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ABSTRACT This article first defines a hidden Markov linear regression model for the purpose of further
studying the mutual transformation between different states in the linear regression model, and the regression
relationship between the dependent variable and the independent variable in each state. And then, K-means
clustering analysis methods are used to identify the hidden states of observed data, and the maximum likeli-
hood estimation of the hidden state transition probability matrix elements is obtained by using the maximum
likelihood estimation method, and parameter estimation of unknown parameters in linear regression model is
also presented by using the least squares method. Finally, the observation vector set is generated according to
the defined model, and the empirical simulation demonstrates that the parameter estimation method shown
in this work is reliable.

INDEX TERMS Hidden markov model, linear regression model, cluster analysis, parameter estimation.

I. INTRODUCTION
In the 19th century, when the well-known British biologist
and statistician Galton studied the genetic laws of parent
height and the height of their children, he established an
empirical straight-line equation for the height of an adult
child about the average height of the parent, and named it
as regression equation. After more than 100 years of devel-
opment and evolution, regression analysis has become to
be an important mathematical method and has been widely
studied and applied in many disciplines, such as biological
signal analysis [1], marine biological optical relationship
reasoning [2], etc. The essence of regression analysis is a
statistical analysis method of the quantitative change rule
between multiple variables with related relationships, and
then according to a mathematical model, the value of the
independent variable is used to estimate or predict the pos-
sible value of the dependent variable. According to different
mathematical models, regression analysis can be divided into
linear regression models and nonlinear regression models.

Hidden Markov Model (HMM) is used to describe a
Markov process. Although the state of the hidden Markov
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model cannot be directly observed, it can be observed through
the sequence of observation vectors, and each observation
vector is represented by various probability density distribu-
tions in various states, and each observation vector is gen-
erated by a state sequence of the corresponding probability
density distributions. Therefore, the Hidden Markov Model
is a double random process, it has a certain number of hidden
Markov chains and a set of display random functions, its
research goal is to infer unobservable state transition infor-
mation and distribution information in each state based on
the information of observed variables [3], which in recent
years has beenwidely used in wearable device data identifica-
tion [4], SDN network early data streammatching [5], speech
recognition [6], malfunction diagnosis [7], gene recogni-
tion [8], etc., and thereby providing us a series of research
results.

Due to the good application effect of hidden Markov
model in many fields mentioned above, many researches
have paid their attention to Hidden Markov model. Yu used
EM algorithm and formard-backward recursive algorithm to
infer hidden Markov model [9]. Song et al studied the semi
parametric hidden Markov model with latent variables by
Bayesianmethod [10]. Liu et al. used reversible jumpMCMC
algorithm to choose unknown number of hidden states in
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hidden Markov structural equation model [11]. Du investi-
gates an adaptive sliding-mode controlled design problem
for a class of Markov jump system with actuator faults [12].
Li et al. use homogenous polynomial approach to investigate
Markovian jump system subjected to time-varying delays and
infinite distributed delays [13].

Based on the existing research results of linear regres-
sion model and hidden Markov model, this article further
studies the hidden Markov linear regression model with a
fixed number of hidden states. For example, it is well known
that family income has a linear correlation with various
consumption expenditures, and a multiple linear regression
model of income and various consumption expenditures can
be established. However, the macro economic situation is
divided into inflation and deflation, and the consumer mar-
ket is divided into consumption upgrade and consumption
degradation. When the macro economy is in two differ-
ent states with inflation and deflation, and the consumer
market is in two different states with consumption upgrade
and consumption degradation, the regression relationship
between the dependent and independent variables in the lin-
ear regression model is different, and these two states are
often changed. Therefore, it is necessary to further study the
mutual transformation law between different states, and the
regression relationship between the dependent variable and
independent variable in each state. In this article, a model
capable of correctly expressing the rules of mutual trans-
formation between different states and the regression rela-
tionship between the dependent variable and the independent
variable in each state, named a hidden Markov multiple
linear regression model, is introduced and is then commit-
ted to the model inference and its parameters estimation
research.

