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ABSTRACT Automatic Ingestion Monitor v2 (AIM-2) is an egocentric camera and sensor that aids
monitoring of individual diet and eating behavior by capturing still images throughout the day and using
sensor data to detect eating. The images may be used to recognize foods being eaten, eating environment,
and other behaviors and daily activities. At the same time, captured images may carry privacy concerning
content such as (1) people in social eating and/or bystanders (i.e., bystander privacy); (2) sensitive documents
that may appear on a computer screen in the view of AIM-2 (i.e., context privacy). In this paper, we propose
a novel approach based on automatic, image redaction for privacy protection by selective content removal
by semantic segmentation using a deep learning neural network. The proposed method reported a bystander
privacy removal with precision of 0.87 and recall of 0.94 and reported context privacy removal by precision
and recall of 0.97 and 0.98. The results of the study showed that selective content removal using deep learning
neural network is a much more desirable approach to address privacy concerns for an egocentric wearable
camera for nutritional studies.

INDEX TERMS Privacy, egocentric wearable camera, bystander privacy, context privacy, lifelogging,
monitoring of ingestive behavior, food intake, diet, nutritional studies.

I. INTRODUCTION
Wearable sensor technology is an exponentially growing
field, largely focused on health and wellness. Currently,
the wearable sensor technology sector reports a global mar-
ket value of 24.2 billion USD, with a projected growth
of 100 billion USD by 2024 [1]. Consumer wearable sen-
sors expand from smartwatches and wristbands to jewelry,
glasses, and clothing. Each wearable sensor is providing the
consumer with a unique aid, as illustrated in Fig. 1 and Fig. 2.
A wearable sensor would commonly contain one or more of
the following components: accelerometers, gyroscopes, GPS,
physiological sensors, and cameras.

These components acquire personal information related to
the motion, locations, vitals, and images of/from the wearer.
The obtained data is used to provide aid in applications such
as lifelogging, health monitoring, person tracking, leisure,
and games/sports. However, continuous acquisition of per-
sonal information raises concerns towards the privacy of
an individual. Surveys [2]–[4] have reported user privacy
concerns such as privacy related to social implication, crim-
inal abuse, facial recognition, access control, surveillance,
and sousveillance (recording by wearable cameras), and
speech disclosure. In the context of information technology
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FIGURE 1. Overall Process of food intake analysis using AIM wearable
sensor.

professionals, these privacy concerns are broadly classified
into three groups: context privacy, bystander privacy, and
external data sharing privacy [2], [5].

Context privacy is related to access control, location dis-
closure, and speech disclosure. For example, a wearable lifel-
ogging sensor may acquire the wearer’s speech, images of
activities being performed, and location, which the wearer
might not want to share with service providers. Bystander
privacy is an issue of protecting the privacy of third parties
in the surroundings of the wearer. Wearable sensors with
microphone and camera might capture speech and images of
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FIGURE 2. Schematic review on wearable sensor technology, primary
sensors, and application [2]. Acc-Accelerometer, Gyro-Gyroscope,
Phy-Physiological sensor, Cam-Camera. Citations: Google Glass [6], AIM
[12], Snap Spectacles [11], Bragi Dash [39], Samsung Gear IconX[40],
Zephyr Bioharness [41], Bellabeat LEAF [42], Amber Alert GPS [43],
BSXinsight [44], Addidas miCoach [45], Fitbit [46], MyoGesture [47].

bystanders in the surroundings, leading to privacy concerns
related to speech disclosure, facial recognition, surveillance,
and sousveillance. External data sharing privacy is related to
the security of the data that is forwarded to cloud service that
store, analyzes, and provides feedback to the wearer.

In this paper, we will further discuss privacy issues and
solutions related to head-mounted, first-view egocentric cam-
eras. Head-mounted wearable sensors (see Fig. 1) are often
worn as eyewear. Google Glass [6], SenseCam [7], Epson
Moverio [8], AIM [9], Vuzix [10], and Snap spectacle [11],
may be used for health and wellness, lifelogging, leisure, and
games. These wearable sensors comprise of either or a combi-
nation of several sensors (e.g., accelerometer, gyroscope, and
microphone, and an egocentric (first-person view) camera.
The camera is the most commonly used component for a
head-mounted wearable sensor. Images captured from the
egocentric camera stand as the primary source of information
since the camera carries the wearer’s visual perspective.

