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ABSTRACT In order to improve the classification of hyperspectral image(HSI), we propose a novel
hyperspectral image classification method based on the comprehensive evaluation model of extreme learning
machine(ELM) with the cumulative variation weights(CVW), referred to as ELM with the cumulative
variation weights and comprehensive evaluation (CVW-CEELM). To be specific, the cumulative variation
value is proposed as a new metric. The inefficient bands are eliminated by the cumulative variation quotient
values based on the cumulative variation values. The cumulative variation weights based on the cumulative
variation values are used to determine the contribution of each weak ELM classifier to the hyperspectral
image classification algorithm. The remaining effective bands are divided by grouping strategy. In each
group of the effective bands, the different numbers of bands are selected to reduce the dimension of
the hyperspectral image dataset by the weighted random-selecting-based method. After dimensionality
reduction, the spatial-spectral features of each pixel are extracted and multiple weak ELM classifiers are
trained by the training samples. Then, the results of several weak classifiers are synthetically evaluated by
the cumulative variation weights to get the final classification results. Experimental results on the typical
hyperspectral image datasets illustrate that the proposed CVW-CEELM has few adjustable parameters to
make the operation simple, and outperforms a variety of the image classification counterparts in terms of the
calculation cost and classification accuracy.

INDEX TERMS Hyperspectral image, extreme learning machine, cumulative variation weights, compre-
hensive evaluation.

I. INTRODUCTION
In recent years, hyperspectral image classification has
attracted much research from the remote sensing commu-
nity [1]. The spectrum information of a hyperspectral image
dataset is very abundant, and it enhances the ability to identify
target areas in the aspect of spatial information, spectral
information and radiation information [2]. Due to the rich
information and characteristics, hyperspectral images have
been widely used in many fields,e.g., environmental moni-
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toring [3], rock mineral identification [4], precision agricul-
ture [5] and military target monitoring [6]. In addition to
the state-of-the-art neural networks, support vector machines
and other methods can also be applied to hyperspectral
image classification. However, the hyperspectral data sets
have the high-dimensional data structures and bring some
challenges for hyperspectral image classification. In partic-
ular, the unbalance between the limited number of training
samples and the high dimensionality of the data can cause
Hughes phenomenon.

With a purpose of improving the accuracy of the hyper-
spectral image classification, previous researchers suggested
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a lot of excellent methods, e.g. principal component
analysis(PCA) [7], segment autoencoder(SA) [8], singular
spectrum analysis(SSA) [9], deep learning(DL) [10]. These
methods not only avoids Hughes, but also improves the
classification results of hyperspectral image datasets. On the
other hand, support vector machines [11], kernel-based algo-
rithms [12] and extreme learning machine (ELM) [13], [14]
have been proved to be very useful for the hyper-spectral
image classification. Multiple composite features and the
composite features have been used to improved the classifica-
tion accuracy [15]. Also, some sampling query strategies have
been proposed to address the limited availability of training
samples, such as semi-supervised and active learning meth-
ods [16]. Among these algorithms, a new machine learning
approach that is termed the extreme learning machine has
attracted a lot of attention. It is a single hidden layer feedfor-
ward neural network(SLFN). During the training process of
traditional SLFNs, all the weights and biases need to be tuned
iteratively, which is usually solved by gradient-based itera-
tive techniques, e.g.,back-propagation (BP) algorithm [17].
Compared with the traditional BP neural network and support
vector machine, the advantages of ELM are fast computation,
few parameters, better recognition efficiency and generaliza-
tion ability [15].

With these salient advantages, extreme learning machine
(ELM) has attracted the attention of a large number of
researchers in the area of hyperspectral image classifification
and analysis over the past several years. e.g., an extreme
learning machine approach is presented in the reference [18].
ELM has been successfully applied to many areas of classi-
fication in the reference [19]. Nonetheless, the existing ELM
methods only use spectral information, hyperspectral image
classification accuracy is not high. In order to achieve better
search performance, researchers have improved their meth-
ods. Li et al. have proposed amethod for the parameters of the
extreme learning machine, which is based on differential evo-
lution algorithm [20]. Liu et al. have proposed a hyperspectral
image classification method that combines spatial-spectral
and ELM [21]. Extreme learning machine with composite
kernels for hyperspectral image classification have been pro-
posed in the reference [22]. This improved ELM algorithm
can not capture accurate spatial information, classification
accuracy is still not ideal. Cao et al. have proposed linear
vs nonlinear extreme learning machine for spectral-spatial
classification of hyperspectral image in the reference [23],
it works effectively, but its high computation complexity
interferes with its application on HSI containing large scenes.
In the reference [24], ensemble extreme learning machines
for hyperspectral image classification have been proposed,
howerer, E2LMs have used upsampling to train weak learn-
ing classifier and the classification results are not optimal
with limited number of training samples. A classification
method based on combination of spatial-spectral features and
ensemble extreme learning machines(SS-EELM) is proposed
in the reference [25], several rounds of sampling are carried
out based on ensemble learning theory, and several weak

