
Received September 30, 2020, accepted October 8, 2020, date of publication October 13, 2020, date of current version October 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030614

Fitting Analysis of Inland Ship Fuel
Consumption Considering Navigation
Status and Environmental Factors
ZHI YUAN 1,2,3, JINGXIAN LIU1,2, YI LIU1,2, (Member, IEEE), YUAN YUAN4,
QIAN ZHANG 3, (Member, IEEE), AND ZONGZHI LI 5
1Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan 430063, China
2National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China
3Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool L3 3AF, U.K.
4Changjiang Shipping Science Research Institute Company Ltd., Wuhan 430060, China
5Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA

Corresponding authors: Yi Liu (liuyi_hy@whut.edu.cn) and Qian Zhang (Q.Zhang@ljmu.ac.uk)

This work was supported in part by the National Natural Science Foundation of China under Grant 51709219, in part by the
National Key Research and Development Program of China under Grant 2018YFC1407400, in part by the Science
and Technology Department of Hubei Province under Grant 2019AHB053, in part by the Education Department of
Hubei Province under Grant 2017504, in part by the China Scholarship Council under Grant 201906950086, and in
part by Qingdao Research Institute of Wuhan University of Technology under Grant 2019A02.

ABSTRACT The strategy of ecological priority and green development in China has made the fuel
consumption of inland ships receive unprecedented attentions. Reliable fuel consumption prediction is the
vital basis of navigation planning, energy supervision, and efficiency optimization. In this article, a cargo ship
sailing on the Yangtze River trunk line was taken as the research object. A comprehensive fitting analysis
of inland ship fuel consumption was conducted, and a prediction method was proposed. First, the multi-
source data including ship navigation status and environment information were collected by multi-source
sensors. Second, to conduct a detailed analysis of the collected data, the authors proposed data pre-processing
and trajectory segmentation methods and analyzed the correlation between multi-source variables and fuel
consumption. Third, a Back Propagation Neural Network with double hidden layers (DBPNN) was tailored
to build a fuel consumption prediction model. Fourth, the developed model was validated using real ship
measurement data. Different input variables were selected for fuel consumption prediction, and the results
showed that after adding the variables of environmental feature including water level, water speed, wind
speed, wind angle, and route segment, the prediction error RMSE (root mean square error) and MAE (mean
absolute error) were reduced by 35.31% and 30.30%, respectively, while the R2 (R-squared) increased to
0.9843. What’s more, compared with other ANNs (artificial neural networks) such as Elman, RBF (radial
basis function), three support vector regression (SVR) models, random forest regression (RFR) model,
GRNN (generalized regression neural network), RNN (recurrent neural network), GRU (gated recurrent
unit) and LSTM (long short-term memory) the proposed DBPNN model showed better performance in fuel
consumption prediction.

INDEX TERMS Inland ship, fuel consumption, navigation status, environmental factors, ANNs.

I. INTRODUCTION
The waterway transportation along the Yangtze River trunk
line has effectively relieved the pressure on land transporta-
tion, railway transportation, and air transportation in China.
However, as people pay more attention to green shipping and
ecological environment [1], energymanagement and resource
optimization of inland waterway transportation have become
an urgent problem to be solved [2]–[6]. Accurate estimation
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and prediction of inland ship fuel consumption can provide a
solid basis to solve these problems.

For the past few years, some researchers have focused on
ship fuel consumption prediction, and some achievements
have been attained. Beşikçi et al. [7] tried to predict ship
fuel consumption for various operational conditions through
using an ANN (artificial neural network). Coraddu et al.
[8] compared three different approaches WBM (White
Box Model), BBM (Black Box Model) and GBM (Gray
Box Model), in the prediction of the ship fuel consumption
based on data measured by the on-board automation systems.
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FIGURE 1. The framework for inland ship fuel consumption prediction.

