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ABSTRACT Electronic mail has eased communication methods for many organisations as well as indi-
viduals. This method is exploited for fraudulent gain by spammers through sending unsolicited emails.
This article aims to present a method for detection of spam emails with machine learning algorithms that
are optimized with bio-inspired methods. A literature review is carried to explore the efficient methods
applied on different datasets to achieve good results. An extensive research was done to implement
machine learning models using Naive Bayes, Support Vector Machine, Random Forest, Decision Tree and
Multi-Layer Perceptron on seven different email datasets, along with feature extraction and pre-processing.
The bio-inspired algorithms like Particle Swarm Optimization and Genetic Algorithm were implemented to
optimize the performance of classifiers. Multinomial Naive Bayes with Genetic Algorithm performed the
best overall. The comparison of our results with other machine learning and bio-inspired models to show the

best suitable model is also discussed.

INDEX TERMS Machine learning, bio-inspired algorithms, cross-validation, particle swarm optimization,

genetic algorithm.

I. INTRODUCTION

Machine learning models have been utilized for multiple
purposes in the field of computer science from resolving a
network traffic issue to detecting a malware. Emails are used
regularly by many people for communication and for social-
ising. Security breaches that compromises customer data
allows ‘spammers’ to spoof a compromised email address to
send illegitimate (spam) emails. This is also exploited to gain
unauthorized access to their device by tricking the user into
clicking the spam link within the spam email, that constitutes
a phishing attack [1].

Many tools and techniques are offered by companies in
order to detect spam emails in a network. Organisations
have set up filtering mechanisms to detect unsolicited emails
by setting up rules and configuring the firewall settings.
Google is one of the top companies that offers 99.9%
success in detecting such emails [2]. There are different
areas for deploying the spam filters such as on the gate-
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way (router), on the cloud hosted applications or on the
user’s computer. In order to overcome the detection prob-
lem of spam emails, methods such as content-based fil-
tering, rule-based filtering or Bayesian filtering have been
applied.

Unlike the ‘knowledge engineering’ where spam detection
rules are set up and are in constant need of manual updat-
ing thus consuming time and resources, Machine learning
makes it easier because it learns to recognise the unsolicited
emails (spam) and legitimate emails (ham) automatically and
then applies those learned instructions to unknown incoming
emails [2].

The proposed spam detection to resolve the issue of the
spam classification problem can be further experimented by
feature selection or automated parameter selection for the
models. This research conducts experiments involving five
different machine learning models with Particle Swarm Opti-
mization (PSO) and Genetic Algorithm (GA). This will be
compared with the base models to conclude whether the pro-
posed models have improved the performance with parameter
tuning.
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The rest of this article is organised as follows: Section II
presents the research to identify techniques and methods used
to resolve the classification problem. This is followed by
section III that introduces the proposed work. Section IV
explains the tools and implementation techniques. Section V
introduces the Machine Learning algorithms that are imple-
mented followed by section VI that explains the structure of
the Python program, datasets and requirements. Section VIII
discusses on the results of base model on datasets. Section IX
explains the tuning of parameters. Section X explains the
PSO and GA integration. The results of the optimized clas-
sifiers on different datasets are described in section XI,
followed by comparison and evaluation in section XII.
Section XIIT and XIV talks about the future implementation
and conclusion.

Il. RELATED WORK

A. MACHINE LEARNING

Researchers have taken a lead to implement machine learning
models to detect spam emails. In the paper [3], the authors
have conducted experiments with six different machine learn-
ing algorithms: Naive Bayes (NB) classification, K-Nearest
Neighbour (K-NN), Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM), Artificial Immune System and
Rough Sets. Their aim of the experiment was to imitate the
detecting and recognising ability of humans. Tokenisation
was explored and the concept provided two stages: Training
and Filtering. Their algorithm consisted of four steps: Email
Pre-Processing, Description of the feature, Spam Classifica-
tion and Performance Evaluation. It concluded that the Naive
Bayes provided the highest accuracy, precision and recall.

Feng et al. [1] describes a hybrid system between two
machine learning algorithms i.e. SVM-NB. Their proposed
method is to apply the SVM algorithm and generate the
hyperplane between the given dimensions and reduce the
training set by eliminating datapoints. This set will then be
implemented with NB algorithm to predict the probability of
the outcome. This experiment was conducted on Chinese text
corpus. They successfully implemented their proposed algo-
rithm and there was an increase in accuracy when compared
to NB and SVM on their own.

Mohammed et al. [4] aimed to detect the unsolicited emails
by experimenting with different classifiers such as: NB,
SVM, KNN, Tree and Rule based algorithms. They generated
a vocabulary of Spam and Ham emails which is then used
to filter through the training and testing data. Their experi-
ment was conducted with Python programming language on
Email-1431 dataset. They concluded that NB was the best
working classifier followed by Support Vector Machine.

Wijaya and Bisri [5] proposes a hybrid-based algorithm,
which is integrating Decision Tree with Logistic Regression
along with False Negative threshold. They were successful in
increasing the performance of DT. The results were compared
with the prior research. The experiment was conducted on the
SpamBase dataset. The proposed method presented a 91.67%
accuracy.
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B. BIO-INSPIRED METHODS

Agarwal and Kumar [6] experimented with NB along with
Particle Swarm Optimisation (PSO) technique. The paper
used the emails from Ling-Spam corpus and aimed to acquire
an improvement in F1-score, Precision, Recall and Accuracy.
The paper used Correlation Feature Selection (CFS) to select
appropriate features from the dataset. The dataset was split
into 60:40 ratio. Particle Swarm Optimisation was integrated
along with Naive Bayes. They concluded a success when
their proposed integrated method increased the accuracy of
the detection compared to NB alone [6].

Belkebir and Guessoum [7] reviewed the SVM algorithm
along with Bee Swarm Optimization (BSO) and Chi-Squared
on Arabic Text. Since there have been plenty of research
conducted for text mining on English and some European
languages, the authors considered to review the algorithms
work on Arabic language. They experimented with three
different approaches to categorise automatic text — Neural
networks, Support Vector Machine (SVM) and SVM opti-
mizing with Bee Swarm Algorithm (BSO) along with
Chi-Squared. Bee Swarming Optimization algorithm is
inspired by the behaviour of swarm of bees to achieve global
solution. A search area is divided and each area within the
divided section is assigned to other bees to explore. Every
solution is distributed amongst the bees and the best solution
is accepted and the process is repeated until the solution meets
the criteria of the problem.

The main problem advertised is: “The problem of select-
ing the set of attributes is NP-hard”. The research explains
the problem dealing with the feature selection due to the
computation time. A vocabulary is generated and fed into
the Chi2-BSO algorithm to acquire the features and finally
the achieved result is loaded within the SVM algorithm. The
experiment was carried on OSAC dataset which included
22,429 text records. The study randomly selected 100 texts
from each category distributed by 70:30 ratio. The program
performed removal of digits, Latin alphabets, isolated let-
ters, punctuation marks and stopwords. The document rep-
resentation step was conducted with different modes for all
approaches — SVM, BSO-CHI-SVM and artificial neural
network (ANN). The SVM outperformed the ANN execution
time. The proposed algorithm BSO-CHI-SVM exceeds the
learning time but it is still identified as effective [7]. The paper
concluded that the proposed algorithm provides an accuracy
rate of 95.67%. They have also stated that SVM approach
outperformed ANN. A further development is to evaluate the
approach of this article on other datasets and use modes such
as n-gram or concept representation.

Many researchers have also researched the human
evolutionary processes to optimize the ML algorithm’s per-
formance. Taloba and Ismail [8] explored Genetic Algo-
rithm (GA) optimization by integrating it with Decision
Tree (DT). The authors recognise the overfitting problem
with dimension of feature space and attempt to overcome
this issue by feature extraction with Principle Component
Analysis (PCA). The paper provides an intensive background
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of algorithms used and proceeds with proposed algorithm.
Their program performs pre-processing, feature weighing
and feature extraction. The proposed algorithm is to find
the optimal value of the parameter provided for the Deci-
sion tree (DT) algorithm. The DT algorithm used is J-48 to
generate the rules and then apply GA with fitness function
to obtain the accuracy. The program uses the BLX-« for
fitness search and performance. Their fitness function was
conducted on each individual of GA. The experiment was
conducted with the Enron spam dataset. The paper concluded
that the GADT proposed algorithm provided higher accu-
racy when compared with other classifiers without PCA.
Another experiment compared the performance measurement
with using the PCA which provided higher accuracy than
GADT itself.