Automatic Ingestion Monitor V2 (AIM-2) is a sensor for
monitoring food intake. The eating episodes are recognized
from the signal of embedded accelerometer [12], prompting
the egocentric camera to capture images of the food being
eaten. However, individuals often eat in groups, or socially
and studies [13] show that individuals are likely to use their
mobile phone/computer while eating a meal (see Fig. 3).

Furthermore, in some studies AIM may be configured to
capture images continuously throughout the day. Regardless
of the mode of image collection, these egocentric images may
contain (1) the surrounding environment, including people
around the wearer; (2) sensitive information such as the
content of the computer screens. The collected images may
be a source of privacy leakage, raising issues of bystander
privacy and context privacy. Specifically, in the United States,
such images are recognized as information protected under
the Health Insurance Portability and Accountability Act
(HIPPA), Title II, Privacy Rule [14].

The images may contain HIPAA-protected information,
such as account numbers on a computer screen, and
full-face images of people. While the images are stored in a
HIPAA-compliant repository and reviewed by certified nutri-
tionists, who are not considered an explicit adversary, the risk
of accidental privacy leakage still remains. Furthermore,
the protected information cannot be shared. The HIPAA
rule suggests deidentification of the protected information
through removal of specific identifiers, such as names, phone
and account numbers, and full-face photos.

Traditionally HIPPA compliance may be addressed by dis-
carding the images with the privacy concerns [3] or scaling
down the image to extremely low resolution [15]. How-
ever, in nutritional studies, discarding or scaling down the
images may very likely result in complete or partial loss of
information about food intake. Therefore, we opted to per-
form image redaction-based privacy protection by selectively
removing content related to bystander privacy and context
privacy [16] while preserving information related to food
intake. The immediate goal is to eliminate the major sources
of potential privacy leakage: screens and persons, as the
first step to the eventual goal of achieving HIPAA-compliant
de-identification of the images acquired in nutritional studies.

Therefore, we propose an automatic, selective content
removal method to exclude bystander and context privacy
content. The rest of the paper is as follows. Section II
reviews current privacy content removal methods used for
the head-mounted wearable sensor. Section III discusses
the proposed approach used to address the privacy content
removal from images of the head-mounted wearable sensor.
Section IV discusses the results and analysis of the pro-
posed approach for inappropriate content removal. Section V
and VI derives the conclusion of the study, limitations, and
future work.

II. PRIVACY CONTENT REMOVAL METHODS
Privacy content removal fundamentally prevents information
that an individual wants to be kept privet from being public
[17]. Researchers in the field of data privacy protection for
the context of image and videos as visual privacy protection.
Visual privacy protection is widely performed as (i) interven-
tion, (ii) blind vision, (iii) secure processing, (iv) redaction,
(v) data hiding. An intuitive review of the privacy protection
approaches can be found in [18]. We notice that the major-
ity of the wearable sensor community adapted a redaction-
based privacy protection approach. Here private information
was concealed by modifying or removing sensitive image
regions such as face, bodies, screens, etc. in the images being
reviewed by nutritionists.

Traditionally, researchers in the wearable sensor commu-
nity have opted for privacy content removal relies either on
manual review or on automatic image classification. The
wearer performs themanual review by removing imagesman-
ually and discarding the privacy content images [19]. This is
a tedious approach since the wearer may have to manually
review hundreds to thousands of images daily to maintain
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FIGURE 3. Illustration of an eating episode in which the individual consumes the meal in a group while using a mobile phone; prompting bystander, and
context privacy concerns.

their privacy. The automatic image classification-based
approach comes as a solution to the manual review
approach.

At present, DeepAI [20], and Sightengine [21] performs
automatic removal of content such as nudity detection,
weapons, alcohol, drugs, offensive content, and hate signs
by using deep convolution neural networks and discarding
images. However, image removal is highly undesirable in
food intake monitoring since it may lead to complete loss of
information in many situations of social eating and eating in
the presence of computer screens.

Researchers from the wearable sensor community
attempted to address privacy issues. Thomaz et al. [22],
proposed to address the bystander privacy issue by using
a privacy saliency matrix approach. The authors used a
combination of manual review by the wearer and image
tagging to categorize the data into four quadrants, based on
saliency, non-saliency, and privacy concern and non-concern.
The bystander’s faces were blurred by using a Haar cascade
classifier. The privacy saliency matrix approach was mainly
used to cluster the images prior to privacy content removal.
The limitations of this method are the combination of manual
review and image tagging approach, which is a tedious and
time-consuming task. A privacy behavior study [23], on the
wearable head-mounted sensors, reported that wearers prefer
to manually control the image acquisition of the wearable
camera to address privacy-related issues. This comes as the
most straightforward solution; however, this approach brings
in the human factor and the possibility of information loss.

