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ABSTRACT A vertex k ∈ VG determined two elements (vertices or edges) `,m ∈ VG ∪ EG, if dG(k, `) 6=
dG(k,m). A setRm of vertices in a graphG is a mixedmetric generator forG, if two distinct elements (vertices
or edges) are determined by some vertex set of Rm. The least number of elements in the vertex set of Rm
is known as mixed metric dimension, and denoted as dimm(G). In this article, the mixed metric dimension
of some path related graphs is obtained. Those path related graphs are P2n the square of a path, T (Pn) total
graph of a path, the middle graph of a pathM (Pn), and splitting graph of a path S(Pn). We proved that these
families of graphs have constant and unbounded mixed metric dimension, respectively. We further presented
an improved result for the metric dimension of the splitting graph of a path S(Pn).

INDEX TERMS Mixed metric dimension, metric dimension, edge metric dimension, path related graphs.

I. INTRODUCTION AND PRELIMINARY RESULTS
Let for a graph G = (VG,EG), where VG, interpret the
vertices, and EG the edges of a graph. A vertex k ∈ VG,
resolve two elements (vertices or edges) `,m ∈ EG ∪ VG,
if dG(k, `) 6= dG(k,m). All the graphs studied here are
simple, connected, and finite. A set Rm, is said to be the
mixed metric generator of a graph G, if every two distinct
elements (vertices or edges) are determined by some vertex
set of Rm. The mixed metric dimension is the least cardinality
of a mixed metric generator; the notion used here to represent
is dimm(G). This idea is put forward in [9], and recently it is
investigated in [18], where the authors studied some rotation-
ally symmetric graphs, and the mixed metric dimension of
P(n, 2) is studied in [19]. The author in [4] computed mixed
metric dimension of flower snarks Jn, and wheel graphs Wn.
Also, in [5] presented some lower bounds for this invariant.
The mixed metric dimension is the combination of a well
studied metric and edge metric dimension.

The concept of metric dimension was put forward by Slater
[21], where it was expressed as locating sets, and later by
Harary and Melter [7] called it as a metric dimension where
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the metric generators were termed as resolving sets. There are
numerous metric dimension applications, such as identifying
an intruder in a network, robotics navigation, chemistry, and
pattern recognition or image processing; for further studies
related to this invariant, some of the references are, see, for
instance, [2], [3], [12]. Some of the recent studies on the
metric dimension are in [8], [13], [20].

When some vertex set of a graph resolves the graphs’
vertices, the authors called it the metric dimension. When the
edges of graphs are resolved by some vertex set of a graph,
the author in [10] termed it as the edge metric dimension.
Mathematically it can be written as, for k ∈ VG, and for some
e = `m.

dG(k, e) = min(dG(k, `), dG(k,m))

Now, the vertex k ∈ VG, distinguish two edges say e1,
and e2, if the condition holds that is dG(k, e1) 6= dG(k, e2).
When it comes to defining the edge metric dimension, it is
similar to the metric dimension; the only difference is that
the resolving set say Re, resolves the edges of the graph.
The least cardinality of the resolving set for this invariant is
called edge metric dimension, and usually, the notation used
is dime. After the first introductory article [10], many authors
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investigated this invariant. Some of the latest articles for the
reader’s convenience are as [11], [14], [15], [22], [23].

A vertex k ∈ VG determined two elements (vertices or
edges) `,m ∈ VG ∪ EG, if dG(k, `) 6= dG(k,m). A set Rm
of vertices in a graph G is a mixed metric generator for G,
if two distinct elements (vertices or edges) are determined by
some vertex set of Rm. The least number of elements in the
vertex set of Rm is known as mixed metric dimension, and
denoted as dimm(G).