Karthika and Visalakshi [9] reviews the ML algorithm —
SVM along with the optimization technique — Ant Colony
Optimization (ACO). The proposed algorithm was per-
formed on the SpamBase dataset with supervised learning
method. The paper briefly defines the existing work based
on pheromone updating and fitness function. The paper pro-
vides an overview of the ML algorithm such as NB, SVM
and KNN classifiers. The proposed algorithm was conducted
by integrating the ACO algorithm into the SVM ML algo-
rithm. ACO is based on the behaviour of the ants observed
while creating a shortest path towards the food source. The
paper states that the proposed ACO based feature selection
algorithm deducts the memory requirement along with the
computational time. The experiment uses the N-fold cross
validation technique to evaluate the datasets with different
measures. The feature selection methods were used with the
ACO. The result of the proposed algorithm ACO-SVM was
higher than the rest of the ML algorithms itself. The paper
concluded that the accuracy of ACO-SVM was 4% higher
than the SVM itself alone. The paper evaluated that the
optimization algorithm resolves the activities of the problem
simultaneously to classify the emails into ham and spam [9].

Additional research looked at algorithms for optimization
such as Firefly and Cuckoo search. The Firefly algorithm
in the paper [10] was used with SVM. The researchers
experimented with the Arabic text with feature selection.
The paper concluded that the proposed method outperforms
the SVM itself. The paper [11], proposes Enhanced Cuckoo
Search (ECS) for bloom filter optimization. This is where the
weight of the spam word is considered. It was concluded that
their proposed optimization technique of ECS outperforms
the normal Cuckoo search.

The work in the above research has provided an insight
into hybrid systems as well as optimization techniques. The
bio-inspired techniques show more promising results in terms
of accurately detecting a spam email.

lIl. PROPOSED WORK
This research will experiment Bio-inspired algorithms along
with Machine learning models. This will be conducted on
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different spam email corpora that are publicly available. The
paper aims to achieve the following objectives:

1) To explore machine learning algorithms for the spam
detection problem.

2) To investigate the workings of the algorithms with the
acquired datasets.

3) To implement the bio-inspired algorithms.

4) To test and compare the accuracy of base models with
bio-inspired implementation.

5) To implement the framework using Python.

Scikit-Learn library will be explored to perform the exper-
iments with Python, and this will enable to edit the models,
conduct pre-processing and calculate the results. The pro-
gram scripts will be implemented further with the optimiza-
tion techniques and compared with the base results i.e with
default parameters.

The spam detection engine should be able to take email
datasets as input and with the help of text mining and opti-
mized supervised algorithms, it should be able to classify the
the email as ham or spam. Figure-1 represents the process that
is followed to implement the model.

IV. TOOLS AND TECHNIQUES
Some of the tools and techniques used in this work are
discussed below.

A. WEKA

WEKA is a GUI tool that allows to load a dataset and apply
different functions/rules upon an algorithm [51]. The applica-
tion allows to apply the classification, regression, clustering
algorithms and enable to visualise the data and the perfor-
mance of the algorithm. An ’.arff’ file format of the spam
datasets were fed into the program.

Table-1 provides the average accuracy taken from the
datasets for each algorithm within WEKA. The highest accu-
racy was provided by Multinomial Naive Bayes (MNB),
SMO, J48 and Random Forest. Three Naive Bayes algorithms
were tested using WEKA and MNB was the better amongst
the three.

TABLE 1. WEKA results.

Classifiers Average
IBK 85.79%
OneR 81.91%
Naive Bayes 90.46%
Naive Bayes Multinomial 92.65%
SMO 93.98%
AdaBoost 89.48%
Bagging 89.37%
ZeroR 63.07%
Decision Stump 81.33%
Hoeffding Tree 84.33%
J48 89.53%
Random Forest 93.04%
Random Tree 83.13%
Naive Bayes Multinomial Text 63.07%
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FIGURE 1. Spam detection block diagram.

In this experiment WEKA acted as a black box and pro-
vided the better performing algorithms which were Support
Vector, Random Forest, Naive Bayes and Decision Tree.

Since spam email detection falls into classification cate-
gory, supervised learning method will be used. Supervised
learning is a concept where the dataset is split into two
parts: 1) Training data and 2) Testing data. The main aim
of this learning method is to train a classifier with a given
data and parameters and then predict the outcome with the
testing dataset which will not be known to the program or
classifier [12].

The models will be trained with a training dataset of 60%,
70%, 75% and 80%. Once the model is trained, model will be
provided with the testing dataset which is distributed as 40%,
30%, 25% and 20% respectively with training dataset. This
will provide a better knowledge of what percentage split is
best suited and thus be more efficient to work with majority of
the datasets. This will provide results on classifiers working
best with more or less training data.

B. SCIKIT-LEARN

Scikit-Learn (SKLearn) is an environment that is incorpo-
rated with Python programming language. The library offers
a wide range of supervised algorithms that will be suitable
for this project [13]. The library offers high-level imple-
mentation to train with the *Fit’ methods and ’predict’ from
an estimator (Classifier). It also offers to perform the cross
validation, feature selection, feature extraction and parameter
tuning [14].

C. KERAS

Keras is an API that supports Neural Networks. The API
supports other deep learning algorithms for easy and fast
approach. It offers CPU and GPU running capabilities in
order to simultaneously process the models. Online tutorials
are available for neural network for learning and develop-
ment. Their guide demonstrates the performance optimiza-
tion techniques to utilize GPU and ways to work with RNN
algorithm and other deep learning algorithms [15].

D. TensorFlow
Tensorflow is an end-to-end ML platform that is developed
by Google. The architecture lets a user run the program on
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multiple CPUs and it also has access to GPUs. The website
also provides a learning platform for both beginners and
experts. TensorFlow can also be incorporated with Keras to
perform deep learning experiments [16].

E. PYTHON PLATFORMS
Research was conducted into the different platforms that
could be used for ML program implementation in Python.

1) SPYDER

Spyder is an Integrated Development Environment platform
for Python programming language [17]. Spyder is incorpo-
rated within the Anaconda framework. The software allows
the user to investigate the workings of a program. The pro-
gram is capable to include multiple panels such as ‘console’
where the output can be seen, ‘Variable Explorer’ where the
assignment of the variables can be investigated, ‘Editor’ to
edit the program and other panels such as ‘File Explorer’ and
"History’.

2) JUPYTER NOTEBOOK

This is an open source tool that provides a Python framework.
This is similar to ‘Spyder’ IDE, except this tool lets a user run
the source code via a web browser [18]. Anaconda framework
also offers ‘Jupyter’ to be utilised by the user through the local
server.

F. ONLINE PLATFORMS

Along with the desktop-based platforms, other online plat-
forms that offers additional support are: Google Collabora-
tory and Kaggle. Both platforms are the top ML and DL based
that also offers TPU (Tensor Processing Unit) [19] along with
CPU and GPU. Multiple core servers can also be accessed.
The platforms are cloud-based, and the user’s program is run
until the ‘Runtime’ is ended.

V. MACHINE LEARNING MODELS

The subsections below explain each of the Machine Learning
models that will be implemented to achieve the aim of this
work. The sections are accompanied with mathematical equa-
tions along with the pseudocode algorithms. The algorithms
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define the variables “TrX” as a Training subset of “X”” and
“TeX” as Testing subset.

A. Naive BAYES - MULTINOMIAL

Naive Bayes model is used to resolve classification problems
by using probability techniques. The Naive Bayes algorithm
for this article can be denoted as equation-1 [20]:

(P(WORD|Class) x P(Class))

P(Class|WORD) = PWORD)) (1)

where WORD is (wordy, wordy, ...word,) from within an
uploaded email and ‘Class’ is either ‘Spam’ or ‘Ham’. The
algorithm calculates the probability of a class from the bag
of words provided by the program. Where P(Class | WORD)
is a posterior probability, P(WORD | Class) is likelihood and
P(Class) is the prior probability [21].

If ‘Class’ = Spam, the equation could be rewritten to find
the spam email from the given words, and this can be further
simplified as equation-2:

'L P(word_i|Spam) x P(Spam)

P(Class| WORD) =
P(word_1, word_2, ...word_n)

@)

There are three types of Naive Bayes algorithms: Multi-
nomial, Gaussian and Bernoulli. Multinomial Naive Bayes
algorithm has been selected to perform the spam email iden-
tification because it is text related and outperforms Gaussian
and Bernoulli [22], [23].

Multinomial Naive Bayes (MNB) classifier uses Multino-
mial Distribution for each given feature, focusing on term
frequency. The Multinomial Naive Bayes can be denoted as
equation-3 [23]:

P(pln) o P(p) [ Pllp) 3)

1<k<nd

where the number of token is represented by nd, n is the
number of emails and P(# |p) is calculated by:

__ (count(tx|p) + 1)
P(tk[p) = (count(ty) + V) “

In the equations (3) and (4), P(tk|p) is identified as the
conditional probability for MNB. The # is the spam term
occurrence within an email and P(p) is classed as the prior
probability. 1 and IVI are identified as the smoothing constant
for the algorithm.