Zarepour et al. [24] proposed a context privacy-preserving
framework for a lifelogging sensor. The authors used a com-
bination of human activity recognition, ambient environment
detection, and sensitive subject detection modules to remove
context privacy concerns. The human activity recognition
module classified accelerometer data to understand human
activity (i.e., walking, sitting, running).

Whereas, the ambient environment detection was per-
formed to detect the environment (i.e., indoor/outdoor). This
human activity recognition and ambient environment detec-
tion module were used to detect contextual cues. Based on
the contextual cues, the authors performed sensitive sub-
ject detection to remove context privacy concerns by using
an array of best-fitting-deep learning and computer vision

algorithms such as AlexNet, FastRCNN, and Viola-Jones
detector. The authors reported an accuracy of 70% during
testing on 300 images.

Muchen et al. [25], proposed a privacy-preserving
approach for the head-mounted wearable sensor using
multi-sensor information from a mobile phone and smart-
watch. Here the authors used the multi-sensor information to
identify privacy concern scenarios and trigger the wearable
camera.

III. METHOD
Existing privacy content removal methods use
semi-automated approaches by combining manual review,
image tagging methods, and performing a multi-sensor
fusion. The semi-automatic approach brings in human fac-
tors; whereas, the multisensory approach depends on the
availability of the multiple sensors. Automated privacy con-
tent removal methods based solely on images would be
much more desirable. Scene understanding using semantic
segmentation is a widely used approach to identify contents
within the image. Selectively identifying specific content
within an image would improve privacy content recognition
and the removal process.

Our proposed method aims to perform image redaction-
based privacy protection by selectively removing privacy con-
tent (object and people) on free-living image data captured
by AIM-2. We use a semantic segmentation-based approach
to selectively remove bystander and context privacy content
from images. Semantic segmentation performs a pixel-level
classification of the content, compared to the object detection
approach using bounding boxes. Object detection methods
may capture the food content and background information
within the bounding box used for content removal. This
would lead to the loss of information related to the eating
episode.

Multiple semantic segmentation models such as Unet
[26], FCN [27], DeconvNet [28], SegNet [29] were studied.
We chose to use SegNet, due to its ability to provide accurate
semantic segmentation while operating with a simple archi-
tecture at high computational efficiency, and low memory
usage. Computational efficiency is an essential aspect of the
practical usage of this method since the AIM-2 is meant
to operate throughout the day. The participants from the
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study have shown an active usage period between 12.5 to
18.5 hours, capturing about 3000 to 4500 images per day.

A. SegNet
SegNet comprises of 109 layers, following an encoder-
decoder architecture. The primary emphasis of SegNet is to
use the encoder layer for feature extraction and performing
semantic segmentation at decoder layers. Therefore, SegNet
incorporated the architecture and the weights of the convolu-
tion base from the VGG16 [30]. The VGG16 is already been
trained on the ImageNet database comprised of 1000 classes
for over 14 million images [31]. As mentioned in the previ-
ous sections, wearable sensors capture images from various
environments with a great diversity of content (see Fig. 5).
Hence, using pre-trained weights is highly advantageous for
the feature extraction.

Therefore, SegNet naturally inherits 13 pre-trained convo-
lution layers, branched among five max-pooling operators.
Each convolution and pooling stage comprises a combination
of convolution filters,a batch normalization layer, and a ReLU
activation layer to extract feature maps at each encoder stage.
The 2 × 2 max-pooling operators are an essential aspect of
the network as the max-pooling indices capture the locations
of the maximum feature value in each pooling window and
forward the information to the decoder layer to improve
boundary delineation of the semantic segmentation.

The decoder networks upsample the input feature map
at each decoder stage using the pre-known max-pooling
indices at each corresponding encoder stage. Thus, resulting
in 13 trainable convolution layers. The convolution layers are
brunched among a combination of Max Unpooling layers,
batch normalization layers, and ReLU activation layers. Here
the final encoded feature map of the input image is passed
to the decoder Max Unpooling layer along with the Max
Pooling indices to produce a dense feature map. The process
of decoding is followed for the 5 Max Unpooling layers.