Last but not least, the key difficulty in hidden Markov
model inference is how to determine the hidden state of
observation variables. At present, the most commonly used
method to determine the hidden state of observation variables
is forward backward recursive algorithm. However, the cal-
culation of this algorithm is too complex to be realized,
which brings difficulties to the applications of hiddenMarkov
model. In this article, K-means cluster method is employed
to address this problem. The hidden Markov model reduces
the threshold of using hidden Markov model, because of its
simplicity and fundamentality. This is the important contri-
bution and value of this article, since it brings benefits to the
application of hidden Markov model.

II. HIDDEN MARKOV LINEAR REGRESSION MODEL
Let Zt be the hidden state at the t-th observation time
point, and its value range is {1, 2, . . . ,K }, and vector Dt =
(yt , xt1, xt2, . . . , xtr )T is the observation vector of the model
at the t-th moment, where, yt is the value of the dependent
variable at the t-th moment, xt1, xt2, . . . , xtr is the value of r
independent variables at the t-th moment, t is the observation
time point, t = 1, 2, · · · ,T .

Assume that the transition process of the hidden state
satisfies the conditions of the Markov chain given below.

P (Zt=s|Z1,Z2, · · · ,Zt−1=u)=P (Zt=s|Zt−1 = u)=aus.

(1)

where u = 1, 2, · · · ,K ; s = 1, 2, · · · ,K ; t = 2, 3, · · · ,T ;
aus is the transition probability from the hidden state u of the
previous time point to the hidden state s of the next time point,
the matrix of all possible hidden state transition probabilities
is called the hidden state transition probability matrix, which
is written as shown in the following formula.

A =

 a11 · · · a1K
...

. . .
...

aK1 · · · aKK

 . (2)

In summary, the triad [Dt ,Zt ,A] is called a hiddenMarkov
model with K hidden states.
When the hidden state Zt = k , a multiple linear regression

model describing the relationship between the independent
and dependent variables can be defined as follows.

[Y k |Zt = k] = Xkβk + εk , (3)

where βk is the r-dimensional linear regression coefficient
vector, εk is the deviation of the model, [εk |Zt = k] ∼
N
(
0, σ 2

k I
)
, and

Y k =
[
y1, y2, y3, · · · , ynk

]T
,

Xk =


1 x11 x12 · · · x1r
1 x21 x22 · · · x2r
...

...
...

. . .
...

1 xnk1 xnk2 · · · xnk r

 ,
βk = [βk0, βk1, βk2, · · · , βkr ]T ,

εk =
[
ε1, ε2, ε3, · · · , εnk

]T
, εi ∼ N

(
0, σ 2

)
.

Therefore, formula (3) is the hidden Markov linear regres-
sion model studied in this article.

III. THE PRINCIPLE OF PARAMETER ESTIMATION
A. THE DETERMINATION OF HIDDEN STATE
The hidden state determining of observation vectors is an
important issue in the study of hiddenMarkov statistical mod-
els. In previous studies, Chen et al. used forward-backward
algorithms to determine hidden states [14], and Liu et al.
selected appropriate prior distributions for model parameters,
and used Bayesian methods to infer the number of hidden
states [15], [16]. However, both the forward and backward
algorithms are very complicated not only in theoretical ideas
but also in execution processes. Bayesian methods have many
limitations in applications owing to the involved selection
of prior distributions. Therefore, this article uses the cluster
analysis method in multivariate statistical analysis to deter-
mine the hidden state of the observed variables.