Wang et al. [9] proposed a ship fuel consumption prediction
model on the basis of the LASSO (Least Absolute Shrink-
age and Selection Operator) regression algorithm. Kee et al.
[10] used the MLR (multiple linear regression) methods to
construct the fuel efficiency profile of working tugboats.
Based on the AIS (Automatic identification system) data
and technical information, Simonsen et al. [11] presented
a fuel consumption model to estimate the energy use and
fuel consumption of the cruise ships sailing in Norwegian
waters. Yuan and Nian [12] developed a Gaussian Pro-
cess (GP) metamodel to predict the ship fuel consumption
for different scenarios in consideration of the effects of the
operational conditions. Yang et al. [13] proposed a novel
Genetic Algorithm-based GBM (GA-based GBM) for ship
fuel consumption prediction. Gkerekos et al. [14] presented
a comparison of multiple data-driven regression algorithms
for predicting the ship main engine FOC (Fuel Oil Consump-
tion), including SVMs (Support Vector Machines), RFRs
(Random Forest Regressors), ETRs (Extra Trees Regres-
sors), and ANNs (Artificial Neural Networks). Hu et al.
[15] collected two different sets of data showing the fuel
consumption of a voyage ship with and without the influ-
ence of marine environmental factors and used the machine
learning of BPNN (Back-Propagation Neural Network) and
GPR (Gaussian Process Regression) to train and predict the
ship fuel consumption. Capezza et al. [16] demonstrated
a statistical framework and automatic reporting system for
fuel consumption monitoring that addresses the reporting
and verification (MRV) requirements needed to comply with
the regulations. Accetta and Pucci [17] proposed an EMS
(energy management system) of the electrical system of a
luxury ships (yachts) to reduce the related ship polluting
emissions. Zhao et al. [18] created a SSOM-SS (sailing
speed optimization model for slow steaming) to balance the
expected utility-based objectives (EUO) of fuel consumption,
SOx emissions and delivery delay, by applying BDA (big data

analytics) techniques like data fusion and feature selection
to provide the SSOM-SS with accurate and suitable data on
fuel consumption, and built a solver based on the GA (genetic
algorithm) to solve the SSOM-SS.

However, there exist some limitations in the existing
research. (1) Research objects existing works were mostly
seagoing ships, while few studies focused on inland ships.
(2) Limited input variables were used for fuel consump-
tion prediction. There was a lack of consideration of some
non-negligible variables, such as wind angle, engine tempera-
ture, and route characteristics. (3) There was a lack of analysis
about the influence of different input feature variables when
predicting ship fuel consumption.

To address the above issues, this article aims to develop
a predictive model of inland ship consumption in terms of
a complete future voyage comprehensively considering ship
navigation status and environmental factors, and to imple-
ment a novel application of inland ship fuel consumption fit-
ting analysis based on the developed model. Firstly, real-time
status monitoring data of the inland ship and relevant environ-
mental data are collected by multi-source sensors. Secondly,
the original multi-source data is processed and analyzed in
detail, including data pre-processing, ship trajectory seg-
mentation according to the flow condition, water level and
the actual topography of the Yangtze River trunk line,
and correlation analysis between the fuel consumption and
multi-source variables. Thirdly, a fuel consumption fit model
based on BPNN with double hidden layers (DBPNN) is con-
structed. Finally, different feature variables are selected and
discussed with the proposed model. And the performances
of the proposed models are verified by field data. Besides,
in comparison with SVR models, other ANNs and RNNs
(Recurrent Neural Networks) are also presented. The research
framework is as shown in Fig. 1.

The contribution of this article is mainly reflected in three
aspects. (1) Multiple factors that affect the fuel consumption
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TABLE 1. The original monitoring data of the ship sailing on the Yangtze River trunk.

FIGURE 2. The architecture of a ship on-line monitoring system.

of inland ship are considered, and the information of tra-
jectory segmentation is also set as the input variable of the
models. (2) Detailed experiments and analysis are carried
out based on developed DBPNN model, and different feature
variables as inputs of the fuel consumption prediction model
are verified and discussed. (3) Performance of the proposed
model is compared with that of several different support
vector machine regression models, ANNs and RNNs, such as
LR, SVMR, GKR, Elman, RBF, RFR, GRNN, RNN, GRU
and LSTM.

The remaining of the paper is organized as follows.
Section II introduces the multi-source data collection of the
inland ship. The proposed methods of multi-source data
analysis are described in detail in Section III. The predic-
tion model of the fuel consumption rate is constructed in
Section IV. Detailed experiments and analysis are carried
out in Section V. Finally, conclusions and future work are
presented in Section VI.

II. MULTI-SOURCE DATA COLLECTION
Multi-source data in this study is composed of ship static
information, real-time ship status data and navigation envi-
ronment data, first two of which are collected by an on-line
monitoring system onboard, as shown in Fig. 2.