Finally, a multi-channel feature map, similar to the initial
feature map of the encoder stage is generated. A trainable,
SoftMax layer followed by a pixel classification layer is
used to classify the pixels of the image to corresponding
classes: person/bystander privacy, screen/content privacy, and
background.

B. SENSOR SYSTEM
The sensor system used for the method development is Auto-
matic Ingestion Monitor, version 2 (AIM-2), which is a
second-generation egocentric wearable sensor used for mon-
itoringof diet and eating behavior (Fig. 4). The AIM-2 may
capture periodic images only during food intake or during the
whole day an image per 15 seconds or about 5760 images
per day. AIM comprises of five main components: inputs;
5-megapixel CMOS image sensor and 3D accelerometer,
STM32 processing unit and an FPGA based frame buffer,
and micro SD-based storage unit. The camera sensor is a
5-megapixel CMOS image sensor with a wide-angle lens to
capture a broader field of view.

FIGURE 4. AIM-2, an egocentric wearable camera with food intake
detection sensors.

FIGURE 5. Illustration of the diversity of the dataset from a free-living
experiment using AIM-2. (Faces and screens are blacked out).

C. DATA
We used data from fifteen volunteers (9 males and 6 females)
aged 18 to 33 years old. The study was approved by the
Institutional review board of the University of Alabama.
The participants signed an informed consent form prior
to the experiments and were compensated for their par-
ticipation. The experiment was conducted in two parts: a
controlled laboratory experiment (1 day) and a free-living
experiment (1 day).

To represent a variety of real-world eating scenarios,
we only used the data from the free-living experiment. The
participants were asked to wear the AIM-2 egocentric wear-
able sensor for the entire day. The actual wear time was
between 12.5 to 18.5 hours. The participants were asked
to follow their daily routine activities and have at least
one meal. Furthermore, the free-living experiment did not
limit the participants from any social/personal interaction
and activities. At the end of the experiment, participants
reviewed and removed any images that did not want to be
included in the dataset. Even though the images been removed
manually, the free-living experiment generated a dynamic
dataset containing social/personal interaction and activities at
public/personal spaces including bystanders and the usage of
screens (see Fig. 5).

We randomly selected 400 images from each partici-
pant to generate our dataset comprised of 6000 images.
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Images that were distorted by motion blur, overexposure, and
idle view (i.e., the view when the participant is not wearing
glasses/ after removing the glasses and placing somewhere
else) were excluded. The randomly selected images were
annotated to 3 classes: person, screen, and background. The
persons and screens were annotated. The remaining pix-
els (i.e., non-person/screen) of the image were grouped as
background pixels.

The annotation was performed by pixel-wise labeling
using the MATLAB annotation tool known as the Image
Labeler. Annotation for the person was defined as an entire
human or any human body part occluded or non-occluded
within the frame of the image. The definition for screens
expanded over any digital screens: mobile phones, desktop
monitors, televisions. We annotated 3781 images with screen
labels containing entire, or partially occluded mobile phones/
desktop monitor/ television. We annotated 4378 images with
labels for single person/ multiple persons/ partially occluded
person.

We supplemented our dataset with publicly avail-
able datasets. We used the pixel annotated data from the
CamVid database [29], SUN RGB-D database [32], and
ADE20K database [33]. Here we relabeled the annotations
of these public databases to use classes: person, screen and
relabeled all the remaining pixels to the background.

AIM-2 is built with a wide-angle lens to capture a broader
field of view and captures images in portrait orientation. The
wide-angle lens projects a barrel distortion to the captured
image. The barrel distortions and portrait orientation would
contribute to reducing the efficiency of SegNet as its unlikely
that the encoder base was previously trained with distorted
images. Therefore, we performed a −900 image rotation and
a barrel correction. We calculated the focal length, camera
optical center, and the radial distortion coefficients of the lens
to rectify the barrel distortion [34]. Furthermore, we carried
out an image enhancement step by performing a histogram
normalization step to improve the intensity distribution of the
image.

1) TRAINING AND VALIDATION
A transfer learning strategy was adopted to train the SegNet
semantic segmentation model. We froze the encoder base
and trained the 13 convolution layers in the decoder base
along with the SoftMax layer and pixel classification layer
(see Fig. 5). Stochastic gradient descent with momentum
as the optimization algorithm to train the decoder layers.
A momentum of 0.4 with a fixed learning rate of 0.01 was
defined for the optimization. A class weighted cross-entropy
loss approach was used to train the pixel classification layer
to overcome the unbalanced data distribution in the training
dataset.