II. KNOWN RESULTS
The mixed metric generator is the combination of metric, and
edge metric generator, as shown in the following relationship;

Observation: [9]

dimm(G) ≥ max{dim(G), dime(G)}

While discussing the mixed metric dimension structure, it is
imperative to note that a graph with a pendant vertex cannot
form a mixed metric generator.
Proposition 1 [9]: For any graph G, 2 ≤ dimm(G) ≤ n.
Proposition 2 [10]: For a path graph, dim(Pn) =

dime(Pn) = 1.
Proposition 3 [9]: For a path graph Pn of order n ≥ 4,

dimm(Pn) = 2.
Proof: The proof is quite apparent from Proposition1,

and the mixed metric generator must contain both end ver-
tices of a path graph. Recently the invariant of mixed metric
dimension is studied for some general families of graphs,
as mentioned in the following results.
Theorem 1 [18]: (i) Let Dn be the prism graph, then;

dimm(Dn) =

{
3, n is even;
4, n is odd.

(ii) Let An be an anti-prism graph, then;

dimm(An) =

{
4, n is even;
5, n is odd.

(iii) Let Rn be a graph of convex polytope, then;
dimm(Rn) = 5.
Theorem 2 [19]: For the Petersen graph P(n, 2), we have

dimm(P(n, 2)) =

{
4, n ≡ 0, 2(mod4);
5, n ≡ 1, 3(mod4).

Theorem 3 [4]: (i) For odd n, we have for Jn;

dimm(Jn) =

{
5, n = 5;
4, n ≥ 7.

(ii) For wheel graphWn, we have;

dimm(Wn) =

{
4, n = 3;
n, n ≥ 4.

Recently, the lower bound for mixed metric dimension of the
general graphs is presented;

Theorem 4 [5]: Let G be an r regular graph, the lower
bound is;

dimm ≥ 1+ dlog2(1+ r)e

The authors in [5] studied the exact value of the mixed metric
dimension by using the Theorem 4 for the family of torus
graphs. As the torus graph is the regular graph of degree 4.
Theorem 5 [5]: Form, n ≥ 3, for the family of torus graphs,

we have;

dimm(Tm,n) = 4

The paper discuss the families of graphs related to path
graphs. Four families are studied which are, square of path
graphs P2n, total graph of paths T (Pn), middle graph of paths
M (Pn), and splitting of path graphs S(Pn). The families of
P2n, and T (Pn) have constant mixed metric dimension. The
families of M (Pn), and S(Pn) have unbounded mixed metric
dimension. Furthermore, we improved the result for the met-
ric dimension of S(Pn) studied in [17].
Remark 1: The graphs studied in this article are related

to the path graphs, so the mixed metric generator for these
families of graphs must contain both end-vertices.

FIGURE 1. The graph of P2
7 .

III. MAIN RESULTS
Now we present the main results of this article.

IV. CONSTANT MIXED METRIC DIMENSION
A. SQUARE OF PATH GRAPHS P2

n
The square of path graph is constructed by joining the every
pair of vertices distance 2 in a path. The square of path graph
P27 is shown Figure 1. For the graph of P

2
n, we have deg(x1) =

deg(xn) = 2, deg(x2) = deg(xn−1) = 3, and deg(xi) = 4
(3 ≤ i ≤ n − 2). Mathematically the vertex and edge set of
P2n are,

V (P2n) = {xi|1 ≤ i ≤ n}

E(P2n) = {xixi+1|1 ≤ i ≤ n− 1} ∪ {xixi+2|1 ≤ i ≤ n− 2}

It is also noted that |V (P2n)| = n, and |E(P2n)| = 2n− 3. The
metric dimension of P2n is presented as follows,
Theorem 6 [1]: For a graph of P2n, dim(P

2
n) = 2.

We extend our study to the mixed metric dimension of P2n;
it is imperative to consider that the choice of basis vertices is
the core of the problem.
Lemma 1: If n ≡ 0(mod2), and P2n is the square of path

graphs, we have dimm(P2n) ≤ 4.
Proof:Now let uswrite, when n = 2j, j ≥ 3. LetRm =

{x1, x2, xn−1, xn} be the mixed resolving set for the square of
a path graphs P2n. The distinct representation of vertices and
edges with respect to Rm is presented in the following tables.
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TABLE 1. Representation of vertices of P2
n .