This article considers a cargo ship sailing on the Yangtze
River trunk as the research object, which is equipped with

two engines which rated power at 735 kW and rated engine
rotation speed at 830 rpm (revolutions per minute), and has
two (left and right) fuel tanks. The static information of
the ship includes IMO (International Maritime Organization)
number, ship name, ship length, ship width, deadweight,
etc. The real-time status data of the ship mainly includes
voyage date, voyage time, voyage mileage, longitude, lati-
tude, SOG (speed over ground), COG (course over ground),
Left ES (left engine speed), Right ES (right engine speed),
Left ET (left engine temperature), Right ET (right engine
temperature), reserve fuel (oil volume of the left tank and
right tank), and bunker fuel. All date are collected from the
Yangtze River trunk from Gongan to Zigui, between Septem-
ber 25, 2019 (11:04) and October 3, 2019 (07:43), which
belongs to the dry season. And the length of the route is
256 kilometres, and the normal sampling time of the sensors
is unified at 1 minute. The example of original sample data
during September 25, 2019, as shown in Table 1. In addi-
tion, the navigation environment data including water level,
water speed, wind speed, and wind direction are collected
from the hydrographic stations along the Yangtze River trunk
line.

III. MULTI-SOURCE DATA ANALYSIS
This section will introduce the methods of multi-source
data processing and analysis in detail, including raw data
pre-processing, trajectory segmentation, and correlation
analysis.

A. DATA PRE-PROCESSING
The status monitoring data is obtained through continuous
time sampling by multi-source sensors on the ship termi-
nal. And the original data usually contains some errors and
anomalies due to data transmission delay, data reception
abnormally, ships berthing, working cargo and/or other rea-
sons. In the Fig. 3 (a), the normal range of longitude is
between 105 and 113, and the zero values are abnormal data,
which may be caused by transmission error. In the Fig. 3 (b),
the SOGwith zero values are noise data, whichmay be caused
by reception abnormal, or may be ship berthing and working
cargo. And the data of engine speed also contain some noise
and abnormal, as shown in Fig. 3 (c) and (d). Therefore,
multi-source monitoring data pre-processing is very neces-
sary. It should be noted that the multi-source data was col-
lected by different sensors. For example, ship locations are
obtained by GPS receivers on the bridge, the engine speed
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FIGURE 3. The original multi-source monitoring data: (a) longitude; (b) SOG; (c) left engine speed; (d) right engine speed.

and temperature come from sensors equipped on the engines,
while the fuel consumption data is collected from the sensors
in the bunker and tanks. That is to say, the SOG or engine
speed in the same data record with abnormal longitude may
be normal.

Therefore, the pre-processing flowchart is designed as
Fig.4. As shown in Fig.4, the proposed data pre-processing
method for inland ship multi-source monitoring data is
divided into the following six steps:

Step 1. Original data sorting. The whole data set is sorted
according to the sampling date and time to remove the dupli-
cate data.

Step 2. Abnormal data locating. Finding out the abnormal
values. For example, the longitude with zero values from the

original data. The abnormal data may be caused by transmis-
sion and reception errors.

Step 3. Replacing the abnormal data with mid-value. The
abnormal value record of multi-source data may contain other
useful information, which should not be deleted entirely.
Therefore, the processing method is to replace the abnormal
value use the mid-value which is the average of the data at the
upper and lower times.

Step 4. Noisy data locating. Finding out the noisy data of
the multi-source data, such as the SOG and engine speed with
zero values.

Step 5. Noisy data cleaning. Noisy data in the data set has
no information available, and it also affects the quality of the
data set.
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FIGURE 4. The flowchart of multi-source monitoring data pre-processing.

Step 6. Real-time fuel consumption rate calculating.
The real-time fuel consumption refers to the ship’s fuel
consumption per minute.

It should be noted that the collected multi-source moni-
toring data only includes the bunker fuel, left reserve fuel
and right reserve fuel of the ship, during navigation. There
is no real-time fuel consumption rate, which needs to be
calculated using the recorded fuel information. The bunker
fuel and reserve fuel are collected by the fuel gauges, which
will measure the amount of oil per minute in the bunker
and tanks (the error ratios of measured is 1.17 %). In order
to calculate the real-time fuel consumption rate accurately,
the equations are designed as follows.

