing with original clustering algorithms, the average packet
delivery ratio of improved ones, i.e., i-Fuzzy C-means and
i-ABCC, is greatly improved. However, high packet delivery
ratio comes at the cost of high energy consumption. If packets
can be received at the CH on the same available channel,
the CH should consume energy for receiving and aggregating
these packets, and forward the aggregated packet further to
the sink. Therefore, the network lifetime of i-ABCC and
i-FuzzyC-means ismuch shorter than the original algorithms.
In addition, the performance of IMOCRP is better than that
of i-Fuzzy C-means and better than or at least equal to that
of i-ABCC. However, through the computational complexity
analysis in the E part, we know that IMOCRP gains advan-
tages over i-ABCC. Thirdly, in the two topologies, difference
between the round in which the first node and the last node die
in IMOCRP is 956 and 46, respectively, which is smaller than
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FIGURE 10. Comparison of node death time (with the sink at the center).

FIGURE 11. Comparison of node death time (with the sink located
at (0,0)).

most of the comparison protocols. The maximum differences
between the first node death (expressed in rounds) and the last
node death under different protocols are shown in Fig. 10 and
Fig. 11.

The smaller the difference in the number of rounds,
the closer the death time of CRSN nodes, that is, themore bal-
anced the energy consumption between nodes. Above results
illustrate that IMOCRP can simultaneously achieve the goals
of reducing average node energy consumption and average
node residual energy standard deviation, thereby extending
network lifetime and improving network performance.

In order to verify the advantages of IMOCRP further,
we compare the number of CHs selected by each protocol in 4
randomly selected rounds, that is, round 1000, 2000, 3000,
and 4000. The results are shown in Fig.12.

Fig.12 shows that the number of CHs of IMOCRP is
significantly higher than other protocols. When the sink is
located at the center, most nodes are CH nodes without CMs,
as shown in Fig.13(a); whereas CogLEACH, CogLEACH-C,
NSAC, and other protocols have relatively low number of
CHs, as shown in Fig.13(b).

FIGURE 12. Number of CHs statistics (with the sink at the center).

FIGURE 13. Schematic diagram of clustering.

Assuming that there are n nodes in the network,
in Fig.13(a), the number of CMs in each cluster is zero. When
the sink is at the center, since dtosink < d0, according to (2),
the total energy consumption of all CHs is:

E (a)dissipate=n×l×Eelec+l × Efs ×
n∑
i=1

d2tosink (ni) (19)

In Fig.13(b), CMs are closer to the CH than to the sink.
Assuming dtoCH < d0, according to (1) and (2), the total
energy consumption of all nodes is:

E (b)dissipate = E (CH)dissipate + E (CM)dissipate
= (2n− 1)× l × Eelec + n× l × EDA

+ l × Efs × d2tosink + l × Efs×
n−1∑
i=1

d2toCH (ni)

(20)

The energy consumption difference between the two
cases is:

EDIF = E (a)dissipate − E (b)dissipate

= l × Efs ×

(
n−1∑
i=1

d2tosink (ni)−
n−1∑
i=1

d2toCH (ni)

)
− (n− 1)× l × Eelec − n× l × EDA (21)

From (21), we can know that Fig.13(b) is more
energy-efficient than Fig.13(a) when the distance between
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CMs and the sink is longer and the distance to the CH is
shorter. However, when the sink is located at the center,
CRSN nodes and the sink are very close. Under this circum-
stance, nodes are clustered separately to save energy, that is,
the energy saving effect is better when number of CHs is high.
According to the network topology, the sink automatically
determines the optimal number of clusters, which makes
IMOCRP achieve high number of CHs, thereby achieving
the goal of reducing average energy consumption of nodes.

C. PACKET DELIVERY RATIO
In addition to network lifetime, information collection capa-
bility is also an important performance indicator of CRSN
clustering routing protocol. We use packet delivery ratio in
each round and average packet delivery ratio to measure the
information collection capability of the network. Here, packet
delivery ratio in each round is defined as the ratio between the
number of packets received successfully at the sink in each
round and total number of packets supposed to be delivered
in corresponding round. We count the number of packets
received at the sink in each round and sum them up, then
we obtain the total number of packets received at the sink
TotalReceived.We also count the number of packets supposed
to be sent by all living nodes in each round and sum them
up, and we obtain the total number of packets supposed to
be transmitted TotalTrans. Then the average packet delivery
ratio is defined as the ratio between total number of packets
received at the sink and total number of packets supposed to
be sent, as shown below:

APDR =
TotalReceived
TotalTrans

(22)

Packet delivery ratio in each round shows the variation of
packet delivery ratio as the network operationmoves forward,
and average packet delivery ratio shows the comparing results
more intuitively. The results of different protocols with the
sink located at the center and (0, 0) are shown in Fig.14 to
Fig.17, respectively.