TABLE 2. Representation of edges of P2
n .

The representation presented in Table 1 and Table 2 indi-
cates that there are no vertices and edges of graphs having the
same representations, which shows that dimm(P2n) ≤ 4.
Lemma 2:When n ≡ 0(mod2), dimm(P2n) ≥ 4.

Proof: In order to prove that, we assume,
dimm(P2n) = 3.

(1). Let Rm = {x1, x2, x3}, then we have the following,
• r(x1+2i|Rm) = r(x1+2ix2+2i|Rm) = r(x1+2ix3+2i|Rm) =
(i, i, i− 1) for 1 ≤ i ≤ j− 2.

• r(x2+2i|Rm) = r(x2+2ix3+2i|Rm) = r(x2+2ix4+2i|Rm) =
(i+ 1, i, i) for 1 ≤ i ≤ j− 2.

• r(x1+2i|Rm) = r(x1+2ix2+2i|Rm) = (j − 1, j − 1, j − 2)
for i = j− 1.

(2). Let Rm = {x1, x2, xn−1}.
• r(x1+2i|Rm) = r(x1+2ix2+2i|Rm) = (i, i, j − i − 2) for
1 ≤ i ≤ j− 1.

• r(x2+2i|Rm)) = r(x2+2ix2+4i||Rm)) = (i + 1, i, 1) for
(i = j− 2).

• r(x2+2ix3+2i|Rm) = r(x2+2ix4+2i|Rm) = (i+1, i, j− i−
2) for 0 ≤ i ≤ j− 3.

(3). Let Rm = {x1, x2, xn}, then we have the following;
• r(x2+2i|Rm) = r(x2+2ix3+2i|Rm) = (i + 1, i, j − i − 1)
for 0 ≤ i ≤ j− 2.

• r(x1+2ix2+2i|Rm)) = r(x1+2ix3+2i||Rm)) = (i, i, j−i−1)
for (j− 3 ≤ i ≤ j− 2).

This shows the contradiction.
Furthermore, other mixed metric generators can also be

considered, which will show the same kind of contradictions,
which implies that dimm(P2n) ≥ 4.
Lemma 3: If n ≡ 1(mod2), and P2n is the square of path

graphs, we have dimm(P2n) ≤ 4.
Proof: Now let us write, when n = 2j + 1, j ≥ 3.

Let Rm = {x1, x2, xn−1, xn} be the mixed resolving set for
the square of a path graphs P2n. The distinct representation of
vertices and edges with respect to Rm is shown in the tables
below.
The representation in the Table 3 and Table 4 indicates that

there are no vertices and edges of graphs having the same
representations, which shows that dimm(P2n) ≤ 4 when n is
odd.

TABLE 3. Representation of vertices of P2
n .

TABLE 4. Representation of Edges of P2
n .

As shown in the Lemma 2, for the even case of n, there are
no mixed metric generators with cardinality 3. The same kind
of cases can be considered for the odd case of n so that it can
be written as dimm(P2n) ≥ 4. From Lemmas 1, 2, and 3 we
present the mixed metric dimension of P2n which is constant
for both cases of n. It does not depend upon the order of n.
Theorem 7: Let P2n be the square of path graph, then we

have;

dimm(P2n) = 4

FIGURE 2. The total graph of T (P5) of path P5.

B. TOTAL GRAPH OF PATH T (Pn)
The total graph of path T (Pn), studied in [16], for super mean
labeling. The total graph of path T (P5) is shown in the Figure
2. The total graph of path T (Pn) is a graph with the vertex
set V (G) ∪ E(G), that is let x1, x2, . . . , xn be the vertices of
a main path Pn, and e1, e2, . . . , en−1 be the n − 1 edges.
The total graph of path is constructed by adding new vertices
say y1, y2, . . . , yn−1 corresponding to the edges. It is also
noted that V |T (Pn)| = 2n − 1, and E|T (Pn)| = 4n − 5.
Mathematically the vertex and edge set can be written as,

V (T (Pn)) = {xi|1 ≤ i ≤ n} ∪ {yi|1 ≤ i ≤ n− 1}

E(T (Pn)) = {xixi+1, xiyi, xi+1yi|1 ≤ i ≤ n− 1}

∪{yiyi+1|1 ≤ i ≤ n− 2}

Lemma 4: For the total graph of T (Pn), mixed metric
resolving set Rm must contain vertices of the main path and
the path generated by the newly added vertices.