We used 60% of our self-collected AIM-2 images for
training along with the complete data from CamVid database,
SUN RGB-D database, and ADE20K database, amounting
to a total of 36846 training images. We further enhanced the
number of training images to 331,614 in our training dataset

by augmenting the data using 7 augmentation techniques:
image rotation by± 25-degree, image shift in horizontal axis,
and vertical axis by ±30 pixels, horizontal image flip, image
scaling by a factor of 1.25, and 1.5, and brightness shift by a
factor of 0.5 to 1.5. The training was carried out on a GeForce
RTX 2070 GPU using a mini-batch size of 8 images for
80 epochs. The data was shuffled at each epoch.

During the validation phase, we adopted a holdout vali-
dation approach. We held 40% of the self-collected AIM-2
images from the self-collected dataset and was used for the
validation.

The results of the validated images were evaluated using
measures of accuracy, MeanBFScore, and IoU for each class
[29]. The accuracy (see Eq. 1) shows the percentage of
pixels that are correctly identified to the respective class.
MeanBFScore (see Eq. 4), also known as the boundary
F1 contourmatching score shows howwell are the boundaries
of each class is aligned with the ground truth boundary. The
intersection of the union (IoU) (see Eq. 5) shows a measure
in the convergence between the pixel area of each class to the
ground truth.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

MeanBFScore = mean
(
2× Precision× Recall
Precision+ Recall

)
(4)

IoU =
AreaofOverlap
AreaofUnion

(5)

where TP is true positive, TN is true negative, FP is false pos-
itive, and FN is a false negative. We evaluate the performance
of the privacy concerning content (i.e., bystander and context
privacy) removal by using precision (see Eq. 2) and recall
(see Eq. 3)metrics. Herewe considered bystander and context
privacy content as objects by inserting a bounding box around
the object silhouette in each image channel corresponding
to the classes: person/bystander privacy and screen/context
privacy. Hence the classification of the bounding box was
used to estimate the precision and recall.

D. SELECTIVE REMOVAL OF PRIVACY CONTENT
The images were processed with the trained SegNet seman-
tic segmentation model (see Fig. 6). SegNet generates a
semantically segmented tri-channel pixel classification map
highlighting the pixels related to the person, screen, and
background. Here the pixels in the first channel are classified
as a person, pixels in the second channel are classified as
screens, and pixels in the third channel are classified as back-
ground. We perform bystander and context privacy removal
by nullifying the pixels in the first and second channels
and preserving the pixels in the third channel. The updated
pixel classificationmap is superimposed to the original image
to generate the image with privacy content removed (see
Fig. 7(d)).
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FIGURE 6. Illustration of the SegNet, encoder-decoder based deep convolution neural network architecture.

FIGURE 7. Accuracy of bystander and content privacy removal. (a) the
input image, (b) output of the pixel classification layer: yellow is the
background, purple is the person, and blue is the screen. (c) amount of
overlap between classes, illustrating the rate of IoU. (d) privacy content
removed output.

IV. RESULTS AND DISCUSSION
The results for the bystander privacy removal are tabulated
in Table 1, showing high precision and recall of 0.87 and
0.94 as an average of all the test subjects. The high recall
rate suggests that our method is sensitive to detecting
bystanders in the diverse dataset containing bystanders in
social/individual interaction, and activities at public/personal
spaces. Furthermore, our method was also able to remove
body parts that were occluded.

This was important since the bystanders and the wearer’s
privacy could be violated either by the full figure or part of
the body. The accuracy of 0.87 was reported for pixel-wise
classification and removal of the bystander. However, our

method reported a lower IoU andMeanBF; this is mainly due
to the convergence of the classification region and boundary
with the ground truth region and boundary (Fig. 7(c)).

This is mostly due to the boundary delineation of the
semantic segmentation approach. SegNet performs a process
of capturing the locations of the maximum feature value
in each pooling window and passing the information to the
decoder layer to improve boundary delineation. However, we
noticed that the SegNet did not segment within the boundary
of the bystander and often smear at edges.

The results related to context privacy removal are tabulated
in Table. 1. The context privacy removal results showed high
precision and recall of 0.97 and 0.98 as an average of all the
test subjects. The high recall rate suggests that our method
is sensitive to detecting digital screen from mobile phone
screens, laptop screens, and, television screens at privet and
public spaces. Partially occluded screens were also detected
and were removed to preserve context privacy.