classifiers with poor classification accuracy are trained and
then combined to build a strong classifier using majority vote
method, this method has low computational complexity and it
is easy to implement. Howerer, SS-EELM does not consider
the contribution of each band, the algorithm does not optimize
sample selection, its classification results can still be further
improved.

In order to reduce the complexity of classification algo-
rithm and construct the band grouping strategy which is more
suitable for the classification of many different types of small
size homogeneous areas, we propose a novel hyperspectral
image classification algorithm based on the comprehensive
evaluationmodel of extreme learningmachinewith the cumu-
lative variation weights(CVW-CEELM). At present, a set
of optimization criteria and algorithms have better effects
in bands selection but also higher calculation complexity.
Considering the retention of the original image information
and the strong correlation between neighboring bands, the
effective bands can be equally divided into multiple groups,
in which the subsets of bands are selected randomly accord-
ing to certain weights to reduce the complexity in bands
selection. The proposed method, which is a suboptimal bands
selection method, is used to reduce the dimension of the
hyperspectral image dataset, namely the weighted random-
selecting-based method. Especially, the classification results
of small samples is improved. First, the cumulative variation
value is proposed, and the inefficient bands can be eliminated
based on the cumulative variation quotient values determined
by the cumulative variation values. Second, we propose the
improved grouping strategy for the remaining effective bands
to increase the feature vectors of the hyperspectral image
dataset, and the different numbers of bands are selected by
the weighted random-selecting-based method to reduce the
feature dimension. Third, after dimensionality reduction, the
spatial-spectral features of each pixel are extracted and mul-
tiple weak ELM classifiers based on the supervised classifi-
cation framework are trained by the training samples. Finally,
the results of several weak classifiers are synthetically eval-
uated using the cumulative variation weights determined by
the cumulative variation values to get the final classification
results. Experimental results obtained from two benchmark
hyperspectral datasets confirm the attractive properties of
the proposed method in terms of classification accuracy and
computation time.

The rest of this paper is organized as follows:
Section 2 describes the ELM algorithm. Section 3 describes
the CVW-CEELM algorithm. Section 4 presents the experi-
mental results, and Section 5 provides concluding remarks.

II. EXTREME LEARNING MACHINE
The ELM is a learning algorithm for single-hidden-layer
feedforward neural network. As long as the activation func-
tion can be infinitely differentiable in any real number range,
the input weight and bias in ELM are randomly generated
and independent of the training samples [26]. Compared with
traditional BP neural network, ELM does not require bias of
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the output layer, and ELM only needs to determine the weight
matrix linking the hidden neurons and the output neurons. For
α arbitrary different training samples (Pi,Yi), i = 1, 2, · · ·α,
where Pi = [xi1, xi2, · · · xim]T is the feature matrix, and
Yi = [ti1, ti2, · · · tin]T is the label information corresponding
to Pi. The relationship between input and output of ELM can
be expressed as [27]

n∑
j=1

βig
(
ωij · Pi + bj

)
= oi

i = 1, 2, · · · ,m; j = 1, 2, · · · , n (1)

where βj is the weight vector linking the jth hidden neuron
and all the output neurons. bj is the jth bias. oi is the ith sample
output vector. ωij is the weight value linking the jth hidden
neuron and the ith input neuron. g (·) is the sigmoid function.
β = (β1, β2, · · · , βn)

T is the weight matrix linking the hid-
den neurons and the output neurons. Y = (Y1,Y2, · · · ,Ym) is
the label matrix. The optimization objective function of ELM
is as follows.

Min
β
‖Hβ − Y‖ (2)

where the hidden-layer output matrix is expressed by H , as
shown at the bottom of the page.

In order to determine the optimal parameters of the objec-
tive function, the matrix H can be derived once the param-
eter pair

(
ωj, bj

)
is fixed, and then training ELM means

finding the least-squares solution
∧

β of the Hβ = Y , i.e.,∥∥∥∥H ∧β −Y∥∥∥∥ = Min ‖Hβ − Y‖.
∧

β can be expressed as

∧

β = H+Y (3)

whereH+ is theMoore-Penrose generalized inverse ofmatrix
H. When the parameters are determined, formula(1)can be
used to calculate the output function of ELM.