To test this algorithm, MNB module was loaded from
the Scikit-learn library. The parameters for this model are
optional. If none is specified, the default values are: Alpha
value set to ‘1.0’ Fit Prior is set to “True’ and Class Prior is
set to ‘None’ [23], [24].

The algorithm-1 shows the pseudocode for Multinomial
Naive Bayes with spam classification where “Tr’ is Training
and “Te” is Testing. The P(#|p) is the estimating/predicting
variable, also known as the conditional probability.
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Algorithm 1: Multinomial Naive Bayes

Initialise Input Variables;
N <« No. of Documents;
X « Datapoints;
y <— Target Inputs;
fori=0; i<TrX; i+ +do
if (i,y) = Spam then
‘ Learn i = Spam;
else
L Learn i = Ham;

for ¢t in testSize // Test sizes = 20, 25,
30 and 40
do
for K in CV do
X_test and y_test = testing size;
X_train and y_train = training size;
fori=0; i <TeX; i+ + do
Calculate f’(tk p);
Calculate the Accuracy;

return 7y ;

B. SUPPORT VECTOR MACHINE

This algorithm plots each node from a dataset within a dimen-
sional plane and through classification technique the cluster
of data is separated by a hyperplane into their respective
groups [25]. The hyperplane can be described as equation-5:

H=VX+c 5)

where c is a constant and V is the vector. The SGD Classifier
was loaded from scikit-learn library, which is the linear model
with ‘Stochastic Gradient Descent (SGD)’, also known as
the optimized version of SVM. This algorithm provides more
accurate results than SVM (SVC algorithm) itself. Disadvan-
tage of working with SVC algorithm is that it cannot handle
a large dataset, whereas SGD provides efficiency and other
tuning opportunities.

The algorithm-2 shows the pseudocode for Stochastic
Gradient Descent.

The model was implemented with ‘Alpha’, ‘Epsilon’ and
‘Tol’ values with default as ‘Hinge’ for loss providing lin-
ear SVM, also known as ’Soft-Margin’ which is easier to
compute [25].

The algorithm uses the learning rate to iterate over the
sample data to optimize the Linear algorithm and it is denoted
by the following equation-6 for the default learning rate as
’Optimal’:

1
alty +1)

where ¢ is the time step which is acquired by multiplying
number of iterations with number of samples (Emails). The
Learning Rate allows implementation of the parameter space

(6)
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Algorithm 2: Stochastic Gradient Descent

Algorithm 3: Decision Tree - CART Algorithm

Initialise Input Variables;

N <« No. of Documents;

X <« Datapoints;

y < Target Inputs;

Initialise Alpha, Epsilon values;

fori=0; i <TeX; i+ + do

Calculate Hyperplane // Equation (5)

Measure the Distance (X, Xj);

for ¢ in testSize // Test sizes = 20, 25,
30 and 40

do

for K in CV do

X_test and y_test z testing size;

X_train and y_train = training size;

Call the SGD function,;

Calculate the Training Error;

Calculate the Rate;

Calculate the Accuracy;

return 7;;

during the training time. The « is represents the regularization
term and #y is a hueristic approach.

C. DECISION TREE CLASSIFIER

The Decision Tree model is based on the predictive method.
The model creates a category which is further distributed into
sub-categories and so on. The algorithm runs until the user
has terminated or the program has reached its end decision.
The model predicts the value of the data by learning from the
provided training data. The longer and deeper the tree implies
it has more complicated rules to be executed.

The algorithm-3 shows the pseudo-code for Decision Tree,
where it terminates at the end of the node for each split of the
tree depth.

Similar to MNB and SGD, Decision Tree (DT) algorithm
was loaded from the Scikit-learn library and it is executed
on the default parameters which are ‘Gini’ for Criterion and
‘best’ for Splitter. The advantage of Gini is that it calculates
the incorrectly labelled data that was selected randomly [26].
This is given by the below equation-7:

n
Gini:Gi=1-Y pip ()
k=1
The second criterion is ‘entropy’ which is based on infor-
mation gain based on the selected attributes and it is calcu-
lated by equation-8 [26]:.

n
Entropy : H; = Z Pa.log2(p k) (®)
p]i{k:;gO
where P is the probability and i is a node from the training
data within both equation (7) and (8).

VOLUME 8, 2020

Initialise Input Variables;
N <« No. of Documents;
X « Datapoints;
y <— Target Inputs;
Ln = Number of Leaves;
D = Tree Depth ;
C = Criterion // (G;) or (H;)
for t in testSize // Test sizes = 20, 25,
30 and 40
do
for K in CV do
X_test and y_test = testing size;
X_train and y_train = training size;
fori <X do
Call DT function;
for j < D do
Calculate the best split;
Predict the class (¢);
Ln++;
For the node: (¢,C) // Use
equation (7) or (8)
return Predicted Class (¢)

Calculate the Accuracy;

D. RANDOM FOREST CLASSIFIER

Random Forest (RF) algorithm can be used for both classi-
fication and regression. The algorithm predicts the classes
by using multiple decision tree, where each tree predicts
the classification class. This is evaluated by the RF model
to select the high number of predicted class as an assigned
prediction [27].

The algorithm-4 explains the workings of the Random
Forest classifier with the Spam Email dataset, where FC is
the outcome predicted from the entire forest.

Equation-7 and equation-8 are also utilised to calculate
the Gini and Entropy for Random Forest (RF) algorithm to
calculate the Criterion.

This module was loaded from Scikit-learn library and it
is based on the depth of the tree and number of DT to be
produced. These are usually considered as the termination
criteria. This means the more the depth and the number
of trees the more the computational time required for the
algorithm.

E. MULTI-LAYER PERCEPTRON (MLP)

The MLP is a feed-forward Artificial Neural Network
(ANN). It is a supervised method which includes non-linear
hidden layers between the input and the output layer. The
algorithm works with the linear activation function on a
training dataset set by default known as Hyperbolic Tan
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Algorithm 4: Random Forest

Algorithm 5: Multi-Layer Perceptron

Initialise Input Variables;
N <« No. of Documents;
X <« Datapoints;
y < Target Inputs;
Ln = Number of Leaves;
D = Tree Depth ;
C = Criterion // (G;) or (H;)
Nt = Number of Trees;
for t in testSize // Test sizes = 20, 25,
30 and 40
do
for K in CV do
X_test and y_test = testing size;
X_train and y_train = training size;
for i < Nt do
fori < Ddo
Randomly select from X;
Split the nodes with C;
Calculate the Predicted ¢ from each tree;
return Predicted from the tree T¢

| Provide the array of DT decision for all trees;

Calculate the prediction from the majority;
| return Predicted from the Forest F¢

(equation-9) [28]:
fO):R" - R° )

where m is the input (spam words in this case) and o is the
number of outputs from the function. The algorithm can have
one or more layers between input and output layer known as
‘Hidden Layer(s)’. The hidden layer accepts the values from
the previous layer and transforms with linear summation,
whereas the ‘Output’ layer provides the output values after
transformation from the previous hidden layer [28].

The algorithm-5 shows the pseudocode for Multi-Layer
Perceptron.

The algorithm uses back-propagation technique to calcu-
late the gradient descent for each variable weight. The algo-
rithm has the ability to learn when it becomes part of one
neuron and one hidden layer of MLP function as indicated in
equation-10.

F ) = Wag(W] x + by) + by (10)

where W, and W are the weights from the input layer and
hidden layer. The Wil becomes the part of n; layers in the
hidden layer [28]. To compare the results of NN and ML
models, the modules were loaded from the Scikit-learn sim-
ilar to the ML models. The default parameter was changed
for hidden layer to lower number of neurons for faster
computation.
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Initialise Input Variables;
N <« No. of Documents;
X « Datapoints;

y <— Target Inputs;

H = No.Hidden Layer;
Nu = No.of Neurons;

A, = Activation;

S = Solver;

for ¢t in testSize // Test sizes = 20, 25,
30 and 40

do

for K in CV do

X_test and y_test = testing size;

X_train and y_train = training size;

Call the MLP Function < H, Nu, Solver ;
Calculate the Error Rate;

Error x Activation;

Calculate the Accuracy;

Vi. PROGRAM STRUCTURE, DATASETS AND
REQUIREMENTS

The Python program will load all the necessary Python
libraries that will assist the ML modules to classify the emails
and detect the spam emails.

A. ADDING CORPUS

This section will load all the email datasets within the
program and distribute into training and testing data. This
process will be accepting the datasets in ’*.txt’ format for
individual email (Ham and Spam). This is to help understand
the real-world issues and how can they be tackled.