Proof: Let us assume a contradiction, that is Rm =
{xi|1 ≤ i ≤ n}, contains vertices of the main path, then we
have r(xiyi|Rm) = r(xi|Rm) (1 ≤ i ≤ n− 1), a contradiction.
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TABLE 5. Representation of vertices of T (Pn).

TABLE 6. Representation of edges of T (Pn).

Now let assume that Rm = {yi|1 ≤ i ≤ n − 1}, again we
have r(xiyi|Rm) = r(yi|Rm) (1 ≤ i ≤ n − 1). So from above
contradictions we conclude that for the total graph of path
T (Pn), Rm must contains vertices of the main path and the
path generated by the newly added vertices.
Lemma 5: If n ≡ 0(mod2), then for total graph of path

T (Pn), we have dimm(T (Pn)) ≤ 4.
Proof: Now we can write as, when n = 2j, and

j ≥ 3, the mixed metric resolving set for T (Pn), is Rm =
{x1, xn, y1, yn−1}. The distinct representation of vertices and
edges with respect to Rm is shown in the tables.
The representation shown in the Table 5, and Table 6

clearly indicates that no two vertices and edges have
same representation with respect to Rm thus showing that
dimm(T (Pn)) ≤ 4.
Lemma 6: When n ≡ 0(mod2), than for T (Pn), we have

dimm(T (Pn)) ≥ 4.
Proof: Now we assume that dimm(T (Pn)) = 3, then

the following possibilities arise;
(1). Let us assume that Rm = {x1, xn, y1}.
• r(x2+2iy1+2i|Rm) = r(y1+2iy2+2i|Rm) = (2i + 1, 2j −
2i− 2, 2i) for (0 ≤ i ≤ j− 2).

• r(x3+2iy2+2i|Rm) = r(y2+2iy3+2i|Rm) = (2i + 2, 2j −
2i− 3, 2i+ 1) for (0 ≤ i ≤ j− 2).

• r(x2+2i|Rm) = r(x2+2iy2+2i|Rm) = (2i + 1, 2j − 2i −
2, 2i+ 1) for (0 ≤ i ≤ j− 2).

• r(x1+2i|Rm) = r(x1+2iy1+2i|Rm) = (2i, 2j−2i−1, 2i+
1) for (i = 0).

• r(x1+2i|Rm) = r(x1+2iy1+2i|Rm) = (2i, 2j − 2i − 1, 2i)
for (1 ≤ i ≤ j− 1).

(2). Let us assume that Rm = {x1, y1, yn−1}.
• r(x2+2iy1+2i|Rm) = r(y1+2i|Rm) = (2i+1, 2i, 2j−2i−
2) for 0 ≤ i ≤ j− 1.

• r(x2+2iy2+2i|Rm) = r(x2+2ix3+2i|Rm) = (2i + 1, 2i +
1, 2j− 2i− 3) for 0 ≤ i ≤ j− 2.

• r(x3+2iy2+2i|Rm) = r(y2+2i|Rm) = (2i+ 2, 2i+ 1, 2j−
2i− 3) for 0 ≤ i ≤ j− 2.

TABLE 7. Representation of vertices of T (Pn).

TABLE 8. Representation of edges of T (Pn).

• r(x1+2ix2+2i|Rm) = r(x1+2i|Rm) = (2i, 2i, 2j − 2i − 1)
for (3 ≤ i ≤ j− 1).