III. PROPOSED CVW-CEELM
Considering the characteristics of the hyperspectral image
dataset, the effective dimensionality reduction method is
proposed, and then the corresponding classification method
is studied for HSI dataset. The proposed CVW-CEELM is
described as follows.

A. NORMALIZATION
Due to a lot of noise information in HSI dataset, normal-
ization of HSI dataset should be adopted to reduce the high

signal-to-noise ratio of HSI. The normalization of HSI dataset
is expressed as

Nor(x ipq) = 255×
x ipq −min(x i)

max(x i)−min(x i)
(4)

where x ipq is the ith band gray value in row p, column q. x i is
the ith band gray value matrix.

B. BAND CUMULATIVE VARLATION FUNCTION
The information variation value can reflect the data disper-
sion degree when analyzing the data. Compared with the
deviation of data set, the measurement scale has little influ-
ence on the information variation value. Based on the above
advantage, the information variation value is improved for
dimensionality reduction of HSI dataset and comprehensive
evaluation in this paper. We propose a new metric named
cumulative variation value with the intention of reflecting the
data dispersion degree. The corresponding concepts and oper-
ations of the cumulative variation weights based on cumula-
tive variation value are described as follows.

The cumulative variation value of the intraclass is
expressed as

CNik (t) =

t−1∑
j=1
|Cik (j+ 1)− Cik (j)|

C̄ik (t)
, 2 ≤ t ≤ Tik ,

1 ≤ k ≤ CLN (5)

C̄ik (t) =
1
t

t∑
j=1

Cik (j) (6)

where CNik (t) is the cumulative variation value of the kth
category of the ith band. C̄ik (t) is the sample mean of the
kth category of the ith band. Cik (j) is the jth sample of the
kth category of the ith band. Tik is the sample size of the kth
category of the ith band. CLN is the number of categories.

If the cumulative variation value of the intraclass is close
to zero, it shows that there is no significant difference in gray
values of the same category of a band, and the classification
effect is better by using this band. If the cumulative variation
value of the intraclass is away from zero, it shows that the
gray values of the same category of a band differ significantly,
and the classification effect is poor by using this band. The
cumulative variation value of the interclass is expressed as

CZi(t) =

t−1∑
j=1
|Ci(j+ 1)− Ci(j)|

C̄i(t)
, 2 ≤ t ≤ Ti (7)

C̄i(t) =
1
t

t∑
j=1

Ci(j) (8)

H =


g (ω1 · P1 + b1) g (ω2 · P1 + b2) · · · g (ωn · P1 + bn)
g (ω1 · P2 + b1) g (ω2 · P2 + b2) · · · g (ωn · P2 + bn)

...
...

...

g (ω1 · Pm + b1) g (ω2 · Pm + b2) · · · g (ωn · Pm + bn)


m×n
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whereCZi(t) is the cumulative variation value of the ith band.
C̄i(t) is the sample mean of the ith band. Ci(j) is the jth
sample of the ith band. Ti is the sample size of the ith band.

Ti =
CLN∑
k=1

Tik .

The cumulative variation value of the interclass can rep-
resent the difference between different classes in the same
band. If the cumulative variation value of the interclass is
close to zero, it shows that there is no significant difference
in gray values of the different classes in the same band, and
the classification effect is poor by using this band. If the
cumulative variation value of the interclass is away from zero,
it shows that the gray values of the different classes in the
same band differ significantly, and the classification effect is
improved by using this band.

C. DIMENSIONALITY REDUCTION
Actually, the gray values of the intraclass are quite different
because some pixels may contain multiple ground objects.
Therefore, the related variation information of the interclass
and the related variation information of the intraclass should
be comprehensively considered by the cumulative variation
quotient. Meanwhile, the cumulative variation weights can be
constructed by the cumulative variation quotient.

The cumulative variation quotient of a band is expressed as

F(i) =
‖CZi(t)‖2

CLN∑
k=1
‖CNik (t)‖2

, 1 ≤ i ≤ BN (9)

whereF(i) is the cumulative variation quotient of the ith band.
BN is the number of bands.