B. TOKENIZATION

Tokenization is the method where the sentences within an
email are broken into individual words (tokens). These tokens
are saved into an array and used towards the testing data to
identify the occurrence of every word in an email. This will
help the algorithms in predicting whether the email should be
considered as spam or ham [49].

C. FEATURE EXTRACTION AND STOP WORDS

This was used to remove the unnecessary words and char-
acters within each email, and creates a bag of words for the
algorithms to compare against.

The module ‘Count Vectorizer’ from Scikit-learn assigns
numbers to each word/token while counting and provides
its occurrence within an email. The instance is invoked to
exclude the English stopwords, and these are the words such
as: A, In, The, Are, As, Is etc., as they are not very useful
to classify whether the email is spam or not. This instance is
then fitted for the program to learn the vocabulary [49].
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Once tokenized, the program applies ‘TfidfTransformer’
module to compute the Inverse Document Frequency (IDF).
The most occurring words within the documents will be
assigned values between 0-1, and lower the value of the
word means that they are not unique. This allows the algo-
rithms/modules to read the data [49]. The TF-IDF can be cal-
culated by the Equation-11 where (t, d) is the term frequency
(t) within a document (d):

tf — 1df(t, d) = tf(t, d) x idf(t) an

where IDF is calculated by the Equation-12, given n is the
number of documents:

1df(t) = log(

n
idf(t)

)+1 (12)

D. MODEL TRAINING AND TESTING PHASE

As discussed through the research, supervised learning meth-
ods were used and the model was trained with known data
and tested with unknown data to predict the accuracy and
other performance measures. To acquire the reliable results
K-Fold cross validation was applied. This method does have
its disadvantages such as, there is a chance that the testing
data could be all spam emails, or the training set could
include the majority of spam emails. This was resolved by
Stratified K-fold cross validation, which separates the data
while making sure to have a good range of Spam and Ham
into the distributed set [50].

Lastly, parameter tuning was conducted with the
Scikit-Learn and bio-inspired algorithms approach to try and
improve the accuracy of ML models. This provides a platform
to compare the Scikit-learn library with the bio-inspired
algorithms

E. DATASETS

The project accessed the publicly available datasets and
included each email as an individual text file. The text files
were string based. A list of the few spam email datasets from
the public repository are explained below:

1) Ling-Spam dataset is divided into 10 parts from the
‘bare’ distribution that includes individual emails as
a text file (.txt). This data is not pre-processed, and
it includes numbers, alphabets and characters [29].
Each part was trained and tested to acquire the average
accuracy.

2) Enron dataset includes 6 separate datasets that con-
tain 3000-4000 individual emails as text files. The
dataset includes numbers, alphabets and
characters [30].

3) The PUA dataset is a numerical dataset that includes
sets/combination of numbers characterised as a string.
PU1, PU2 and PU3 are similar to PUA dataset but
include different weights of spam and ham emails and
they are extracted from different users [31]. Folders
include individual emails as a text file. For all PU
datasets, the publisher has replaced the tokens with a
unique combination of numbers to respect their user’s
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privacy. The respective words for these unique numbers
have not been made public, making the process of
removing certain features difficult [32].
From PU1 and PU2 datasets, duplicate emails that were
received were discarded manually. Whereas in PU3 and
PUA, this was conducted with the UNIX command
"diff’. Each of these emails were collected during dif-
ferent lengths of time for both Ham and Spam emails.
4) SpamAssassin dataset is more advanced with header
information such as source or From address, IP address,
return path, message ID and delivery information. Each
individual email within the folder will be converted into
text files [33].
Table-2 presents the spam rate of each of the datasets
that are used within this project along with their published
date [2].

TABLE 2. Datasets.

Name of the | Ref. Spam + Ham = Total | Rate of | Published
Dataset emails Spam | Date
Ling-Spam [29] |481+2412 =2893 17% 2000
PUL [31] |481+618 = 1099 44% 2000
SpamAssassin | [33] 1897+4150 = 6047 31% 2002
PUA [31] |571+571=1142 50% 2003
PU2 [31] 1424579 =721 20% 2003
PU3 [31] 1826+2313 = 4139 44% 2003
Enron 1 — 6] [30] |20170+16545=36,715 |55% 2006
Spam

F. SOFTWARE AND HARDWARE

Python 3.4 or above was used and Anaconda platform seemed
like a good option as it provides the advantage of using
both Spyder and Jupyter Notebook for implementing the
programs.

Some online applications such as Google Collaboratory
and Kaggle can be used to speed up the training and testing
process for the multiple datasets. This can be helpful towards
any NN algorithms that can be implemented.

The project was conducted on a standard laptop, with 8§ GB
RAM and AMD Ryzen 3 3200U (2.60 GHz) processor.

G. LIBRARIES AND MODULES

Scikit-Learn will be used as it offers the majority of
the machine learning libraries and dataset processing
modules.

As per the papers discussed in the related work section,
PSO performed much better among the bio-inspired algo-
rithms. For comparison purposes, the second implementation
of bio-inspired algorithm will be based on human evolution.
Libraries like PySwarms for Particle Swarm Optimisation
and TPOT for Genetic Algorithm will be utilised to optimise
the accuracy of the machine learning algorithms.

VIi. PERFORMANCE MEASURES
There are different performance metrics that were used in this
work as follows.
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HAM | SPAM
HAM TN FP
SPAM FN TP

A. CONFUSION MATRIX
The detection of spam emails can be evaluated by different
performance measures. Confusion Matrix is being used to
visualise the detection of the emails for models. Confusion
matrix can be defined as below:

where [34]:

1) TN = True Negative — Ham email predicted as ham

2) TP = True Positive — Spam email predicted as spam

3) FP = False Positive — Spam email predicted as ham

4) FN = False Negative — Ham email predicted as spam

B. ACCURACY
The research was aimed at finding the highest accuracy for
detecting the emails correctly as ham and spam. The module
from the Scikit-learn library called ‘Accuracy’ helped analyse
the correct number of emails classified as ‘Spam’ and ‘Ham’.
This can be measured by equation-13 below [35]:

(TN + TP)

Accuracy = (13)
(TP + FN + FP + TN)

where the denominator of the equation is the total number of
emails within the testing data.

C. RECALL

The recall measurement provides the calculation of how
many emails were correctly predicted as spam from the total
number of spam emails that were provided. This is defined by
equation-14, where ‘TP + FN’ are the total number of spam
emails within the testing data [35]:

TP
Recall = —— (14)
TP + EN

D. PRECISION
The precision measurement is to calculate the correctly iden-
tified values, meaning how many correctly identified spam
emails have been classified from the given set of positive
emails. This means to calculate the total number of emails
which were correctly predicted as positive from amongst the
total number of emails predicted positive [35]. This is defined
by equation-15:
.. TP
Precision = ——— (15)
TP + FP

E. F1-SCORE
The F-measure or the value of Fy is calculated with the help
of precision and recall scores, where 8 is identified as 1,
Fg or Fy provides the Fl-score. Fl-score is the ‘Harmonic
mean’ of the precision and recall values. This can be defined
by equation-16 [35]:

0+ ﬁz)(precision x recall)

= 16
P (B% x (precision + recall)) (16)
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when the 8 is substituted with the value 1, the formula is
simplified to:

. 2 x (precision x recall) (17

p= (1 x precision + recall)

VIIl. RESULTS OF BASE MODEL ON DATASETS

Stratified K-Fold Cross Validation (SKFCV) was applied to
all the machine learning models. Algorithm-6 represents the
pseudocode for the base models, this was executed with the
default values for parameters explained in section V and V1.

Algorithm 6: Base Model Implementation With SKFCV

Initialise Input Variables;
N <« No. of Documents;
X <« Datapoints;
y <— Target Inputs;
X; = StopwordRemoval
X; = Vectorizer
X = Tf-IDF
Dict < X}
Dict = Pre-Processed data;
Initialise SKF // Stratified K-Fold Cross
Validation
for ¢ in testSize // Test sizes = 20, 25,
30 and 40
do
for K in SKF do
X_test and y_test = testing size;
X_train and y_train = training size;
Calculate the Accuracy;

The visual representation of five models is shown
in Figure-2: ML algorithms, from left: SGD, MNB, REF,
DT and MLP. The figure displays the 4 split sets used for each
classifier (CLF). The selected algorithms have provided 90%
and above accuracy for email detection except RF. This was
applied on the 7 datasets and the average was taken. Amongst
the five algorithm RF has performed poorly and SGD is the
highest performing algorithm.

The respective accuracies for each split set in Figure-2 are
defined in Table-3.

Computational timing depends on the depth of a dataset
and the classification. For base classifiers, the approxi-
mate times are shown below to train for each iteration of
cross-validation for the respective classifiers.