Cluster analysis is a modern statistical analysis method that
divides research objects into several categories according to
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certain rules [17]. Common cluster analysis methods include
systematic clustering and K-means clustering. The system-
atic clustering method first treats each case as a class, and
then continuously merges classes according to the distance
among classes until all cases are classified into one class,
then a pedigree is obtained, and cases are classified reference
to the pedigree. Choosing different distances will lead to
different clustering results, each step of the systematic clus-
tering algorithm needs to calculate the inter-class distance,
so, the calculation amount of systematic clustering method
is very large, and it takes up a lot of computer memory
space, which thus requires high computing power. In order to
improve this deficiency, Macqueen proposed a fast clustering
method in 1965, which is the so-called K-means clustering
method [18]. The K-means clustering method first roughly
divides n objects into K categories, and then modifies the
unreasonable classification according to some optimal crite-
rion until the criterion function converges, and then obtains
the final classification.

For the hidden Markov model with a fixed number of
hidden states, this article uses K-means clustering to divide
observation points into K classes. The class corresponding to
each observation point can be used as the hidden state of the
observation point at that time.

The principle and steps of k-means clustering method to
determine the hidden state are as follows:

Step I, When the number of hidden states is S, ran-
domly select S observation values as the initial cluster cen-
ter, denoted as L(0) = {X (0)

1 ,X (0)
2 , . . . ,X (0)

S }, and perform
initial classification to obtain G(0)

= {G(0)
1 ,G

(0)
2 , . . . ,G

(0)
S },

where G(0)
i = {X ∈ �|d(X ,X (0)

i ) ≤ d(X ,X (0)
j ), j =

1, 2, . . . , S, i = 1, 2, . . . , S, j 6= i}.
Step II, Firstly, starting from G(0), taking the center of

gravity of G(0)
i as a new polynucleus, a new polynucleus

set L(1) =
{
X (1)
1 ,X (1)

2 , . . . ,X (1)
S

}
is obtained. Then, start-

ing from L(1), classify each observed variable to get a
new classification G(1)

=

{
G(1)
1 ,G

(1)
2 , . . . ,G

(1)
S

}
, where,

G(1)
i = {X ∈ �|d(X ,X (1)

i ) ≤ d(X ,X (1)
j ), j =

1, 2, . . . , S, i = 1, 2, . . . , S, j 6= i}. Lastly, repeating it in
order.

Step m, similar to step 2 to get the classification G(m)
={

G(m)
1 ,G(m)

2 , . . . ,G(m)
S

}
, here, X (m)

i is the center of gravity of

the class G(m−1)
i , but not necessarily the center of gravity of

the classG(m)
i . Whenm gradually increases, the classification

tends to be stable, at this time, X (m)
i will be approximated to

the center of gravity of the class. Therefore, when X (m)
i ≈

X (m+1)
i ,G(m)

i ≈ G(m+1)
i , the clustering is complete. At this

time, the class of each observation is the hidden state of the
observation.

Because K-means clustering algorithm is convergent, the
clustering result of the observed variable is convergent, and
the hidden state judgment result is convergent, so the param-
eter estimation result is convergent.

B. THE ESTIMATION OF HIDDEN STATE TRANSITION
PROBABILITY MATRIX
The hidden state transition probability matrix is an important
part of the hidden Markov model, and its estimation has
always been one of the core research problems of the model.
Common estimation methods include the moment estimation
method and the Baum-Welch algorithm based on the EM
algorithm [19]. These two algorithms require researchers to
have strong programming skills. This article uses the tradi-
tional classic maximum likelihood estimation method [20].

Let Nij be the number of samples transferred from the
previous hidden state zi to the next hidden state zj during the
hidden state transition. In the hidden state transition probabil-
ity matrix, the transition probability between the rows does
not affect each other. For simplicity, the row index can be
ignored and the maximum likelihood estimate of the transi-
tion probability can be derived using the transition probability
of any row as an example.

Since the number of hidden states K is determined, there
are K possibilities for the transition from the previous hidden
state to the next hidden state, and the sum of the probability
of these K possibilities

∑K
i=1 ai = 1, there are aK = 1−a1−

· · · − aK−1.
Then the likelihood function of the transition probability

of any row can be written as

L
(
aj
)
= aN1

1 aN2
2 · · · a

NK−1
K−1 (1− a1 − · · · − aK−1)

NK .