Fuel = FuleBun− (FuleResL + FuleResR), (1)

1Fuel = Fuel i − Fuel i−1, (2)

1T = Ti − Ti−1, (3)

FuelCR = 1Fuel/1T . (4)

where, FuelBun denotes the bunker fuel, FuleResL and
FuleResR denote left reserve fuel and right reserve fuel
respectively, their unit are all L, Fuel represents the fuel
consumption during the sampling time, i denotes current
time, and i−1 denotes the previous time, their unit are minute,
FuelCR represents real-time fuel consumption rate, the unit
is L/Min.

The corresponding navigation environmental data includ-
ing water level, water speed, wind speed and wind direction,
as shown in Fig. 5. In this article, regarding wind speed,
the unit is the Beaufort Scale (BS). And the range of the wind
direction is from 0 ◦ to 360 ◦. In addition, the wind angle is
also calculated, which is the angle between the wind direction
and the COG. The wind angle ranges from −180 ◦ to 180 ◦.

When the wind angle is 0◦, it means that the wind direction is
consistent with the heading of the ship, and the ship is sailing
downwind. When it is −180◦ or 180◦, it means that the ship
is sailing upwind.

B. TRAJECTORY SEGMENTATION
From Fig. 5, it can be seen that the wind speed and wind
direction of the route are relatively small. For example, the
wind speed is below 3 on the Beaufort scale, and the wind
direction does not change much within period time (such
as one day). These may not help much in the analysis and
prediction of real-time fuel consumption. In contrast, changes
in water level and water speed are more obvious. Also, when
the water speed changes, the water level also changes. To ana-
lyze and predict the real-time fuel consumption accurately,
we further divided the trajectory of ships according to the
water level of the waterways and the actual topography of the
route of the Yangtze River trunk line.

In this work, the route of the ship from Gongan to Zigui on
the Yangtze River mainline, as shown in Fig. 6. According to
the water level and speed of the waterway, 7 ports in the route,
i.e. Yuanshi, Yaogang, Zhicheng, Yidu, Yichang, Sandouping
and Maoping, were chosen to divide the trajectory into 8 seg-
ments, with Segment No. 2-5 demonstrated in Fig. 6(b). It is
important that the result of trajectory division is approved by
many captains who havemany years of experience in Yangtze
River trunk navigation.

C. MULTI-SOURCE VARIABLES CORRELATION ANALYSYS
By the above data progressing and trajectory segmentation,
the high-quality multi-source data set are obtained, which
includes status monitoring data, real-time fuel consumption
rate, environmental data and segment number. It is well
known that the input feature variables have a great influence
on the output results of the prediction model. In addition
to the navigation state variables such as ES (engine speed),
ET (engine temperature), SOG and COG, the environmental
factors such as water level, water speed, wind speed and wind
angle also affect the fuel consumption of the ship. In order
to select appropriate input variables for the ship fuel con-
sumption model, the Pearson correlation coefficient is used
to analyze the correlation between each variable and real-time
fuel consumption rate, as shown in Equation (5).

r =

∑n
i=1 (Vi − V̄ )(Fi − F̄)√∑n

i=1 (Vi − V̄ )
2
√∑n

i=1 (Fi − F̄)
2
. (5)

where, r denotes the Pearson correlation coefficient, V indi-
cates different feature variables, F indicates real-time fuel
consumption, V̄ and F̄ represent their mean value respec-
tively, t is the index of the variable, and n represents the
length of each variable. Through the calculation of the equa-
tion, the correlation coefficients between multi-source vari-
ables and real-time fuel consumption are obtained, as shown
in Table 2.

From the Table 2, it is not difficult to find that, the strongest
correlation exists the left ES and right ES, and the left ET

VOLUME 8, 2020 187445



Z. Yuan et al.: Fitting Analysis of Inland Ship Fuel Consumption Considering Navigation Status and Environmental Factors

FIGURE 5. The navigation environment data: (a) the water level and water speed; (b) the wind speed and wind direction.