As can be seen from Fig.14 - Fig.17, the packet delivery
ratio of IMPORP in each round is usually above 0.8, and
the average packet delivery ratio is above 0.96, which are
significantly higher than other protocols. The reasons are as
follows:

Firstly, unlike random channel selection methods used by
Fuzzy C-means and ABCC, IMOCRP considers available
channel conditions of nodes during cluster construction. This
can help avoid transmission failures due to cluster channel
being occupied by PUs at the beginning of data transmission.
When data transmission fails, the node energy consumption
is less than normal communication, which are shown by the

FIGURE 14. Statistics of packet delivery ratio in each round (with the
sink at the center).

FIGURE 15. Average packet delivery ratio (with the sink at the center).

first part and second part of (23), respectively.

Erxag =



0 if CM(channel)
∩ CH(channel) = ∅

(Eelec + EDA)× l if CM(channel)
∩ CH(channel) 6= ∅
∩ no collision occurs

(23)

So, the information collection capability of Fuzzy C-means
and ABCC is weak, which makes nodes survive longer. This
explains why the round of first and last node death under
Fuzzy C-means and ABCC in Fig. 8 and Fig. 9 are higher
than IMOCRP. However, CRSN should possess the network
information collection capabilities required by applications,
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FIGURE 16. Statistics of packet delivery ratio in each round (with the
sink located at (0, 0)).

FIGURE 17. Average packet delivery ratio (with the sink located at (0, 0)).

so IMOCRPwhich takes network lifetime and effective infor-
mation collection into account is more suitable for CRSN.

Secondly, in 100m× 100m small-scale network, compared
with CogLEACH, CogLEACH-C, and other protocols which
also consider about the channel allocation problem, IMOCRP
builds many small clusters, and the probability of nodes in the
cluster being outside interference protection ranges of PUs
is higher. This further reduces data transmission failures due
to channel reclaim of PUs during data transmissions, so the
packet delivery ratio of IMOCRP is higher.

D. INFLUENCE FROM PUs AND IMPACT ON PUs
In order to test the capability of IMOCRP to adapt to dynamic
spectrum conditions, we changed the probability of PUs in

ON state pi from 0 to 0.9 in CRSN with the sink located at
the center, and the simulation results are shown below:

FIGURE 18. Number of living nodes under different ON states of PUs pi
(with the sink located at the center).

From Fig.18, we can see that under different ON states of
PUs, IMOCRP can achieve nearly equal performance in terms
of number of living nodes, i.e., the first dead node appears in
approximately round 5600 and the last node dies after about
1000 rounds. It demonstrates that IMOCRP can balance the
average energy consumption and deviation of residual energy
among nodes, which reduces the duration of node deaths.
Apart from network lifetime, we also provide the simulation
results in terms of average packet delivery ratio, as shown
in Fig.19.

FIGURE 19. Average packet delivery ratio under different ON states of
PUs pi (with the sink located at the center).

Fig.19 shows the variations of average packet delivery ratio
under different ON states of PUs. From the figure, we can
see that all packets can be transmitted successfully if ON
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state of PUs is 0. The reason is: when pi = 0, CRSN nodes
can freely utilize all licensed channels, and there will be
none collisions between CRSN nodes and PUs. Therefore,
IMOCRP can achieve 100 percent average packet delivery
ratio. In IMOCRP, the sink will select the licensed channel
with the largest number of covered CMs as cluster channel.
If multiple channels have the same largest number of covered
CMs, the sink will randomly select one from them to break
the tie. From the clustering results of IMOCRP, we can see
that many CRSN nodes become separate CHs without any
CM, especially when the sink is located at the center. In this
case, the sink will randomly select a licensed channel from
the available channel list of the CH. Higher pi means more
spectrum occupancy, which can be sensed by CRSN nodes in
spectrum sensing phase (i.e., Phase 1). If a licensed channel is
sensed as busy in Phase 1, it is thought to be busy in Phase 3
by IMOCRP. Therefore, higher pi can help CHs select the
channel which will not be occupied by any PU with higher
probability. From the average point of view, this decreases
the number of collisions to PUs. This is why the average
packet delivery ratio of IMOCRP increases when pi varies
from 0.1 to 0.9. The above simulation results demonstrate
that IMOCRP is capable of adapting to the dynamic spectrum
environment.