1) Naive Bayes: 0.003 sec to 0.0013 sec approx.

2) Support Vector Machine: 0.040 sec approx.

3) Random Forest: 1.080 sec approx.

4) Decision Tree: 4.06 sec approx.

5) Multi-Layer Perceptron: 8.0 sec approx.

The experiment evaluates that the more the training data,
the better accuracy the testing data provides. The NN model
will later be tested for 75:25 and 80:20 split set with
bio-inspired algorithms.
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FIGURE 2. Stratified K-fold cross validation.

TABLE 3. Stratified K-fold cross-validation - accuracy.

e Split Set

Classifier | .40 | 70:30 | 75:25 | 80:20
SGD [96.79% | 96.80% | 96.98% | 96.92%
MNB | 90.26% | 90.69% | 90.71% | 90.62%
RF | 84.82% | 85.04% | 85.54% | 85.92%
DT | 91.79% | 92.03% | 91.93% | 92.38%
MLP | 95.98% | 95.36% | 96.18% | 96.25%

IX. TUNING OF PARAMETERS

For every model, certain parameters were selected and pro-
vided with a range of possibilities. These parameters are
the ones that have high impact towards detecting the emails
and learning rate. This will then be implemented within
bio-inspired algorithms.

A. SGD PARAMETERS

Hyperparameter tuning the algorithm offers 3 parameters
from the SGD algorithm: Alpha values, Epsilon values and
Tol values for the search space. Values for all three keys
ranged from 0.0001 to 1000 as a dictionary.

o Alpha: The variable could help set the optimal learning
rate. It is also classed as the constant for regularization
term.

« Epsilon: This value determines the learning rate for the
algorithm.

« Tol: This is the criteria for termination.

B. MNB PARAMETERS
The dictionary of parameters provided for the optimization
were values of:

o Alpha: This is used as a smoothing parameter for
Laplace or Lidstone to the raw counts. This parameter
will be passed as a float for PSO. This is combined with
the number of features within the module. The value
ranged from 0.0001 to 1000 as a dictionary

o Fit Prior: This is to learn the class probabilities.
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C. RF PARAMETERS
The dictionary of parameters provided for the optimization
were values of:
o Number of estimators: This states number of trees in the
forest.
o Max depth: This indicated maximum depth of the tree.
o Minimum leaf sample: Specifies the minimum number
of leaves at the leaf node.
o Criterion: This is in a string format. This is a tree spe-
cific parameter that can be ‘Gini’ for Gini impurity or
‘Entropy’ for information gain.

D. DT PARAMETERS
The dictionary of parameters provided for the optimization
were values of:

o Splitter: This is a string-based parameter which can be
either ‘Best’ or ‘Random’. This specifies the strategy for
the split at a node.

o Max Depth: This will specify the depth of the tree.

o Criterion: This measures the quality of the split.

o Minimum leaf sample: This is passed as an integer to
specify the minimum number of samples that are neces-
sary at the leaf node.

E. MLP PARAMETERS
The dictionary of parameters provided for the optimization
were values of:

« Hidden layer sizes: Number of neurons to be considered
by the classifier. This is where each feature is intercon-
nected with each neuron.

o Alpha: This is a regularization parameter. The value was
ranged from 0.001 to 0.01. These values were less than
the default value.

o Solver: According to the Scikit-learn documentation,
the solver when set to ‘LBFGS’, the module’s perfor-
mance and speed can increase on small datasets.

Due to the computational time required for the MLP clas-
sifier, for this project purpose, the optimisation was done
on ‘5’ hidden layers and the solver set to ‘LBFGS’ which
is an optimizer that can converge fast and provide better
performance. The greater number of neurons added to the
hidden layer, the more time it will require to train the
model [28].

X. BIO-INSPIRED OPTIMIZATION ALGORITHMS

There are two bio-inspired optimization approaches that are
discussed here which helped to improve the results of the
experiments, i.e. Particle Swarm Optimisation and Genetic
Algorithm.

A. PARTICLE SWARM OPTIMISATION

The PSO is based on the swarming methods observed in
fish or birds. The particles are evaluated based on their best
position and overall global position. Particles within a search
space are scattered to find the global best position.
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The Pyswarms library offers different calculations and
techniques for PSO to be used with an ML model such as
feature subset selection or parameter tuning optimization.
As researched in the previous sections, the feature selection
can reduce feature space but can also discard some features
that can be useful during the classification. Therefore, PSO
will be used to tune and find the hyper-parameter for a given
ML/NN model.

The PSO will use the ‘GlobalBestPSO’ from the
‘pyswarms.single.global_best’ module. This will
then use the ‘optimize’ method with an objective function
and number of iterations to run the PSO before terminating.
This will then provide the ‘Global best cost” and ‘Global Best
position” [36].

The ‘global_best’ module and equation-18 denotes
the updating of each particle position:

xi(t + 1) = x;(t) + vi(r + 1) (18)

where x; is the position of the particle, ¢ is the current times-
tamp and 7 4 1 is the computed velocity which gets updated.
The velocity (v;) can be further defined as below:

vii(t + 1) =w x v(t) + c1rj(O) ()
—x;i(0)] + cargi(OF() — x5 (19)

where 7| and r; are the random numbers, ¢ is the cognitive
parameter and c; is the social parameter. These parameters
control the behaviours of the particle. The w is the inertia
parameter that controls the swarm’s movements, which is the
important parameter and hence the value is bigger than the
other parameters. The parameters for cognitive and inertia
parameter remained with default value as the demonstrated
algorithm in ‘Optimizer’ package [36].

The social parameter was increased by 0.5. The parameters
passed onto the Global_best module are:

o Number of particles: 10; this was considered by the
examples set within the Pyswarms library.

o Dimension: This is the number of dimensions within
a given space. The number of parameters for the base
algorithms such as Alpha, Tol, Epsilon etc.

e Options: C1 = 0.5, C2 = 0.7 and W = 0.9. These
parameters have effect on the computation time.

o Bounds: This is a tuple, obtained through the dimen-
sion. Higher and lower value within the base algorithm’s
parameters will be considered.

The option setting of coefficients is important. The smaller
the number, the distance of the particle movement will be
small too. This can take more time in computing the models.

Algorithm-7 shows the pseudocode for Particle Swarm
Optimization. This is implemented on top of the base model
in algorithm-6.

Figure-3 shows the visual representation of PSO algorithm
accuracies for the 5 models/classifiers. The accuracy score
was taken from the average of all seven datasets. The highest
accuracy of 98.47% was provided by Naive Bayes on 80%
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Algorithm 7: PSO Implementation

Initialise Input Variables;
N <« No. of Documents;
X « Datapoints;
y <— Target Inputs;
X; = StopwordRemoval;
X; = Vectorizer;
X = Tf-IDF;
Dict < X;1
Dict = Pre-Processed data;
Initialise ML Parameters; // This will include
the key and the values
Declare ML Algorithm; // MNB, SGD, DT,
RF and MLP
Def PSO:
Initialise PSO parameters;
Cl1=0.5;// Cognitive Parameter
C2=0.7;// Social Parameter
W=09;// Weight
N; = NumberOfIteration;
N, = NumberOfParticles;
Calculating the Dimension;
(Key,Value) <— Parameters; // The
parameters of the algorithm i.e
MNB, SGD
Call PSO G_Best algorithm; // Global Best
PSO Module < Dimension, C1, C2, w, N;, Np;
Call Objective Function Or;
PSO « Or;
Calculate the Best_Position of the Swarm;
Best_Position < N;;
Calculate the Measures;
Measures <— Best_position, TrData, TeData;
| return Accuracy
Def Oy:
fori <N, do
Initialise StratifiedKF;
Calculate the Score;
return The array of accuracies A,
// conducted with the
dimensions and the Key and
Value provided

for t in test size do

X_test and y_test = testing size;

X_train and y_train = training size;

| Call the function PSO (training and testing data);

training data and 20% testing data. Overall, MNB provided
higher accuracy from all the other classifiers.

The respective accuracies for each split set in the above
figure-3 are defined in Table-4.

The entire program took nearly a day for all 5 clas-
sifiers to run on different platforms. The computational
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FIGURE 3. Particle swarm optimization - accuracy.

TABLE 4. PSO - accuracy.

Split Set

Classifier | ¢).40 | 70:30 | 75:25 | 80:20
SGD | 97.37% | 97.54% | 97.21% | 97.64%
MNB | 98.41% | 98.38% | 98.43% | 98.47%
RF  |91.94% |91.37% | 91.62% | 90.81%
DT  |91.37% | 91.65% | 92.29% | 92.28%
MLP - - 197.11% | 97.18%

time required for the runs depending on the dataset are
as follows:

1) Multinominal Naive Bayes: 5 mins approx.