Thus, a contradiction. Furthermore, other mixed metric
generators can be thought of, which will show the same
contradictions. Thus proving that there is no mixed metric
generator of cardinality 3 in the total graph of path T (Pn),
so dimm(T (Pn)) ≥ 4.
Lemma 7: If n ≡ 1(mod2), then for total graph of path

T (Pn), we have dimm(T (Pn)) ≤ 4.
Proof: Now we can write as, when n = 2j + 1,

and j ≥ 3, the mixed metric generator for T (Pn), is Rm =
{x1, xn, y1, yn−1}. The distinct representation of vertices and
edges with respect to Rm is shown in the following tables.
The representation shown in the Table 7, and Table 8

clearly indicates that no two vertices and edges have
same representation with respect to Rm, thus showing that
dimm(T (Pn)) ≤ 4. In order to prove that dimm(T (Pn)) ≥ 4,
same like Lemma 6, there exist no mixed metric generator
of cardinality 3, for the n ≡ 1(mod2). Thus proving that,
so dimm(T (Pn)) ≥ 4. Form Lemmas 5, 6, and 7 the mixed
metric dimension of dimm(T (Pn)) is obtained in the following
result. This family of graph also consist of constant mixed
metric dimension.
Theorem 8: Let T (Pn) be the total graph of path, then we

have;

dimm(T (Pn)) = 4

Remark 2: The mixed metric generator here can be called
the edge version of a mixed metric generator as the set of
vertices inRm also form the edges for the square of path graph
P2n, and total graph of path T (Pn), respectively.

V. UNBOUNDED MIXED METRIC DIMENSION
A. MIDDLE GRAPH OF PATH M(Pn)
The Middle graph of path M (Pn) is obtained by considering
the vertices of path Pn be y1, y2, . . . , yn, and ei = yiyi+1
(1 ≤ i ≤ n − 1), be the edges of the path then the vertex
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FIGURE 3. The middle graph of M(P7) of path P7.

TABLE 9. Representation of vertices of M(Pn).

set is {y1, y2, , . . . , yn, e1, e2, , . . . , en−1}. Now by renaming
the vertices ei by xi (1 ≤ i ≤ n − 1). The middle graph of
pathM (Pn) is studied in [6] for the radio number. The middle
graph of T (P7) of path P7 is shown in the Figure 3. Now
deg(y1) = deg(yn) = 1, deg(x1) = deg(xn−1) = 3, deg(yi) =
2(2 ≤ i ≤ n − 1), and deg(xi) = 4(2 ≤ i ≤ n − 2). It is also
noted that V (M (Pn)) = 2n− 1, and E(M (Pn)) = 3n− 4.
Lemma 8: Let R = {y1, . . . , yn} ⊆ V (M (Pn)). For some

arbitrary mixed metric generator Rm of M (Pn), Rm contains⌈ 2n−1
2

⌉
vertices of R.
Proof: Let us assume that a contradiction, and Rm

contains
⌈ 2n−1

2

⌉
−1 vertices. Now for instance yi, yi+1 6∈ Rm.

Then r(xiyi|Rm) = r(xi|Rm), which is a contradiction.
We present the mixed metric dimension for the middle

graph of pathM (Pn).
Theorem 9: For n ≥ 6, we have;

dimm(M (Pn)) =
⌈
2n− 1

2

⌉
.

Let Rm = {y1, y2, . . . , yn} be the mixed metric resolving
set for the middle graph of pathM (Pn) for the cases 1,and 2.

Case 1: When n is even, n = 2j, and j ≥ 3. Let us assume
R1 = {y1, y2, y3, yn}, be the mixed metric resolving set, now
the representation of vertices and edges is shown with respect
to R1.

Now from the Table 9, and Table 10, we see the following
contradictions.

• r(x1+2i|R1) = r(x1+2iy2+2i|R1) = 2i+1, 2i, 2i−1, 2j−
2i− 1 for (1 ≤ i ≤ j− 2).

• r(x1+2i|R1) = r(x1+2iy1+2i|R1) = 2i+1, 2i, 2i−1, 2j−
2i− 1 for (2 ≤ i ≤ j− 1).