Taking the natural logarithm on both sides of the above
formula, we get the log-likelihood function as follows.

lnL
(
aj
)
= N1lna1 + N2lna2 + · · · + NK−1lnaK−1

+NK ln (1− a1 − · · · − aK−1)

Using the method of finding the maximum value of a function
in analysis, in what follows we calculate the maximum point
of a log-likelihood function. Calculating the partial derivative
of the log-likelihood function lnL

(
aj
)
with respect to a1,

we get

∂lnL
(
aj
)

∂a1
=
N1

a1
−

NK
1− a1 − · · · − aK−1

.

Finally, by making the partial derivative zero, we have

N1

a1
=

NK
1− a1 − · · · − aK−1

.

Then,

a1
aK
=

N1

NK
.

Similarly, for any aj (j = 1, 2, · · · ,K − 1) whose partial
derivative is zero, we can obtain

aj
aK
=

Nj
NK

.

That is,

a1 : a2 : · · · : aK−1 : aK = N1 : N2 : · · · : NK−1 : NK .
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And
∑K

i=1 ai = 1, so the maximum likelihood of ai can be
estimated as,

âj =
Nj∑K
j=1 Nj

.

From the arbitrariness of the row mark i, the maximum
likelihood estimate of any element aij in the hidden state
transition probability matrix can be obtained as shown in
formula (4):

âij =
Nij∑K
j=1 Nij

, (4)

where i = 1, 2, · · · ,K ; j = 1, 2, · · · ,K ◦

C. THE ESTIMATION OF LINEAR REGRESSION
COEFFICIENTS
This sectionmainly studies the estimation of the linear regres-
sion coefficient βk under different hidden states. Since the
parameter estimation of regression coefficients in traditional
linear regressionmodels mostly uses the least squares method
or maximum likelihood estimation, and the least squares esti-
mation has good characteristics such as optimality and unbi-
asedness, this article tends to use the least squares method to
estimate the regression coefficient βk .
As mentioned before, in the k-th hidden state, the model

can be written as follows

Y k = Xkβk + εk .

The so-called least squares estimation is to find βk , and to
estimate when

(
Y k − Xkβk

)T (Y k − Xkβk
)
taking the min-

imum value. Recording the sum of squared errors Q
(
βk
)
=(

Y k − Xkβk
)T (Y k − Xkβk

)
, and finding the least square

estimate of βk being equivalent to finding the minimum value
of Q

(
βk
)
. Using the matrix derivative formula, we get

∂
(
YTk Xkβk

)
∂βk

= XT
k Y k ,

∂(βTk X
T
k Xkβk )
∂βk

= 2XT
k Xkβk ,

from which we conclude that

∂Q
(
βk
)

∂βk
= −2XT

k Y k + 2XT
k Xkβk = 0.

Let Xk be a full rank matrix, and the least square estimate
of the regression coefficient vector βk is

βk =
(
XT
k Xk

)−1
XT
k Y k (5)

IV. EMPIRICAL SIMULATION
In order to test the reliability of the inference method of the
hidden Markov multiple linear regression model introduced
in this article, this section will give the number of hidden
states K , the hidden state transition probability matrix A, and
the linear regression model in each hidden state Coefficient
βk . First, a hidden state sequence set is generated according to
the transition probability matrix A, and then the observation
vector at each observation time point is generated accord-
ing to the hidden state value of each observation point and

the value of the multivariate linear regression model corre-
sponding to the hidden state. Then, according to the above-
mentioned method introduced in this article, the K-means
clustering analysis method is used to cluster and identify
the hidden states of the observation vector set, and the least
square estimation of the coefficient βk in the linear regression
model with the number of hidden states is fixed. Finally,
the results of parameter estimation are compared with real
models to verify the reliability of the method.