Therefore, the overall accuracy of pixel classification and
removal for context privacy was 0.90. The method also
reported a reasonable convergence of the classified region
with ground truth by reporting an IoU of 0.77. The improve-
ment in IoU for context privacy would have been due to the
ridged structure of the objects (see Fig. 8(c)).

However, context privacy removal reported a lower
meanBF of 0.55. The boundary misalignment between the
classified region and the actual region is the leading cause
of the lower meanBF. Furthermore, it was noticed that ReLU
layers activated in much coherence to the brightness intensity
in comparison to other features (see Fig. 8(b)).

Therefore, it could have contributed to smearing the bound-
ary of the screen (see Fig. 8(d)). We also noticed an odd
incident when themobile screenwas classified as a bystander.
Here the picture of a person was displayed on the screen, and
our method removed region as a bystander instead of content
(see Fig. 9(b)). This is mainly due to the training examples
in which the wearer’s mirror reflection was labeled as the
bystander (see Fig. 9(a)).

As mentioned earlier, AIM-2 is intended to monitor indi-
vidual eating habits. Therefore, selectively removing privacy
content was essential to retain information related to food
intake. Dietitians and nutritionists often use the images of
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TABLE 1. Validation results of bystander privacy and context privacy removal.

FIGURE 8. Accuracy of context privacy removal, (a) input image, (b) output
of the final ReLU activation layer, decoder1_relu_1, (c) output of the
softmax classification layer and (d) amount of overlap between classes.

FIGURE 9. Illustration of bystander removal instead of context removal.
(a) the mirror reflection of a person as a training example annotated
purple as a person and yellow as background. (b) pixel classification
result of the test image, purple as a person, blue as a screen and yellow
as background.

the food intake to determine food content and the eating
environment. Therefore, we estimated the background pixel
classification accuracy.

Our proposed method removed privacy content while
preserving 0.99 of the background accurately. Considering
the application of ingestion monitoring, the critical process
of privacy content removal is performed as a preprocessing
operation. Therefore, we also estimated the computational
efficiency of the proposed method. We tested the method
on the test dataset containing data of 6 participants. The
proposed method computed efficiently at a computational
speed of 8.93 images per second.’’

V. CONCLUSION
This paper addressed an important problem of privacy con-
cern for the egocentric camera sensor. Image information
related to bystander privacy and context privacy was identi-
fied as the most significant issue for imaging-based wearable
sensors. A fully automatic proposedmethodwas developed to
remove privacy content selectively from an egocentric wear-
able sensor. Semantic segmentation based deep convolution
neural network was adopted to remove privacy content accu-
rately while preserving background information. We used
about to 331,614 images comprised of augmented data from
9 participates of the self-collected data and publicly available
data for training. The proposed method was validated on
data of 6 participants. The validation results reported that the
proposed method removed bystander privacy with precision
and recall of 0.87 and 0.94 while removing context privacy
with precision and recall of 0.97 and 0.98.

VI. LIMITATIONS
Our proposed method was able to protect sensitive
information of individuals participating in the study by selec-
tively removing sensitive content while preserving informa-
tion related to food intake. This would potentially enable
nutritionists to analyze diet and ingestive behavior. However,
the sensitive information in the images from these ingestion
monitoring studies are not entirely protected and could be
compromised by adversarial attacks [35]–[37], where the
individuals and their behavioral patterns may potentially be
identified based on the object silhouette in the repeated food
images.

While this is a limitation, the main goal of the proposed
method is to improve the acceptance and compliance with
device wear in nutritional studies, where the participants
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may be concerned that the device captures private informa-
tion during meals. The proposed privacy protection method
should alleviate these concerns, which we plan to test in
future studies. A limitation of the proposed method is that it
provides privacy protection for off-line, post-data-collection
review of the images of nutritional studies. Ongoing devel-
opment of embedded hardware accelerators for deep neural
networks, such as Google’s Edge TPU [38], may enable even-
tual deployment of these algorithms directly on the wearable
device for on-line execution.

Although the proposed method operated satisfactorily on
unseen data from ongoing studies, we noticed instances of
inaccurate segmentation that erased the food images due to
the person sitting next to the food. This is mainly caused
by the generalization problem of the deep learning neural
network. However, this is not a major concern for the related
nutritional analysis, as many images are captured during
any given meal and instances of improper segmentation are
sufficiently rare. We propose to overcome this limitation by
fine-tuning the model with the negative results from future
studies that will provide additional data for retraining the
models.
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