• r(x2+2i|R1) = r(x2+2iy2+2i|R1) = 2i+2, 2i+1, 2i, 2j−
2i− 2 for (1 ≤ i ≤ j− 2).

• r(x2+2i|R1) = r(x2+2iy3+2i|R1) = 2i+2, 2i+1, 2i, 2j−
2i− 2 for (1 ≤ i ≤ j− 2).

• r(x1+2iy1+2i|R1) = r(x1+2iy2+2i|R1) = 2i + 1, 2i, 2i −
1, 2j− 2i− 1 for (2 ≤ i ≤ j− 2).

TABLE 10. Representation of edges of M(Pn).

TABLE 11. Representation of vertices of M(Pn).

TABLE 12. Representation of edges of M(Pn).

• r(x2+2iy2+2i|R1) = r(x2+2iy3+2i|R1) = 2i + 2, 2i +
1, 2i, 2j− 2i− 2 for (1 ≤ i ≤ j− 2).

In order to overcome these contradictions we will assume
R′1 = {yi|4 ≤ i ≤ n − 1}, and there would be no vertices or
edges having same representation between them. So combin-
ing all these factors Rm = {y1, y2, . . . , yn−1, yn} is the mixed
metric generator of cardinality

⌈ 2n−1
2

⌉
.

Case 2: When n is odd, n = 2j + 1, and j ≥ 3. let R1 =
{y1, y2, yn−1, yn}, be the mixed metric resolving set, now the
representation of vertices and edges is shown with respect to
mixed resolving set R1.
Now from the Table 11, and Table 12, we have the follow-

ing contradiction;

• r(x2+2i|R1) = r(x2+2iy3+2i|R1) = 2i + 2, 2i + 1,
2j− 2i− 2, 2j− 2i− 1 for (0 ≤ i ≤ j− 2).

• r(x2+2i|R1) = r(x2+2iy2+2i|R1) = 2i + 2, 2i + 1,
2j− 2i− 2, 2j− 2i− 1 for (1 ≤ i ≤ j− 2).

• r(x1+2i|R1) = r(x1+2iy2+2i|R1) = 2i + 1, 2i,
2j− 2i− 1, 2j− 2i for (1 ≤ i ≤ j− 2).
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• r(x1+2i|R1) = r(x1+2iy1+2i|R1) = 2i + 1, 2i, 2j − 2i −
1, 2j− 2i for (1 ≤ i ≤ j− 1).

• r(x1+2ix2+2i|R1) = r(x1+2iy2+2i|R1) = 2i + 1, 2i, 2j −
2i− 2, 2j− 2i− 3 for (1 ≤ i ≤ j− 2).

• r(x1+2ix2+2i|R1) = r(x1+2iy1+2i|R1) = 2i + 1, 2i,
2j− 2i− 2, 2j− 2i− 3 for (1 ≤ i ≤ j− 2).

In order to overcome these contradictions we will assume
R′1 = {yi|3 ≤ i ≤ n − 2}, and there would be no vertices or
edges having same representation between them. So combin-
ing all these factors Rm = {y1, y2, . . . , yn−1, yn} is the mixed
metric generator of cardinality

⌈ 2n−1
2

⌉
.

B. SPLITTING GRAPH OF A PATH S(Pn)
Let S(Pn) be the splitting graph of a path Pn. The metric
dimension of splitting graph of a path S(Pn) is studied in
[17]. The splitting graph of path S(P5) of path P5 is shown
in the Figure 4. Now let x1, x2, . . . , xn be the vertices of Pn,
add new vertices y1, y2, . . . , yn corresponding to the vertices
x1, x2, . . . , xn to form S(Pn). Also deg(y1) = deg(yn) = 1,
deg(x1) = deg(xn) = deg(yi) = 2(2 ≤ i ≤ n − 1), and
deg(xi) = 4(2 ≤ i ≤ n − 1). For the sake of simplicity we
can write as, V1 = {x1, x2, . . . , xn}, which is the main path
and V2 = {y1, y2, . . . , yn}, the vertices adjacent to V1. Then
V (S(Pn)) = {x1, x2, . . . , xn, y1, y2, . . . , yn}. It is to be noted
that V |(S(Pn))| = 2n, and E|(S(Pn))| = 3n− 3.
Lemma 9: If for any mixed metric generator Rm of S(Pn),