FIGURE 6. The result of trajectory division. Figure (a) is actual trajectory, figure (b) is the segment No.2-5, which corresponds to the red box of figure (a).

and right ET also have relatively high correlation with the
fuel consumption rate, so that they will play an important role
in the subsequent experiments in real-time fuel consumption
prediction. It is obvious that the higher the ES, the greater
the fuel consumption. And a higher ET normally reflects a
higher ESwith a certain time delay, while it is also affected by
the environment temperature. Meanwhile, a higher ET could
lead to a reduction on engine output power, so that ETs are
also important to construct the relation between engine speed,
fuel consumption, and ship speed. Economically speaking,
water level and water speed that determined by river flows
and tides vary greatly in inland waters and provide the

majority of the resistance for upriver ships [19]. Conversely,
wind speed and wind direction are relatively stable and less
influential, as shown in Fig. 5 (b). In addition, the influ-
ence of river flows and tides on ships is mainly reflected in
ship speed on the direction of ship course, meanwhile water
flows direction changes frequency when ship sailing in inland
waters, as shown in Fig. 5 (a). As a result, correlation of
the water speed is large than the wind speed. What’s more,
the water level and segment ID have obvious correlation with
the real-time fuel consumption rate. These also prove the
effectiveness of the trajectory segmentation. Since the ship
sailing from lower reach to upper reach, the water level and
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TABLE 2. The correlation coefficient.

segment number increase. In inland rivers, a higher the water
level could lead to relatively lower resistance, and result in a
smaller fuel consumption. Therefore, they have negative cor-
relation with the fuel consumption rate. Moreover, according
to the value of the correlation coefficient, we then divide them
into 5 grades: very strong (r > 0.90), strong (0.60 < r <

0.90), moderate (0.25 < r < 0.60), weak (0.10 < r < 0.25)
and very weak (r < 0.10).

IV. MODEL BUILDING
Artificial Neural Network (ANN) is an information process-
ing system based on imitating the structure and function of
the brain neural network [19]. With the strong ability of self-
learning, self-organizing, adaptive and nonlinear function
approximation, it has been widely used in data processing,
modelling and forecasting [20]–[24].

Generally, an ANN has three network layers: input layer,
hidden layer and output layer. The hidden layer can be a single
layer or multiple layers. And the ANN with multiple hidden
layers commonly has better performance, but its structure is
more complex with higher time complexity, and it is prone to
overfitting. Back Propagation (BP) is a simple and efficient
algorithm for ANN learning, which consists of two processes:
forward propagation of signals and backward propagation of
errors. The BP networks have strong learning ability, and also
used for fuel consumption prediction [25], [26]. Elman neural
network [27] is a typical dynamic recurrent neural network,
which is generally composed of four layers: input layer, hid-
den layer, context layer and output layer. The input layer unit
only plays the role of signal transmission, and the output layer
unit plays the role of weighting, the hidden layer unit has two
types of linear and nonlinear excitation functions. And the
context layer is used to memorize the output value of the hid-
den layer unit at the previous moment, which can be regarded
as a delay operator with one step delay. The Elman neural
network is based on the basic structure of the BP network,
adding a context layer as a one-step delay operator to achieve
the purpose of memory, so that the system has the ability to
adapt to time-varying characteristics and enhance the global
stability of the network. Radial Basis Function (RBF) net-
work is a three-layer neural network with only one hidden
layer [28]. The transformation from the input layer space to
the hidden layer space is nonlinear, and the transformation
from the hidden layer space to the output layer space is linear.

The weights of the RBF network can be directly solved by
the system of linear equations, thereby accelerating the speed
of network learning and avoiding local minimum problems.
The output of the RBF network depends on its parameters
and has the characteristic of ‘‘local mapping’’. Generalized
Regression Neural Network (GRNN) [29] is an improvement
to the RBF network, which added a summation layer, and
removed the weight connection between the hidden layer and
the output layer. GRNN has strong nonlinear mapping ability
and learning efficiency, and has a stronger advantage than the
RBF network. The GRNN network finally converges to an
optimized regression with a large sample size aggregation.
For a small number of sample data, GRNN also has a good
prediction effect, and it can be used to deal with unstable data.
The three ANNs have been widely used in data modeling
and prediction [30], [31]. Jenkins et al. [32] used the Elman
network to build an ensemble forecast framework (ENFF)
for demand prediction of anomalous days. Raza et al. [33]
proposed a fuzzy RBF neural network structure by combin-
ing the fuzzy logic system with the RBF neural network
for short-term road speed forecasting. Ai et al. [34] used
GRNN to test the factors’ direct and indirect effects on
energy consumption, and combined GRNNwith urban devel-
opment scenarios to predict the cities’ future CO2 emissions.
Ye et al. [35] proposed the adaptive mutation particle
swarm optimization and GRNN prediction model to predict
equivalent salt deposit density (ESDD).