2) Support Vector Machine: 5 mins approx.

3) Random Forest: 2 mins to 15 mins approx.

4) Decision Tree: 2 mins to 25 mins approx.

5) Multi-Layer Perceptron: 25 min to 1hour approx.

In terms of datasets, the highest achieving algorithm is
MNB with 70:30 split set on SpamAssassin dataset. The
parameters chosen were: Alpha: ‘0.0004940843999793119°
and Fit Prior: ’false’.

The highest occurred accuracy from the given datasets
along with the classifier (CLF), Test Size and the param-
eters that were selected by the PSO algorithm is shown
in table-5.

Tables 6, 7, 8 and 9, represent the F1-score, Precision and
Recall in comparison to Accuracy. It shows the average of
performance measurements for the ML algorithms applied on
7 datasets. The MNB algorithm was the one which provided
the best performance amongst other ML algorithms for all
four different split sets. The percentage calculated are taken
from the average of all 7 datasets.

From these tables, 98% of the emails were correctly
detected by MNB on the average. The average precision was
97.50% and average recall was 97.40% and average F1-score
was 97.50%.

The highest accuracy noted was 98.47% achieved by
MNB, providing precision of 97.23%, recall of 97.86%
and F1-Score of 97.54%. This was achieved with training
size 80% and Testing size 20%.
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TABLE 5. PSO selected values.

CLF | Dataset Test Acc.
Size
MNB | SpamAssassin | 70:30

Parameters

99.89% | Alpha:
0.0004940843999793119,
Fit Prior: false

SGD | SpamAssassin | 80:20 | 99.67% | Alpha:
0.00011028738827772605,
Epsilon:
0.0008410556148690041,
Tol: 0.0004946026859321408
RF | SpamAssassin | 60:40 97.75% | No. of estimators: 5, Max
Depth:  7.154304302293813,
Min leaf sample: 1, Criterion:
’entropy’

DT | SpamAssassin | 80:20 [99.33% | Splitter: ~ ’best’,  Criterion:
“entropy’, Max Depth:
6.910921197436718, Min
Leaf Sample: 2

99.67% | Hidden Layer Size: (5,), Al-
pha: 0.005177077568305584,
Solver: ’1bfgs’

MLP | SpamAssassin | 80:20

TABLE 6. PSO 60:40 split set.

Classifier | Accuracy | F1-score | Precision | Recall
SGD 97.37% | 95.37% | 97.18% |93.83%
MNB 98.41% | 97.80% | 97.55% |97.55%
RF 91.94% | 79.57% | 94.23% | 74.76%
DT 91.37% | 85.16% | 88.10% |83.24%

TABLE 7. PSO 70:30 split set.

Classifier | Accuracy | F1-score | Precision | Recall
SGD 97.54% | 96.21% | 97.24% |95.20%
MNB 98.38% | 97.51% | 97.82% |97.31%
RF 91.37% | 77.67% | 96.95% |70.36%
DT 91.65% | 86.64% | 87.81% |85.96%

TABLE 8. PSO 75:25 split set.

Classifier | Accuracy | Fl-score | Precision | Recall
SGD 97.21% | 94.79% | 97.11% |93.11%
MNB 98.43% | 97.60% | 97.73% |97.24%

RF 91.62% | 77.88% | 96.58% |92.51%
DT 92.29% | 87.48% | 88.27% | 88.04%

TABLE 9. PSO 80:20 split set.

Classifier | Accuracy | F1-score | Precision | Recall
SGD 97.64% | 95.78% | 96.80% |95.59%
MNB 98.47% | 97.54% | 97.23% |97.86%
RF 90.81% | 74.79% | 96.11% |66.49%
DT 92.28% | 86.71% | 88.07% |86.45%

B. GENETIC ALGORITHM

The GA algorithm is an evolutionary algorithm based on
Darwinian natural selection that selects the fittest individual
from the given population. This involves the principle of
variation, inheritance and selection. The algorithm maintains
a population size and the individuals have a unique number
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(Chromosomes) that are binary represented. The algorithm
iterates through a fitness function where best individuals are
selected for reproduction of the offspring. The higher the
fitness, the higher the probability [8].

Implementation of the GA was conducted with the help of
TPOT library. The program selects the best parameters from
a given dictionary of parameters. The TPOT classifier is then
trained with cross validation. The parameters given to the
TPOT are as follows [37]:

o Generation: Number of times the pipeline will conduct
the optimization process. The default value is 100. The
program has set this parameter as ‘10’.

« Population size: Number of individuals participating for
Genetic programming within each generation. Default is
100. The program has set this parameter as ‘40’

« Offspring size: Offspring to be produced in each genera-
tion. Default is 100. The program has set this parameter
as ‘20’.

The program runs for 10 generations with 40 population
size and 20 offspring production. This means 400 (10 x 40)
hyperparameter combinations will be evaluated before termi-
nating for each generation. Each pipeline will be evaluated
with 10-fold cross validation i.e. 400 x 10. Once the TPOT
classifier is terminated, it provides the best pipeline param-
eters. The entire pipeline will be evaluated [(Generation X
lambda) + Population size] = 240 times, where lambda is
Offspring size. If no Offspring size is provided the pipeline
will evaluate by substituting population as ‘lambda’.

The mutation rate and the crossover rate were set as default.
The mutation rate is 0.9, which is the changes in the parameter
value. The crossover rate is 0.1, which is the percentage of the
individuals required from the population to create offspring.
The TPOT warns that ‘Mutation rate 4 crossover rate’ should
not exceed 1.0.

Algorithm-8 shows the pseudocode for Genetic Algorithm.
This is implemented on top of the base model in algorithm-6.

The Figure-4 shows the visual representation of GA algo-
rithm accuracies for the 5 classifiers.

The respective accuracies for each split set in the figure-4
are defined in Table-10.
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FIGURE 4. Genetic algorithm - accuracy.
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Algorithm 8: GA Implementation

Initialise Input Variables;

N <« No. of Documents;

X « Datapoints;

y <— Target Inputs;

X; = StopwordRemoval;

X; = Vectorizer;

X = Tf-IDF;

Dict < X;

Dict = Pre-Processed data;

Initialise ML Parameters; // This will include
the key and the values

Declare ML Algorithm; // MNB, SGD, DT,
RF and MLP

Def GA:

Initialise GA parameters;

G = GenerationSize;

P = PopulationSize;

O; = OffSpringSize;

M = MutationRate;

C = CrossoverRate;

K = StratifiedKF; // Cross Validation

GA(TPOT) Module < G, P, O,, M, C;

Calculate the Survivor of the Swarm,;

for G in Generation do

for P in Population do

fori < K do
Survival < Calculate the Fitness;
Select two Individual;
Produce OffSpring < Oy;
Mutate <— OffSpring, M;
return KScore

Calculate Parameters;

L return Parameters

Calculate the Measures;

Measures < Parameters, TrData, TeData;
| return Accuracy

for ¢ in test size do

X_test and y_test = testing size;

X_train and y_train = training size;

| Call the function GA (training and testing data);

The computational time required for the runs depending on
the dataset is given as:

TABLE 10. GA - accuracy.

Split Set
60:40 | 70:30 | 75:25 | 80:20
SGD  [96.92% | 97.37% | 97.39% | 97.77%
MNB | 98.27% | 98.43% | 98.40% | 98.47%
RF 93.11% | 93.69% | 93.72% | 94.36%
DT 93.50% | 92.76% | 93.27% | 93.42%
MLP - - 97.02% | 96.39%

Classifier
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1) Mutinomial Naive Bayes: 12 mins approx.

2) Support Vector Machine: 15 mins approx.

3) Random Forest: 3 mins to 20 mins approx.

4) Decision Tree: 15 mins to 40 mins approx.

5) Multi-Layer Perceptron: 1 hour to 2 hours approx.

Table-11 shows the output for every classifier that achieved
highest accuracy, which is similar to that conducted with
PSO. The highest achieving accuracy of 100% was by MNB
on 80:20 split set with SpamAssassin dataset. The parameters
chosen were: Alpha: 0.01, Fit Prior: ’false’.

TABLE 11. GA selected values.

CLF | Dataset Test Acc. Parameters
Size

MNB | SpamAssassin | 80:20 | 100%

Alpha: 0.01, Fit Prior: "false’
SGD | SpamAssassin | 80:20 | 99.83% | Alpha: 0.0001, Epsilon: 1.0,
Tol: 0.1

RF | SpamAssassin | 75:25 | 98.54% | Criterion:  ’entropy’, Max
Depth: 30, Min Leaf Sample:
1, No. of estimators: 25

DT | SpamAssassin | 80:20 [ 99.33% | Criterion: ~ ’entropy’, Max
Depth: 15, Min Leaf Sample:
1, Splitter: "best’.