Rm contains no vertices of the main path.
Proof: Without the loss of generality, we assume a

contradiction let Rm = {x1, . . . , xn}. Now we can see that
r(xi|Rm) 6= r(yi|Rm)(1 ≤ i ≤ n) 6= r(xixi+1|Rm)(1 ≤ i ≤
n − 1). But for the vertices with degree 1, that is deg(y1) =
deg(yn) = 1, we have r(xi+1yi|Rm) = r(xi+1|Rm) for i = 1,
and also r(xiyi+1|Rm) = r(xi|Rm) for i = n − 1. Thus Rm
contains no vertices of the main path.

Next we present the mixed metric dimension for the split-
ting graph of a path S(Pn).
Theorem 10: For n ≥ 6, dimm(S(Pn)) is,

dimm(S(Pn)) =
⌈
n
2

⌉
+ 1

Let Rm = {y1, y2i+2|i = 0, . . . ,
⌈ n
2

⌉
− 3, yn−1, yn}. Now we

will prove that Rm is mixed metric resolving set for the even
case of n.

Case 1: When n = 2j, and j ≥ 4. Let R1 =
{y1, y2, yn−1, yn}. The representation of the vertices and edges
with respect to R1, is shown.
Now from the Table 13, and Table 14, we have the follow-

ing contradictions.

• r(x2+2i|R1) = r(y2+2i|R1) = 2i + 1, 2i, 2j − 2i − 3,
2j− 2i− 2 for (1 ≤ i ≤ j− 3).

• r(x1+2i|R1) = r(y1+2i|R1) = 2i, 2i − 1, 2j − 2i − 2,
2j− 2i− 1 for (2 ≤ i ≤ j− 2).

• r(x1+2ix2+2i|R1) = r(x1+2iy2+2i|R1) = 2i, 2i − 1,
2j− 2i− 3, 2j− 2i− 2 for (1 ≤ i ≤ j− 3).

• r(x2+2ix3+2i|R1) = r(x2+2iy3+2i|R1),

FIGURE 4. The splitting graph of path S(P5).

TABLE 13. Representation of vertices of S(Pn).

TABLE 14. Representation of edges of S(Pn).

• = r(x3+2iy2+2i|R1) = 2i+ 1, 2i, 2j− 2i− 4, 2j− 2i− 3
for (1 ≤ i ≤ j− 3).

• r(x1+2ix2+2i|R1) = r(x2+2iy1+2i|R1) = 2i, 2i − 1, 2j −
2i− 3, 2j− 2i− 2 for (2 ≤ i ≤ j− 2).

In order to resolve these vertices and edges, we assume that
R′1 = {y2i+2|i = 1, . . . ,

⌈ n
2

⌉
− 3}, which will present distinct

representation among them. So from the above facts we can
deduce that Rm = {y1, y2i+2|i = 0, . . . ,

⌈ n
2

⌉
− 3, yn−1, yn}

is the mixed metric resolving set for even case of S(Pn) with
cardinality

⌈ n
2

⌉
+ 1.

Let Rm = {y1, y2i+2|i = 0, . . . ,
⌈ n
2

⌉
− 2, yn} be the mixed

metric bases for the odd case of n.
Case 2: To prove this we can write as, n = 2j + 1, and

j ≥ 4. Let R1 = {y1, y2, y4, yn}. The representation of the
vertices and edges with respect to R1, is shown.

Now from the Table 15, and Table 16, we have the follow-
ing contradictions.
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TABLE 15. Representation of vertices of S(Pn).

TABLE 16. Representation of edges of S(Pn).

• r(x2+2i|R1) = r(y2+2i|R1) = 2i+1, 2i, 2i−2, 2j−2i−1
for (2 ≤ i ≤ j− 2).