In recent years, great advances have been produced in
Recurrent Neural Networks (RNNs) [36], such as Gated
Recurrent Unit (GRU) [37] and Long Short-Term Memory
(LSTM) [38]. The RNNs have been successfully applied
to various tasks, such as data-driven modelling [39], image
caption [40], sentiment analysis [41] and speech recogni-
tion [42]. For example, Ding and He [43] studied online
training of the LSTM architecture in a distributed network
of nodes for regression and introduced online distributed
training algorithms for variable-length data sequences. Ergen
and Kozat [44] proposed a new approach, the CAM-RNN to
extract the most correlated visual feature and a text feature
for the task of video captioning, which was composed of
three parts, i.e., visual attentionmodule, text attentionmodule
and balancing gate. Zhao et al. [45] designed three differ-
ent sememes incorporation methods and employ them in
RNNs including LSTM,GRU and their bidirectional variants,
to improve their sequence modelling ability. Unfortunately,
these advanced neural networks have not been used to predict
the fuel consumption of inland ships.

In this article, the BP neural network with double hidden
layers (DBPNN) is tailored to build the fuel consump-
tion prediction model of the inland ship, its topology as
shown in Fig. 7. The novel neural network model con-
sists of four network layers. First, the multi-source feature
variables are selected according to the correlation analysis
and presented to the input layer. Then, two hidden lay-
ers are designed to improve the performance of the model.
Finally, the output layer consists of only fuel consumption.
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FIGURE 7. Topological graph of fuel consumption prediction model based
on DBPNN.

Among them, the number of neurons, the activation func-
tion, the loss function and optimizer are determined through
network training.

The specific modelling process with DBPNN can be
described as follows.

Step 1. Selecting the feature variables. Firstly, selecting
the status data and environmental data as the input feature
variables from fuel consumption data set according to the
correlation coefficient in Table 2, and the fuel consumption
as the output variable.

Step 2. Normalizing the input and output data to the range
of 0 to 1, and randomly dividing the data set into a training
set and a testing set. Data normalization can eliminate the
adverse effects caused by singular sample data.

Step 3. Creating and training the DBPNN. First, randomly
initializing weights of the DBPNN, and then training it using
the data of training set until the termination criterion is satis-
fied. Finally, setting optimal parameters of the fuel consump-
tion prediction.

Step 4. Testing the network with a separate data set and
evaluating the model using evaluation functions, such as Root
Mean Square Error (RMSE), Mean Absolute Error (MAE)
and R-squared (R2).
In step 2, the method of min-max normalization can be

used to normalize the input and output data of the DBPNN
as shown in Equation (6). And in step 4, RMSE,MAE and R2

can be adapted to evaluate the performance of the developed
models, as shown in Equation (7)-(9).

x(t)∗ = (x (t)−Min (x(t))) / (Max (x(t))−Min (x(t))) .

(6)

RMSE =
(
1
T

∑T

t=1

(
yt − ŷt

)2)1/2
, (7)

MAE =
1
T

∑T

t=1

∣∣yt − ŷt ∣∣ , (8)

R2 = 1−

∑T
t=1

(
yt − ŷt

)2∑T
t=1 (yt − ȳt)2

. (9)

where, x(t) and x(t)∗ represent the initial data and the nor-
malized data, respectively. t represents the index of a datum
and T represents the number of data; yt and ŷt are the real
values and the predicted values of the t th datum respectively;
ȳt is the mean of yt , where t= 1, 2, 3 . . .T .

V. RESULTS AND ANALYSIS
In this study, the host platform is a notebook, of which
the CPU (Central Processing Unit) is Inter (R) Core (TM)
i7-6500, the main memory is 8GB RAM (Random Access
Memory) and the operating system is 64-bit Windows 10.
And the programming language is MATLAB 2019a.

Data used in this study came from the inland vessel mon-
itoring system of Changjiang National Shipping Group Co.
Ltd, and themulti-source data set includes 9,637 data records.
After the data pre-processing, a clean data set is obtained with
2,158 records. In the following case study, the fitting models
for inland ship fuel consumption are established, and the fuel
consumption is predicted and analyzed in detail.