The norms used above are expressed as

‖CZi(t)‖2 =
(∫ Ti

1
(CZi(t))2 dt

)1/2

(10)

‖CNik (t)‖2 =
(∫ Tik

1
(CNik (t))2 dt

)1/2

(11)

When there is significant difference between the interclass
and the intraclass, the cumulative variation quotient is away
from 1, and the classification effect is better by using this
band. Otherwise, the cumulative variation quotient is close
from 1, and the classification effect is poor by using this
inefficient band.

An important point needs to be added as follows. The
arrangement order of training samples may change. This
change may affect the distribution of the cumulative vari-
ation values of the intraclass, but the cumulative variation
values of the interclass also change. The cumulative variation
quotient value expresses the difference between them as a
whole. Therefore, there is no illconditioned problem in the
cumulative variation quotient value about the arrangement
order of training samples.

Due to the strong correlation between neighboring bands,
the weighted random-selecting-based method is proposed to
reduce the dimension of the hyperspectral image dataset.

First, the inefficient bands can be eliminated and average
group is generated for the remaining effective bands. When
eliminating inefficient bands, three aspects need to be noted
as follows: If the cumulative variation quotient value of a
band is close from 1, this band can be eliminated; Loss of
original information should be minimized; The number of
inefficient bands is determined by the needs of the grouping
strategy. Second, the cumulative variation quotient is used to
calculate the weight of each group. Finally, the weights are
used to randomly select the bands in each group.

The band weights of each group are expressed as

ρ
L
=

∑
FL(i)∑
F(i)

, 1 ≤ L ≤ GN (12)

where ρL is the weight of Lth group.
∑
FL(i) is the sum of

cumulative variation quotient of the Lth group.
∑
F(i) is the

sum of the cumulative variation quotient of all bands. GN is
the number of groups.

The result of multiplying ρL with the required number
is the number of randomly selected bands in each group.
In practice, the number of selected bands should not exceed
the total number of bands in the group, and all selected bands
should retain at least 50% of the valid original information
according to the experimental experience in reference [25].

D. SPATIAL-SPECTRAL FEATURE
Considering the strong correlation between neighboring
bands [28], [29], the spatial-spectral features are used to clas-
sify the HSI dataset after dimensionality reduction based on
the cumulative variation quotient. xspepq is the spectral feature
of a given pixel, and xspapq is the spatial feature of a given pixel.
The spatial feature of a given pixel is expressed as

xspapq =
1
QN

∑
(p,q)∈Q(p,q)

xspepq (13)

where Q(p, q) is the squared neighborhood of a given pixel.
QN is the number of samples in the squared neighborhood
Q(p, q).

The spatial-spectral feature of a given pixel is expressed as

xpq = γ xspepq + (1− γ )xspapq , γ ∈ [0, 1] (14)

where xpq is the spatial-spectral feature of a given pixel. γ
can be determined through numerical experiments.

E. COMPREHENSIVE EVALUATION MODEL OF ELM BASED
ON CVW
After dimensionality reduction, the spatial-spectral features
of each pixel is extracted and multiple weak ELM classifiers
are trained by the training samples. Finally, the several weak
classifiers with the cumulative variation weights are synthet-
ically evaluated to obtain the final classification results.

The following formula is used to calculate the cumulative
variation weight of each classifier.

ϕLSw =
∑
i∈LSw

F(i) (15)
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ηw =
ϕLSw∑
ϕLSw

, 1 ≤ w ≤ CN (16)

where w is the classifier label. CN is the number of weak
classifiers. LSw is the selected band set of the wth weak
classifier. ϕLSw is the sum of cumulative variation quotient of
the wth weak classifier. ηw is the cumulative variation weight
of the wth weak classifier.

The comprehensive evaluation of weak classifiers can be
expressed as

resultw = [ow(1), ow(2), · · · , ow(CLN )]T (17)

Result = argmax

{
CN∑
w=1

ηw · resultw

}
(18)

where resultw is the output vector of the wth weak classifier.
ow(i) is the ith component of the output vector. Result is the
final comprehensive evaluation result.

F. ALGORITHM PROCEDURES
The complete algorithm procedures are described as follows.
The corresponding flowchart of CVW-CEELM is shown in
Fig. 1.