• r(x1+2i|R1) = r(y1+2i|R1) = 2i, 2i − 1, 2i − 3, 2j − 2i
for (3 ≤ i ≤ j− 1).

• r(x1+2ix2+2i|R1) = r(x1+2iy2+2i|R1) = 2i, 2i − 1, 2i −
3, 2j− 2i− 1 for (2 ≤ i ≤ j− 3).

• r(x2+2ix3+2i|R1) = r(x2+2iy3+2i|R1),
• = r(x3+2iy2+2i|R1) = 2i+ 1, 2i, 2i− 2, 2j− 2i− 2 for
(2 ≤ i ≤ j− 2).

• r(x1+2ix2+2i|R1) = r(x1+2iy2+2i|R1) = 2i, 2i − 1, 2i −
3, 2j− 2i− 1 for (2 ≤ i ≤ j− 2).

• r(x2+2ix3+2i|R1) = r(x3+2iy2+2i|R1) = 2i + 1, 2i, 2i −
2, 2j− 2i− 2 for (2 ≤ i ≤ j− 2).

In order to resolve these vertices and edges, we assume that
R′1 = {y2i+2|i = 2, . . . ,

⌈ n
2

⌉
− 2}, which will present distinct

representation among them. So from the above facts we can
deduce that Rm = {y1, y2i+2|i = 0, . . . ,

⌈ n
2

⌉
− 2, yn} is

the mixed metric resolving set for even case of S(Pn) with
cardinality

⌈ n
2

⌉
+ 1.

VI. METRIC DIMENSION OF S(Pn)
The metric dimension of splitting of path S(Pn) is computed
in [17], the authors proved that,
Theorem 11 [17]: dim(S(Pn)) =

⌈ n
3

⌉
.

In order to show dim(S(Pn)) ≤
⌈ n
3

⌉
, the resolving set

is considered as, W = {v3i−1; i = 0, 1, . . . ,
⌈ n
3

⌉
− 1}.

As W ⊆ V (G), we believe that the resolving set should

be W = {v3i+1; i = 0, 1, . . . ,
⌈ n
3

⌉
− 1}. For the sake of

understanding the same labeling for the vertices is shown
here.

Now we consider the case for 0 ≡ (mod3), we consider
the splitting graph of S(P9). The resolving set is W =

{v1, v4, v7}. The representation of the vertices are shown
graphically see Figure 5.

FIGURE 5. The splitting graph of S(P9).

From the Figure 5, it can be seen that r(v9|W ) =
r(u9|W ) = (8, 5, 2). In general it can be written as r(vn|W ) =
r(un|W ). So now we give an improved result for the metric
dimension of splitting of path graph S(Pn).
Theorem 12: For the n ≥ 6;

dim(S(Pn)) =


⌈n
3

⌉
+ 1, 0(mod3);⌈n

3

⌉
, 1, 2(mod3).

The improved resolving sets are;
W = {v3i+1; i = 0, 1, . . . ,

⌈ n
3

⌉
− 1, vn} for 0(mod3),

W = {v3i+1; i = 0, 1, . . . ,
⌈ n
3

⌉
− 1} for 1, 2(mod3).

Problem 1: Compute the mixed metric dimension for the
cycle related graphs.
Problem 2: The computation of edge metric dimension of

path related graphs can be considered if unknown, and for
which families of path related graphs dime(G) = dimm(G).

VII. CONCLUSION
This article deals with a newly introduced, which is known
as a mixed metric dimension. The mixed metric dimension
deals with both the metric and edge metric dimension of
the graphs. There are several families of graphs for which
metric, edge, and mixed metric dimensions are equal. In this
article, we deal with some path related graphs, namely P2n,
T (Pn), M (Pn), S(Pn), that is square of a path, a total graph
of a path, the middle graph of path and splitting of a path,
respectively. We computed constant and unbounded mixed
metric dimensions for these families. Further research can be
thought of as finding a mixed metric dimension in some cycle
related graphs. We also presented an improved result for the
metric dimension of S(Pn).
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