First of all, LES (left engine speed) and RES (right engine
speed) with the strongest correlation (as shown in Table 2) are
selected as input feature variables of the prediction model,
and the fuel consumption rate is selected as output data.
In order to avoid overfitting in the neural network, 80% of
the original data are randomly extracted as the training set
and the remaining 20% as the testing set. The training data
and the testing data are normalized before being presented
to the neural network. The number of epochs is set to 1000;
the learning rate is set to 0.05; the ‘‘mae’’ (mean absolute
error) function is selected as the performance function; the
‘‘trainlm’’ function is selected as the training function and the
‘‘learngdm’’ is selected as the learning function. In addition,
the training accuracy of the network is set to 0.00001, and if
the training error reaches or fall below the goal, the neural
network will stop training early. In order to determine the
structure of the network, the number of neural and transfer
function of the hidden layers and output layer are divided
into several groups for experiments. The RMSE and MAE
of testing data are shown in Table 3. After a number of
preliminary experiments, the following parameter settings are
found to be appropriate and are used, as shown in Table 4.

In addition, some experiments are conducted to com-
pare the training time and prediction performance (including
RMSE, MAE and R2) of the models with different hidden
layers. The results are shown in Table 5. Where, the models
use the related functions in Table 4, the unit of training
time is seconds (s), the ‘‘structure’’ represents the number of
neurons of each network layer. FromTable 5, we can find that:
(1) the errors of training and testing with multiple hidden lay-
ers are smaller than that of single hidden layer, but their train-
ing time are longer. (2) The performance of the model with
three hidden layers is similar to that of the two hidden layers,
but the training time is greatly increased. (3) The training
time of the model with four hidden layers decreased, but their
errors increased instead. That’s because the network stopped
training early to prevent overfitting. Therefore, the model
with two hidden layer models is selected for the case
study.

Secondly, several DBPNN models are developed with dif-
ferent combination of feature variables as inputs according to
the correlation in Table 2. And the different feature variables
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TABLE 3. Parameters setting for the fuel consumption Rate model.

TABLE 4. Parameters setting for the fuel consumption model.

TABLE 5. Some experiments with different hidden layers.

are combined into four groups A, B, C, D, and E as shown
in Table 6.

The input feature variables of group A are LES and RES
with the strongest correlation, group B adds LET and RET

TABLE 6. The inputs variables for fuel consumption prediction.

with the correlation grade of strong, group C increases SOG
andCOG. And groupD not only contains all navigation status
data but also adds environmental data and segments data,
such asWaL,WaS,WiS, SID and SID. Group E also includes
environmental data and segments data, but removes SOG.
Where, LES denotes left engine speed, RES denotes right
engine speed, LET denotes left engine temperature, RET
denotes right engine temperature,WaL represents water level,
WaS represents water speed,WiS represents wind speed,WiA
represents wind angle, and SID is segment number.
Fig. 8 demonstrate the prediction performance of the devel-

oped models under different input feature variables. In the
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FIGURE 8. Fuel consumption prediction results of different input variables: (a) A group with two input feature variables; (b) B group with four
input feature variables; (c) C group with six input feature variables; (d) D group with ten input feature variables, which contains status monitoring
data, environmental information and segment ID.

Fig. 8, the blue line represents the measured data of fuel
consumption rate, the green line represents the predicted
data of training set, and the red line represents the predicted
data of testing set. The above prediction results show that:
(1) the processed multi-source data can be well used for
fuel consumption modelling; (2) The navigation state and
environment of inland ships have a great influence on the
fuel consumption, and considering the environmental factors
in modelling can effectively enhance the accuracy of the
predictive model, as shown in Fig. 8(d).

Thirdly, the prediction accuracy against training data and
testing data under different input variables are calculated,
including RMSE and MAE and R2. Table 7 records the mean
results of 20 experiments. It is easy to see from Table 7 that
as the number of input variables increases, the values of
RMSE and MAE gradually decreases, and the values of
R2 gradually increases. Moreover, add the engine tempera-
tures to the input variables greatly improve the accuracy of

the fuel consumption model. In particular, considering the
environmental factors and segment information, including
the water level, water speed, wind speed, wind angle and
segment ID, can improve the prediction performance to some
extent, the testing RMSE value and MAE value decreased to
0.0980 and 0.0731 respectively, and the R2 value increased to
0.9843. Comparing group C with group D in Table 7, it can
be found that the RMSE andMAE are reduced by 35.31% and
30.30% after adding environment factors. Therefore, it can be
said that when monitoring attributes and hydrological factors
are combined as model inputs, the prediction results will be
the best.