IV. EXPERIMENTAL RESULTS
In this section, two well-known HSI datasets (Indian Pines
and Pavia University scene) are used to verify the effective-
ness of the proposed method. SVM [30],ELM [31],GELM
[18],KELM,GELM-CK,KELM-CK [21],SS-EELM [25]
serve as the benchmark models to verify the proposed CVW-
CEELM. In addition, the general Gaussian radial basis func-
tion kernel for SVM,KELM and KELM-CK is adopted as
K (xi, xj) = exp(−

∥∥xi − xj∥∥2 /2σ 2), where σ =2q, q ∈
{-4, -3, . . . , 4}, and the optimal penalty parameter C and
kennel width σ are determined through the grid search algo-
rithm [21]. Eight independent experiments are conducted,
and class accuracy(CA), average accuracy(AA), the average
values of overall accuracy (OA), kappa coefficient and calcu-
lation cost are used to evaluate the classification results.

A. INDIAN PINES
This dataset was acquired in 1992 over the Indian Pines
test site in Northwestern Indiana by the AVIRIS sensor.
This dataset consists of 16 land cover classes. Indian Pines
compose of 145 × 145 pixels and 220 spectral bands, the
wavelength range is from 0.4µm to 2.5µm. For Indian Pines
images, 10% of the labeled samples are randomly selected
for training, and the remaining samples are used for testing.
All models use the same training samples. Table 1 shows the
number of the training samples, the number of testing samples
and classification results of all comparison models. Fig. 2
shows the false color image and the ground-truth map of the
Indian Pines.

To describe the role of cumulative variation quotient val-
ues, bands 173 and 220 are chosen as representatives of all
bands. The cumulative variation curve of band 173 is shown
in Fig. 3. Compared with the cumulative variation values

Algorithm 1 CVW-CEELM
Input: Training set Xtrs = {(Pi,Yi) |i = 1, · · · , α }; S: All
samples; Testing set Xtes = S − Xtrs; CN : The number of
weak classifiers.
Output: Classification result
Step 1) Normalization for HSI according to (4).
Step 2) Calculate the cumulative variation quotient val-

ues for all bands.
Step 2.1) Calculate the cumulative variation values of

the intraclass according to (5)-(6). (CNik (t))
Step 2.2) Calculate the cumulative variation values of

the interclass according to (7)-(8). (CZi(t)).
Step 2.3) Calculate the F(i), 1 ≤ i ≤ BN for all bands

according to (9)-(11).
Step 3) Eliminate inefficient bands base on F(i).
Step 4) Reduce the dimension for each ELM classifier.

Step 4.1) The effective bands are equally divided into
GN groups.

Step 4.2) Calculate the weight of each group according
to (12). (ρL , 1 ≤ L ≤ GN ).

Step 4.3) In each group, the different numbers of bands
can be determined to reduce the dimension of
HSI by ρL , 1 ≤ L ≤ GN .

Step 5) for i=1 to CN . do the following:
Step 5.1) Generate random label information of bands

in each group based on step 4.3) to form a new
band label vector.

Step 5.2) Generate the spatial-spectral features based
on the new band label vector according to
(13)-(14).

Step 5.3) Feed the spatial-spectral features of Xtrs to

ELM to train a classifer:
∧

β = H+Y according
to (3).

end for
Step 6) Establish the comprehensive evaluation model of
ELM

Step 6.1) Calculate the cumulative variation weights
ηw, 1 ≤ w ≤ CN for all ELM classifiers
according to (15)-(16).

Step 6.2) Generate the classification result from CN
classification results of each test sample
according to(17)-(18).

of the interclass,the fluctuation amplitude of the cumulative
variation values of the intraclass are obviously larger, and the
cumulative variation quotient value of band 173 is 3.4559.
This result indicates that the differences among the 16 classes
based on band 173 are significant, and band 173 is favorable
for HSI classification. The band 173 should be retained for
HSI classification. The cumulative variation curve of band
220 is shown in Fig. 4. The fluctuation amplitude of the
cumulative variation values of the intraclass are close to that
of the cumulative variation values of the interclass, and the
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FIGURE 1. The overall flowchart of CVW-CEELM.

FIGURE 2. False color image, ground-truth map and corresponding colors based on band 173 of Indian Pines. ((a) false color
image; (b) ground-truth map; (c) corresponding colors).

cumulative variation quotient value of band 220 is 1.1592
which is close to 1. This result indicates that the differences
among the 16 classes based on band 220 are not significant,
and band 220 is not favorable for HSI classification. There-
fore band 220 should be eliminated. The cumulative variation
quotient values of all 220 bands are also calculated and shown
in Fig. 5.