A. SIMULATION I
First, taking the number of hidden states K = 2, then the
hidden state probability transition matrix A is a second-order
square matrix.

Letting,

A =
[
0.3 0.7
0.6 0.4

]
.

For simplicity, suppose there is a ternary linear regression
model in each hidden state.

Specifically,{
Y1 = −2− 2X11 − 2X12 − 2X13
Y2 = 2+ 2X21 + 2X22 + 2X23.

In true simulation [21], two hidden states are generated
first, and then 200 observation points are randomly generated
according to the setting of the two hidden states, recorded as
Dt = [yt , xt1, xt2, xt3] , t = 1, 2, 3, · · · , 200, where, xt1 ∼
N (0, 1) , xt2 ∼ U (0, 1) , , xt3 ∼ Exp (1).
Note that the frequency of the two hidden states obtained

by computer simulation is z1 and z2, and the frequency of the
two hidden states after cluster analysis is z′1 and z

′

2.
In simulation I, the effects of identifying the two hid-

den states using K-means clustering are shown respectively
in Table 1 and figure 1, and the experimental results are shown
in Table 2, 3.

TABLE 1. Contingency table comparison of the number of hidden states
before and after clustering.

B. SIMULATION II
Letting,

A =
[
0.4 0.6
0.5 0.5

]
.{

Y1 = −2− 1.5X11 − 0.5X12 − 1.2X13
Y2 = 2+ 1.2X21 + 1.5X22 + 1.5X23.

In simulation II, the effects of identifying the two hid-
den states using K-means clustering are shown respectively
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FIGURE 1. Hidden state path diagram.

TABLE 2. Estimation results of the hidden state transition probability
matrix.

TABLE 3. True and estimated values of the parameters of the linear
regression model.

in Table 4 and figure 2, and the experimental results are shown
in Table 5, 6.

TABLE 4. Contingency table comparison of the number of hidden states
before and after clustering.

C. SIMULATION ANALYSIS
In Figure 1 and 2, we use the green line to represent the
real hidden state, while the red line to represent the hidden
state result of clustering analysis. Table 1 and 4, figure 1 and
2 show that 196 clusters of 200 observation points are clus-
tered correctly and 4 clusters are clustered incorrectly.

FIGURE 2. Hidden state path diagram.

TABLE 5. Estimation results of the hidden state transition probability
matrix.

TABLE 6. True and estimated values of the parameters of the linear
regression model.

After clustering analysis, this article then uses Eq. (4) to
estimate the maximum likelihood of the hidden state transi-
tion matrix. The experimental results are shown in Table 2
and 4. Finally, in order to obtain a linear regression model,
this article continues to use the explanatory variables and
response variables after clustering to perform a least squares
estimation. The experimental results are recorded in Table 3
and 6.

The results in Tables 1 to 6, Figure 1 and 2 show that the
K-means clustering method is effective for the hidden data
identification, hidden state transition probability matrix, and
linear regression model parameter estimation of observation
data.

V. CONCLUSION
This article combines the hidden Markov model and the
linear regression model to give the definition of the hidden
Markov linear regression model. The hidden state deter-
mination, state transition probability matrix and parameter
estimation problems involved in the hidden Markov linear
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regression model are introduced. K-means clustering method
is used to determine hidden states. This is the innovation of
this article. We use maximum likelihood method to estimate
the element of transition probability matrix. And we also
use the least square method to estimate the parameter of
linear regression model. Simulation results demonstrate that
the estimate effect is good. However, this article studies a
hidden Markov linear regression model with a fixed num-
ber of hidden states, and the use of the model has certain
limitations. Therefore, the next research direction will be the
reasoning and application research of more complex models,
such as hidden Markov logistic regression model, hidden
Markov quartile regression model, and hidden Markov log-
arithmic linear model, and nonlinear stochastic semi-Markov
model [22], [23], or hidden Markov model with an unknown
number of hidden states [24].
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