MLP | SpamAssassin | 75:25
and
80:20

99.33% | Alpha: 0.001, Solver: ’Ibfgs’.

Tables 12, 13, 14 and 15, represent the F1-score, Precision
and Recall in comparison to Accuracy when the Genetic
Algorithm (GA) is applied on the machine learning (ML)
algorithms. It shows the performance measurements for the
ML algorithms. The MNB algorithm was the one to provides
the best performance amongst other ML algorithms for all

TABLE 12. GA 60:40 split set.

Classifier | Accuracy | F1-score | Precision | Recall
SGD 96.92% | 95.27% | 96.59% |94.13%
MNB 98.27% | 97.32% | 97.38% | 84.63%
RF 93.11% | 83.13% | 96.51% |77.16%
DT 93.50% | 88.42% | 90.02% | 86.96%

TABLE 13. GA 70:30 split set.

Classifier | Accuracy | F1-score | Precision | Recall
SGD 97.37% | 95.61% | 96.98% |94.52%
MNB 98.43% | 97.64% | 97.76% |97.61%
RF 93.69% | 85.83% | 97.00% |80.11%
DT 92.76% | 88.25% | 89.34% |87.48%

TABLE 14. GA 75:25 split set.

Classifier | Accuracy | Fl-score | Precision | Recall
SGD 97.39% | 95.68% | 97.48% |94.03%
MNB 98.40% | 97.57% | 98.09% |97.11%

RF 93.72% | 85.73% | 97.25% |80.43%
DT 93.27% | 88.72% | 90.68% |87.55%
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TABLE 15. GA 80:20 split set.

Classifier | Accuracy | F1-score | Precision | Recall
SGD 97.77% | 96.71% | 97.61% |95.97%
MNB 98.47% | 97.67% | 98.01% |97.59%
RF 94.36% | 87.42% | 97.79% | 81.74%
DT 93.42% | 89.54% | 91.07% |88.51%

four different split sets like it did with PSO. The percentages
shown are calculated from the average of all 7 datasets.

From these tables, 98% of the emails were correctly
detected by MNB on the average. The average precision
was 97.50%, average recall was 93.00% and average F1-score
was 97.00%.

The highest accuracy was 98.47% achieved by MNB, pro-
viding precision of 97.79%, recall of 81.74%, and F1-Score
of 87.42%. This was achieved with training size 80% and
Testing size 20%.

XI. RESULTS OF OPTIMIZED CLASSIFIERS ON DATASETS
There are two types of spam email dataset being used for this
project, alphabetic-based and numeric-based files. These are
described in table-16.

TABLE 16. Dataset type.

Sr.No | Alphabetical Based | Numerical Based
1) Ling-Spam PUIL
2) Enron Spam pPU2
3) SpamAssassin PU3
4) - PUA

Each of the four machine learning models/classifiers were
tested with the average taken from the alphabetical datasets
and compared with the average taken from the numerical
datasets.

Figure-5 shows the split between the two types of dataset,
namely numerical and alphabetical. The algorithm SGD pro-
vided the highest accuracy for alphabet-based datasets. Even
though the accuracies for the numerical datasets are low,
the improvement is much better than the base algorithm
compared to the alphabet-based dataset.

SGD

100.00%
99.00% o

9, REE SR Bl R3T
oo, BB3 3Ke 8rs ¥35
T00% oy B8 838 38 -
96.00% £ 5% _o¥ _If
95.00% ggg;.,\ﬂ se s 22 §gé‘§
94.00% =52 S°8 S8% &
93.00% 3 ¢ g - -

3 (]
92.00%
91.00%

90.00%
60:40 70:30 7525 80:20 60:40 70:30 75:25 80:20

Alphabetical Numerical
Base mPSO =GA

FIGURE 5. Stochastic gradient descent alpha/num comparison.
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Figure-6 shows the performance of the MNB algorithm
with both type of datasets. The algorithm performed similarly
to SGD. The accuracy is higher for the alphabet-based dataset
than the numerical dataset.

MNB
100.00%
2R 2R B 2R e s &
o500 B8 85 53 59 §_.§ 3§§ §§ Eé
B B B B o e B
90.00% 3 = & =
" X B B I B R B
8500% B & 2 8 > 5 5 >
@ 3 3 &
80.00%
75.00%
70.00%

60:40 70:30 75:25 80:20 60:40 70:30 75:25 80:20
Alphabetical
Base uPSO mGA

Numerical

FIGURE 6. Multinomial Naive bayes alpha/num comparison.

Both MNB and SGD algorithms worked well for numerical
and alphabet-based datasets with PSO and GA optimization.
The accuracy is higher on the alphabet-based datasets for both
algorithms. Split set 75:25 and 80:20 have worked better than
the split set 60:40 and 70:30.

Figure-7 shows the performance of RF algorithm between
the numerical and alphabetical datasets. This tree-based algo-
rithm seems to have worked well with the numerical datasets
in terms of accuracy and improvement.

RF
100.00%
95.00% o
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I e 2 ~ ] 3 =)
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3 3 £ & b3
75.00%
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60:40 70:30 75:25 80:20 60:40 70:30 75:25 80:20
Alphabetical
Base "PSO =GA

Numerical

FIGURE 7. Random forest alpha/num comparison.

Figure-8 shows the performance of DT algorithm. Similar
to RF, the DT has worked better with numerical in terms
of improvement. Whereas for alphabetical, there is very less
improvement but higher accuracy.

The tree-based algorithms (Figure-7 and Figure-8) have
performed better with GA optimization than the PSO on both
type of datasets.

For Neural Networks, the implementation with the PSO
algorithm took more than 7 hours for 5/25 iterations to be
completed for one split set with 100 neurons. Since the
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FIGURE 8. Decision tree alpha/num comparison.

MLP classifier was taking more power, the algorithm was
distributed between three platforms 1) Kaggle, 2) Google
Collaboratory and 3) standard PC. The number of neurons
were reduced to ‘50’ to acquire an idea of timing for the run.
This time the algorithm took about a minimum of 6 hours
to complete one split set. Hence, at the end the classifier was
run with 5 Neurons providing some improvement and quicker
completion.

The MLP classifier was experimented with the optimiza-
tion techniques by integrating with PSO and GA. The classi-
fier was testing with 75:25 and 80:20 split sets, as these were
the highest providing accuracies for ML models/classifiers.
The alphabet-based dataset performed much better than the

Numerical dataset as shown in Figure-9.
97.50%

MLP

98.00%

97.33%
97.57%

96.76%

95.51%

97.00%
96.50%
96.00%
95.50%
95.00%
94.50% I
94.00%

7525 80:20 7525 80:20
Alpha MNum
mDefaultModel mPS0 mGA

FIGURE 9. Multi-layer perceptron alpha/num comparison.

Xil. EVALUATION AND COMPARISON
The evaluation and performance comparison on the work is
discussed in this section.

A. SPLIT SETS

Evaluating all the split sets for training and testing data on all
seven datasets, sizes 72:25 and 80:20 were the top two splits
to provide better accuracy and showed improvement. This
could vary on the dataset size and the information separated
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TABLE 17. SpamAssassin dataset.

GSCV | RSCV
99.50% | 99.66%

Classifier | Base PSO GA
SGD  99.28% [99.67% | 99.83%

MNB | 89.28% | 99.83% | 100.00% | 99.66% | 99.66%
RF 89.25% | 97.33% | 98.17% |98.33% | 96.17%
DT 98.47% | 99.33% | 99.33% | 98.83% | 99.00%

MLP |99.35% | 99.67% | 99.33% - -

TABLE 18. Enron spam dataset.

Classifier | Base PSO GA GSCV | RSCV
SGD  [99.12% | 99.20% | 99.21% | 99.17% | 99.14%
MNB | 93.26% | 98.58% | 98.60% | 99.52% | 98.52%
RF 80.88% | 88.45% | 94.05% | 94.76% | 94.27%
DT 96.05% | 93.62% | 96.07% | 95.50% | 94.93%
MLP |98.12% | 99.18% | 99.05% - -

during the split. This proves that the higher the rate of train-
ing data than testing data, better the performance achieved.
This is a good sign, since when considered as a real-world
example, the models will have bigger weight for training data
than testing.

B. EXPERIMENTAL RESULTS - ACCURACY

According to the experiments, PSO and GA have improved
the accuracy of all five models. The Multinomial Naive
Bayes (MNB) is the algorithm that has performed better
than all the other algorithms. Comparing across the differ-
ent types of datasets, Enron, SpamAssassin and Ling-Spam
dataset provided more depth by eliminating certain fea-
tures through the emails, hence, allowing the optimization
techniques more search space. But the numerical dataset
(PU1, PU2, PU3 and PUA) were very restricted, even though
they successfully provided accuracy improvements on some
split sets.