The twenty-four bands whose cumulative variation quo-
tient values are close to 1 should be eliminated. The twenty-
four eliminated bands are clearly marked in red, as shown in
Fig. 5. Table 2 lists the cumulative variation quotient values
of the twenty-four eliminated bands. From the experimental
results, the twenty-four eliminated bands (bands 1, 88, 104-
109, 150-163, 219-220) include exactly twenty bands (bands
104-108, 150-163, 220) affected by water vapor noise. This
result suggests that the proposed method based on the cumu-
lative variation quotient is effective. The remaining 196 bands
are effective bands for HSI classification.

In order to avoid missing some effective bands in the
process of dimensionality reduction, the effective bands are

FIGURE 3. Cumulative variation curve of band 173.

divided into fourteen groups of fourteen bands on average.
The number of weak ELM classifiers is set as 14. The average
grouping is shown in Fig. 6. Grouping strategy is performed
for the remaining effective bands according to step 3), and
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TABLE 1. Classification results obtained for the Indian pines dataset.

TABLE 2. Cumulative variation quotient values of eliminated bands and corresponding bands.

a certain number of bands are selected by the weighted
random-selecting-based method to reduce the dimension of
hyperspectral image dataset according to step 4). All selected
information should retain at least 50% of the valid origi-
nal information. At least ninety-eight bands are selected as
the new band label vector. The spatial-spectral features are
generated based on the new band label vector according to
(13)-(14); Meanwhile the spatial-spectral features of training
set are fed to ELM to train a classifer. All classifiers can
be established according to step 5). The number of bands
selected for each group is shown in Table 3. According to
Table 3 and Fig.6, if the weight is larger based on the cumu-
lative variation quotient values, this group of bands is con-
ducive to HSI classification, and the more bands are selected
in this group. On the other hand, the weight is smaller based
on the cumulative variation quotient values, fewer bands are
selected in this group. This grouping strategy increases the
feature vectors of each sample to enrich the description of
small samples, as shown in Fig. 1.

In order to extract spatial-spectral features, the width of
neighborhood window is set to 3. Next, we discuss the impact
of the number of hidden nodes and γ on the HSI classifi-
cation accuracy based on CVW-CEELM. We investigate the
impact of the number of hidden nodes on the classification
performance of CVW-CEELM. FIG. 7 depicts OAs curves

FIGURE 4. Cumulative variation curve of band 220.

versus the number of hidden nodes of CVW-CEELM, where
the parameter is γ = 0.1. When the number of hidden nodes
of CVW-CEELM equals 400, the best OA can be obtained
for Indian Pines dataset. On the other hand, the number of
hidden nodes of SS-EELM is set to 500 and other parameters
are set according to reference [25]. The number of hidden
nodes of GELM-CK and KELM-CK is set to 1000, and other
parameters are set according to reference [21].
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TABLE 3. The number of bands selected by the weighted random-selecting-based method for Indian pines.

FIGURE 5. Cumulative variation quotient curve of Indian pines.

FIGURE 6. Average grouping of Indian pines.

In the following experiments, we explore the impact of γ
on the classification performance of CVW-CEELM. FIG. 8
shows the OAs curves versus γ for the GELM-CK, KELM-
CK, SS-EELM and CVW-CEELM, while other parameters
have been determined in the previous experiment. Referring
to this figure, the proposed CVW-CEELM outperforms the
GELM-CK,KELM-CK and SS-EELMwhen γ is sufficiently
large. For example, when 1 − γ = 0.9, the CVW-CEELM
achieves an OA of 98.53% while the GELM-CK, KELM-CK
and SS-EELM accomplish the OAs of 96.69%, 97.91%
and 97.10% respectively. For the convenience of experimen-
tal analysis, γ of the above algorithms is assumed to be
0.1 unless otherwise stated. The mean of the five perfor-
mance metrics corresponding to the above eight algorithms
are listed in Table 1. Moreover, the classification maps of
the SVM, ELM, GELM, KELM, GELM-CK, KELM-CK,
SS-EELMandCVW-CEELM for Indian Pines corresponding
to Table 1 are shown in FIG. 9.

Under the conditions of adopting the same effective bands
and training samples, the analysis results for Indian Pines
dataset are as follows.

FIGURE 7. The relation between the OAs of Indian Pines and the number
of hidden nodes.

FIGURE 8. The relation between the OAs of Indian Pines and the
combination coefficient γ .