As stated above, when channel sensed as idle at sensing
moment is used by CRSN nodes to transmit data to CHs
or to the sink, PUs may reappear on this channel. CRSN
node cannot discover the change in channel occupancy state
immediately because it cannot sense the spectrum simulta-
neously when it is performing data transmission. Therefore,
it will not vacate the channel immediately, and in this case,
collision occurs. In order to test the impact of individual
clustering protocol on PUs, we count the number of collisions
occurring between all living CRSN nodes and all PUs in each
round, and one collisionmeans that the packet delivery of PUs
during SUs occupancy is affected. If they appear on the same
channel simultaneously for communication, the number of
collisions increases by 1. The simulation results for different
sink locations are shown in Fig.20 and Fig.21, respectively.

From these figures, we can see that the number of collisions
with PUs in IMOCRP is usually lower than other competing
protocols. Actually, the normalized number of collisions with
PUs is complementary with packet delivery ratio of CRSN
nodes. More collisions with PUs mean more transmission
failures and the packet delivery ratio of CRSN nodes natu-
rally reduces. However, the number of collisions with PUs in
Fuzzy C-means and ABCC is also low in the two simulation
scenarios, and the reason is that channel selection and usage
is not taken into consideration in Fuzzy C-means and ABCC.
Therefore, CRSN node randomly selects one channel as its
available channel, and this randomness together with the ran-
dom channel occupancy of PUs produces the above results.

E. TIME COMPLEXITY OF IMOCRP
Both IMOCRP and ABCC are swarm intelligence-based
algorithms. In addition to comparing network lifetime and

FIGURE 20. Number of collisions with PUs for each clustering protocol
(with the sink located at the center).

FIGURE 21. Number of collisions with PUs for each clustering protocol
(with the sink located at (0, 0)).

information collection capability, we also compare their time
complexity. The time complexity analysis of IMOCRP and
ABCC in single iteration is summarized in Table 7.

TABLE 7. Time complexity analysis.

From above table, we can see that the time complexity
in single liquid and crystal iteration of IMOCRP is O(N 2),
and the time complexity in single iteration of ABCC is
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O(SN × N 2). In other words, the time complexity of single
iteration of IMOCRP is lower than that of ABCC. The max-
imum number of iterations set by ABCC is MaxCycle, and
SN employed bees and SN onlooker bees search around food
sources (SN is the number of food sources) in each iteration.
Additionally, there is also extra time complexity if there is no
improvement in consecutive Limit trials. For IMOCRP, in the
worst case, the liquid to crystal iteration is executed 2N times,
and our simulation experiments show that in most cases the
number of liquid to crystal iterations is far smaller than 2N .
Therefore, the total time complexity of ABCC is much higher
than that of IMOCRP.

In summary, IMOCRP reduces the energy consumption
during CH selection and cluster construction, and it can
automatically determine the optimal number of clusters in the
network, thereby extending network lifetime. For information
collection capability, IMOCRP increases the package deliv-
ery ratio through reasonable allocation of channels. At the
same time, IMOCRP is less affected by the status of PUs and
has a lower probability of conflict with PUs than other com-
peting protocols. Compared with ABCC, IMOCRP has lower
total time complexity which makes it easier to implement in
practical CRSN.

VII. CONCLUSION AND FUTURE WORK
In this paper, we design a new centralized clustering rout-
ing protocol IMOCRP for CRSN. It aims at minimizing the
weighted sum of average energy consumption of nodes and
standard deviation of node remaining energy. If the time till
the first node death is defined as network lifetime, when the
sink is located at the center, IMOCRP can achieve 72 per-
cent and 53 percent longer lifetime than CogLEACH and
CogLEACH-C, respectively. By reasonably allocating avail-
able channels for clusters, IMOCRP reduces the probability
of collisions with PUs and promotes successful information
transmissions. Therefore, its packet delivery ratio is usually
above 0.8, while Fuzzy C-means can only achieve about 0.2.
We also change the probability of PUs in ON states to test
the adaptability of IMOCRP to dynamic spectrum environ-
ment. With current network configurations, we can observe
through simulations that the network lifetime and packet
delivery ratio of IMOCRP are basically kept unchanged even
under very high PUs activity, such as pi = 0.9. Addi-
tionally, the impact on PUs is also evaluated by number
of collisions with PUs. We can observe that IMOCRP can
achieve fewer collisions with PUs thanks to its reasonable
channel allocation and small cluster size. In order to simplify
protocol design, this paper assumes that each CRSN node
sends the remaining energy, available channel list, and other
information to the sink through single-hop communication.
In future work, we will further study multihop information
transmissions between CRSN nodes and the sink, thereby
further expanding the application scope of our IMOCRP.
Additionally, the current version of IMOCRP is suitable for
time-triggered applications, therefore, we will improve it to

make it work well in both time-triggered applications and
event-driven applications in our future work.
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