Finally, in order to verify the advantages of the constructed
prediction model, it is compared with other models, including
Elman network, RBF network, three support vector regres-
sion (SVR) algorithms: linear regression (LR), support vector
machine regression (SVMR) and Gaussian kernel regression
(GKR), random forest regression (RFR), GRNN, RNN, GRU
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TABLE 7. Prediction accuracy of models with different input feature variables.

TABLE 8. Comparison of different MODELs in fuel consumption prediction.

FIGURE 9. The measured data vs. predicted data with GRNN.

network and LSTM network. In the comparison experiments,
ten feature variables (group D in Table 6) are selected as
inputs of models and use the same training and testing data,
and make the parameters of the networks consistent with our
proposed DBPNN. The Elman network is also set up with
two hidden layers, and the number of neurons is 81 and 8.
The RBF network has only one hidden layer, the ‘‘spread’’
parameter is set as 80 (the best of value of many experiments).
The parameter of RFR is 50, it is the best between 5 and
200. And in the GRNN, 4 cross-validations are conducted
with selection the optimal ‘‘spread’’ ranging from 0.01 to 0.2,
and the best value of 0.02 is found and used. The parameter
settings of RNN, GRU and LSTM are as follows: the epochs
is 1000, the number of neurons is 150, the time steps is 1, and
the batch size is 100. The prediction performance (mean and

standard deviation of 20 experiments) of different methods is
shown in Table 8.

From the Table 8, it can be seen that, compared with the
proposed DBPNN, other neural networks have relatively high
prediction errors. For example, the testing RMSE value of
other networks are more than 0.1750, the testing MAE value
are more than 0.1050, and the testing R2 are less than 0.9500.
It is worth noting that although the training RMSE, MAE and
R2 of the GRNN are relatively close to those of DBPNN, and
the testing errors of GRNN are 0.2186, 0.1178 and 0.9226,
while the DBPNN’s testing errors are 0.0980, 0.0731 and
0.9843, relatively.

Fig. 9, Fig. 10 and Fig. 11 demonstrate the predic-
tion performance of three models with GRNN, GRU and
DBPNN. The results shown in Table 8, Fig. 9, Fig. 10 and
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FIGURE 10. The measured data vs. predicted data with GRU.

FIGURE 11. The measured data vs. predicted data with proposed DBPNN.

Fig. 11 reveal that the proposed DBPNNmethod outperforms
other methods in fuel consumption prediction.

VI. CONCLUSION AND FUTURE WORK
In this article, considering multi-source variables of ship
navigation status and environmental factors, a novel appli-
cation of inland ship fuel consumption fitting analysis was
implemented based on developed DBPNN.With the DBPNN
method, fuel consumption of the inland ship has been ana-
lyzed and predicted in detail. The multi-source monitoring
data have been pre-processed to provide high-quality data
sets for the fitting analysis and prediction of ship fuel con-
sumption. Ship trajectory has been divided into 8 segments
according to the hydrological data. Correlation analysis of
multiple variables has been made, which facilitates the selec-
tion of input feature variables for fuel consumption rate
predictive models. And different feature variables have been

selected and presented to the proposed DBPNN. The ver-
ification results of the measured data showed that (1) the
multi-source data set composed of navigation status, environ-
mental factors and segment information can be well used for
the fuel consumption fitting analysis of inland ship; (2) after
adding environmental data and segment ID as input feature
variables, the performance of the prediction model has been
significantly improved. For example, the testing RMSE is
reduced by 35.31%,MAE is reduced by 30.30%, and the R2 is
improved to 0.9843; (3) compared with some methods such
as LR, SVMR, GKR, Elman, RBF, RFR, GRNN, RNN, GRU
and LSTM, the constructed DBPNN model consistently out-
performs the other methods in inland ship fuel consumption
prediction.

In this article, data used is still limited. Current research
data comes from one part of the Yangtze River trunk line.
In the future, more multi-source data of the whole Yangtze
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River trunk will be collected and considered in analysis of
ship fuel consumption. In addition, structure of the neural
network may be improved to enhance its adaptability, so that
the developed model can work with some intermittent input
values.
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