The first four spectral-feature-based models(SVM,ELM,
GELM and KELM) only use the spectral features. Although,
SVM and KELM increase the calculation cost due to the
introduction of the kernel function, SVM and KELM have
better classification effect than ELMandGELM.As observed
from the Table 1, the last four spatial-spectral-feature-
based models (GELM-CK,KELM-CK,SS-EELM and CVW-
CEELM) show better classification performance than the first
four models. Through the further analysis of the last four
models, we find that the classification accuracy of GELM-CK
is not as good as KELM-CK,SS-EELM and CVW-CEELM.
KELM-CK model consumes time cost up to 16.0 seconds.
Although SS-EELM model based on the ensemble extreme
learning machines does not introduce the kernel functions,
SS-EELM also has large calculation cost, whereas it is equal
to 36.5 seconds. The proposed CVW-CEELM, which adopts
the suboptimal bands selection method, only need 15.4 sec-
onds to do so. OA of the proposed CVW-CEELM is 98.5%;
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FIGURE 9. Classification maps of the SVM,ELM,GELM,KELM,GELM-CK,KELM-CK,SS-EELM and CVW-CEELM for the Indian Pines.

OA of KELM-CK is 98.1%; OA of SS-EELM is 98.0%; OA
of GELM-CK is 97.9%. Especially for many different types
of small-size homogeneous areas in Indian Pines dataset,
the proposed CVW-CEELM outperforms other classification
models. As shown in Table 1 and FIG. 9, the classifica-
tion accuracies of Alfalfa, Grass-pasture-mowed and Oats
are the highest using CVW-CEELM compared with other
models. Although, the classification accuracy of Stone-Steel-
Towers is the highest using KELM-CK, but the time cost
of KELM-CK is higher than CVW-CEELM. Through the
analysis above, the proposed CVW-CEELM can effectively
improve the classification performance from two aspects of
the time cost and classification accuracy.

B. PAVIA UNIVERSITY
The Pavia University scene images were acquired by Reflec-
tive Optics System Imaging Spectrometer optical sensor.
Each band of the Pavia university has the size of 610 ×
340, the wavelength range is from 0.43µm to 0.86µm.
The 12 noisy and water absorption bands are removed, and

the remaining 103 bands are used for classification. This
dataset consists of 9 land cover classes. Fig. 10 shows the
false color image and the ground-truth map of the Pavia
University scene. The Pavia University scene has a large
number of samples of various types, on the assumption that
ensure accuracy of classification, 4% of the labeled samples
are randomly selected for training to reduce operation time,
and the remaining samples are used for testing. All models
use the same training samples. Table 4 shows the number
of the training samples, the number of testing samples and
classification results of all comparison models.

The Pavia University dataset is processed in the same way
as experiment 1. The cumulative variation quotient values
of all bands are shown in Fig. 11. The three bands whose
cumulative variation quotient values are close to 1 are elimi-
nated. The three eliminated bands(bands 68-70) are clearly
marked in red, as shown in Fig. 11. The remaining 100
bands are effective bands for HSI classification. The average
grouping is shown in Fig. 12. Grouping strategy is performed
for the remaining effective bands, and a certain number of
bands are selected by the weighted random-selecting-based
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FIGURE 10. False color image based on band 11, ground-truth map and corresponding colors for the Pavia University ((a) false color
image; (b) ground-truth map; (c) corresponding colors).

FIGURE 11. Cumulative variation quotient curve of Pavia University.

FIGURE 12. Average grouping of Pavia University.

method to reduce the dimension of the Pavia University
dataset. All selected information should retain at least 50%
of the valid original information, and at least fifty bands
are selected as the new band label vector according to step
4). The spatial-spectral features are generated based on the
new band label vector according to (13)-(14); Meanwhile the
spatial-spectral features of training set are fed to ELM to train
a classifer. All classifiers can be established according to step
5). The number of bands selected for each group is shown in
Table 5. The effective bands are divided into ten groups of ten
bands on average and the number of weak ELM classifiers is
set as 10.

In order to extract spatial-spectral features, the width of
neighborhood window is set to 3. We investigate the impact
of the number of hidden nodes on the classification perfor-
mance of CVW-CEELM. FIG. 13 depicts OAs curves versus

FIGURE 13. The relation between the OAs of Pavia University and the
number of hidden nodes.

FIGURE 14. The relation between the OAs of Pavia University and the
combination coefficient γ .

the number of hidden nodes of CVW-CEELM, where the
parameter is γ = 0.1. When the number of hidden nodes of
CVW-CEELM equals 900, the best OA can be obtained for
the Pavia University dataset. For this reason, the number of
hidden nodes of CVW-CEELM is set as 900. The parameters
of other algorithms are similar to experiment 1.