Taking the individual datasets into account, the SpamAs-
sassin dataset performed very well with Naive Bayes and
Genetic Algorithm. Table-17 shows the accuracy comparison
for SpamAssassin dataset on Machine Learning models for
80:20 split set. The table also compares with the optimiza-
tion models that is provided by the Scikit-learn library. Grid
Search CV (GSCV) and Random Search CV (RSCV) were
both implemented within the base model and were loaded
from the Scikit-learn library.

In comparison to alphabetical datasets and numerical
datasets, the tables 18, 19 and 20 show the accuracy achieved
for 80:20 split set.

Taking Enron Spam dataset into account, it was the
second-best corpus to work with followed by
Ling-Spam.

An average of all four PU datasets were taken into
consideration and PU3 dataset provided better results and
the highest accuracy amongst all four and that is shown
in table 20.

Even though computational cost is low for PSO providing
quick results than GA, GA has provided better results for
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TABLE 19. Ling-spam dataset.

Classifier | Base PSO GA GSCV | RSCV
SGD  [97.82% | 98.11% | 98.28% | 98.79% | 98.79%
MNB | 84.65% | 98.63% | 98.45% | 99.48% | 98.79%
RF 87.22% | 89.45% | 87.26% | 92.59% | 89.84%
DT 92.56% | 90.01% | 91.90% | 92.25% | 93.63%
MLP | 95.06% | 93.46% | 94.32% - -

TABLE 20. PU3.

Classifier | Base PSO GA GSCV | RSCV
SGD  [95.60% | 96.73% | 96.37% | 97.94% | 96.61%
MNB | 97.87% | 97.94% | 97.94% | 99.03% | 98.42%
RF 81.76% | 85.17% | 96.37% | 95.64% | 95.03%
DT 92.42% | 92.13% | 92.74% | 91.76% | 92.00%
MLP | 97.42% | 97.22% | 97.46% - -

some ML algorithms. The PSO had very less parameters to
be considered for each algorithm i.e C1, C2 and W, whereas
GA initiated the mutation and crossover of the original popu-
lation. The MNB performed better once it was tuned automat-
ically by bio-inspired algorithms and it predicts very highly
with text-based datasets as it uses the feature vectors. Hence
MNB with GA achieved good results overall for the spam
datasets.

Table-21 shows the comparison of this work with simi-
lar work of other researchers. The table includes 15 addi-
tional papers similar to our paper. Some of the research
work have defined additional measurements with accu-
racy. Majority of our work when compared to the oth-
ers, provided either better accuracy or similar scores. The
table displays the highest accuracies based on the datasets
for our work and this is presented at the bottom of the
table.

Xill. FUTURE IMPLEMENTATION AND
RECOMMENDATION

We plan to further carry out the machine learning algorithms
to optimize and compare with different bio-inspired algo-
rithms such as Firefly, Bee Colony and Ant Colony Opti-
mization as researched in the previous sections. We could also
explore the Deep learning Neural Network with PSO and GA
by exploring different libraries such as TensorFlow’s DNN
Classifier or similar.

We found that the Neural Network algorithm could
have worked better with more dimension like providing
broader range of values for learning rate, activation, solver,
and alpha. If this project is taken further, implementa-
tion for MLP could be done through Keras or TensorFlow
with GPU application. This will allow the user to input
other parameters and a range of possibilities as their key
values.

The user can consider implementing the PSO objective
Function with RSCV to compare the difference for accuracy
improvement. The PSO and GA can provide better accuracies
by incorporating NLP techniques.
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TABLE 21. Comparison of our work with other works.
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Author Name

Dataset Used

Classifier / Optimization

Performance achieved

[3] Awad (2011)

[4] Mohammed, et al. (2013)

[6] Agarwal & Kumar (2018)

[8] Taloba & Ismail (2019)

[38] Shams & Mercer (2013)

[39] Kumareson (2016)

[39] Kumareson (2016)

[39] Kumareson (2016)

[39] Kumareson (2016)

[40] Faris, et al. (2016)

[41] Temitayo et.al (2012)
[42] Alghoul et al. (2018)
[43] Rathi & Pareek (2013)
[44] Gomes et al. (2017)

[45] Yasin & Abuhasan (2016)

[46] Yiiksel et al. (2017)

[47] Sharma et al. (2013)

[48] Akinyelu et al. (2014)

Our work (Gibson, et al.)

Our work (Gibson, et al.)

Our work (Gibson, et al.)

Our work (Gibson, et al.)

Our work (Gibson, et al.)

Our work (Gibson, et al.)

Our work (Gibson, et al.)

SpamAssassin

Email-1431

Ling-Spam

Enron

Ling-Spam

Ling-Spam

Enron

Spam Assassin

PU1

Spam Assassin

Spam Assassin

SpamBase

Enron Dataset

Custom
SpamBase

SpamAssassin and
Phishing Corpus
Ling-Spam

Enron

SpamAssassin

PU1

PU2

PU3

PUA

Naive Bayes

Naive Bayes

PSO - Naive Bayes

GA -DT

Bagged RF

GA-SVM

GA-SVM

GA-SVM

GA-SVM

PSO - RF

GA-SVM

ANN with Feed-Forward
Backpropagation
Random Tree

Hidden Markov Model
J48, Bayes Net, SVM,
MLP and Random For-
est.

SVM

Random Committee

Random Forest

GA-SGD

GA-SGD

GA-MNB

GA-MNB

GA-MNB

GA-MNB

GA-MNB

Accuracy = 99.46%,
Precision = 99.66%,
Recall = 98.46%

Accuracy = 85.96%

Accuracy = 95.50%,
Precision = 96.42%,
Recall = 94.50%,

F-measure = 95.45%

Accuracy = 95.50%,
Precision = 95.50%,
Recall =97.20%,

F-measure = 96.30%

Accuracy = 95.56%

Accuracy = 94.69%,
Precision = 98.52%,
Recall =20.12%

Accuracy = 93.65%,
Precision = 96.24%,
Recall = 23.54%

Accuracy = 94.55%,
Precision = 99.65%,
Recall =21.98%

Accuracy = 96.25%,
Precision = 97.02%,
Recall = 18.78%

Accuracy = 97.92%
Accuracy = 93.50%
Accuracy = 85.31%
Accuracy = 99.72%
Accuracy = 91.28%

Accuracy = 99.10%

Accuracy = 97.60%
Accuracy = 94.28%
Accuracy = 99.70%

Accuracy = 98.77%,
Precision = 100.00%,
Recall =94.21%

Accuracy =99.21%,
Precision = 98.68%,
Recall = 99.54%

Accuracy = 100.00%,
Precision = 100.00%,
Recall = 100.00%
Accuracy = 99.08%,
Precision = 99.31%,
Recall = 98.63%

Accuracy =97.89%,
Precision = 90.62%,
Recall = 100%

Accuracy = 97.04%,
Precision = 98.61%,
Recall = 96.74%

Accuracy =97.81%,
Precision = 97.76%,
Recall = 96.46%
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XIV. CONCLUSION

The project successfully implemented models combined with
bio-inspired algorithms. The spam email corpus used within
the project were both numerical as well as alphabetical.
Approximately 50,000 emails were tested with the proposed
models. The numerical corpuses (PU), had restrictions in
terms of feature extraction as the words were replaced by
numbers. But the alphabetical corpuses performed better
in terms of extraction of the features and predicting the
outcome.

Initially, WEKA [51] acted as a black box that ran the
datasets on 14 different classification algorithms and pro-
vided the top 4 algorithms: Multinomial Naive Bayes, Sup-
port Vector Machine, Random Forest and Decision Tree.
These algorithms were then tested and experimented with
Scikit-learns library and its modules. This resulted in upgrad-
ing the SVM module with SGD classifier, which acts the same
as SVM but performs better on the large datasets. SGD was
implemented using Python and experimented with feature
extraction and stop words removal along with converting the
tokens for the algorithms to process.

Genetic Algorithm worked better overall for both
text-based datasets and numerical-based datasets than PSO.
The PSO worked well for Multinomial Naive Bayes and
Stochastic Gradient Descent, whereas GA worked well for
Random Forest and Decision Tree. Naive Bayes algorithm
was proved to have been the best algorithm for spam detec-
tion. This was concluded by evaluating the results for both
numerical and alphabetical based dataset. The highest accu-
racy provided was 100% with GA optimization on ran-
domised data distribution for 80:20 train and test split set
on SpamAssassin dataset. In terms of F1-Score, precision
and recall, Genetic Algorithm had more impact than PSO on
MNB, SGD, RF and DT.
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