After the number of hidden nodes is determined,
we explore the impact of γ on the classification perfor-
mance of CVW-CEELM. FIG. 14 shows the OAs curves
versus γ for the GELM-CK, KELM-CK, SS-EELM and
CVW-CEELM. When 1 − γ = 0.9, the CVW-CEELM
achieves an OA of 99.63% while the GELM-CK, KELM-CK
and SS-EELM accomplish the OAs of 98.10%, 99.21% and
97.91% respectively. Referring to FIG. 14, the proposed
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FIGURE 15. Classification maps of the SVM,ELM,GELM,KELM,GELM-CK,KELM-CK,SS-EELM and CVW-CEELM for the Pavia University.

CVW-CEELM outperforms the GELM-CK, KELM-CK and
SS-EELM when γ is sufficiently large. For the conve-
nience of experimental analysis, γ of the above algorithms
is assumed to be 0.1. The mean of the five performance
metrics corresponding to the above eight algorithms are listed
in Table 4. Moreover, the classification maps of the SVM,
ELM, GELM, KELM, GELM-CK, KELM-CK, SS-EELM
and CVW-CEELM for the Pavia University dataset corre-
sponding to Table 4 are shown in FIG. 15.

Under the conditions of adopting the same effective bands
and training samples, the analysis results for Pavia University
dataset are as follows.

As observed from the Table 4, the last four spatial-spectral-
feature-based models(GELM-CK, KELM-CK, SS-EELM
and CVW-CEELM) show better classification performance
than the first four models(SVM, ELM, GELM and KELM).
Due to the large number of samples in the Pavia University
dataset, the time cost of Pavia University dataset is higher
than the time cost of Indian Pines dataset for all models.
GELM-CK model consumes time cost up to 17.2 seconds;
KELM-CK model consumes time cost up to 313 seconds;

SS-EELM model consumes time cost up to 88.6 seconds;
The proposed CVW-CEELM need 64.2 seconds. Due to the
simple model structure of the proposed method, the time
cost of the CVW-CEELM is smaller than that of KELM-CK
and SS-EELM. Althouth GELM-CK model consumes the
least time compared with KELM-CK, SS-EELM and CVW-
CEELM, the classification accuracy of GELM-CK is not as
good as KELM-CK, SS-EELM and CVW-CEELM. OA of
the proposed CVW-CEELM is 99.4%; OA of KELM-CK
is 99.1%; OA of SS-EELM is 99.1%; OA of GELM-CK is
98.9%. The classification accuracy of the proposed CVW-
CEELM is the highest. In two typical HSI datasets, the num-
ber of training samples in Indian Pines dataset is less than that
in Pavia University dataset. It is worth noting that the time
deltas of KELM-CK, SS-EELM and CVW-CEELM are 297,
52.1 and 48.4 seconds, respectively. The time cost growth
rate of CVW-CEELM is smaller than that of KELM-CK and
SS-EELM with the increasing number of training samples.
Therefore, the comprehensive time cost of CVW-CEELM
is the smallest in the algorithms with higher classification
accuracy.
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TABLE 4. Classification results obtained for Pavia University dataset.

TABLE 5. The number of bands selected by the weighted random-selecting-based method for Pavia University.

In conclusion, in terms of the time cost and classification
accuracy, the proposed CVW-CEELM has the best classi-
fication performance among the above hyperspectral image
classification counterparts.

V. CONCLUSION
In this work, we have proposed a novel HSI classification
algorithm based on the comprehensive evaluation model
of extreme learning machine with the cumulative variation
weights, which we referred to as CVW-CEELM. The cumu-
lative variation value is proposed as a new metric used
to improve the bands selection of grouping strategy and
determine the weights of multiple weak classifiers. The
CVW-CEELM proposes the bands selection of grouping
strategy, which reduces the complexity of bands selection
algorithm. Besides, The weighted random-selecting-based
method improves the grouping strategy. To some extent,
the improved grouping strategy increases the feature vec-
tors describing a sample, which improves the classification
of many different types of small-size homogeneous areas.
The cumulative variation weights calculated based on the
cumulative variation values weight all weak classifiers, which
make the classification results more accurate. Our experi-
ments, conducted using the benchmark HSI datasets, reveal
that the proposed method can achive good classification
performance.

In the future work, we will explore the impact of the
spatial-spectral features based on the multi-scale neighbor-
hood of a given pixel on the HSI classification effect of
CVW-CEELM. The features selection will be further opti-
mized, and a more efficient HSI classification model will be
developed.
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