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ABSTRACT Drones can play a game-changing role in reducing both cost and time in the context of last-mile
deliveries. This paper addresses the last-mile delivery problem from a complex system viewpoint, where the
collective performance of the drones is investigated. We consider a last-mile delivery system with a tradable
permit model (TPM) for airspace use. Typically, in other research works regarding last-mile delivery drones,
a fully cooperative centralized scenario is contemplated. In our approach, due to the TPM, the agents (i.e.
drones) need to compete for airspace permits in a distributed manner. We simulate the system and evaluate
how different parameters, such as the arrival rate and airspace dimensions, impact the system behavior in
terms of the cost and time needed by the drones to acquire flight permits, and the airspace utilization. We use
a simplified simulation model, where the agents’ strategies are naïve, and the drones’ flight dynamics are not
accounted for. Nevertheless, the simulation’s level of detail is adequate for capturing interesting properties
from the agents’ collective behavior, as our results support. The obtained results show that the system’s
performance is satisfactory, even with naïve agents and under high traffic conditions. Moreover, a real-world
implementation of our competitive decentralized approach would lead to advantages, such as fast permit
transactions, simple computational infrastructures, and error resilience.

INDEX TERMS Complex systems, drones, simulation, last-mile delivery (LMD), tradable permit model
(TPM), UAV air traffic management (ATM), unmanned aerial vehicles (UAV).

I. INTRODUCTION
Unmanned aerial vehicles (UAV) can play a game-changing
part in terms of cost and delivery time reduction to address
the last-mile delivery (LMD) problem, and also to attend
emergencies [1].

The importance of LMD services is increasing, especially
considering times where social distance is a must [2]. Many
recent studies appoint last-mile as one of the most expensive,
inefficient, and polluting parts of the supply chain, reaching
about 13-75% of the total supply chain cost [3]. Besides, this
is also a concern for major retailers, such as Amazon, Wal-
mart, and Alibaba. Given such scenario, UAVs, also known
as drones, are of special interest [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

Using drones for delivery purposes can have at least four
main advantages: autonomy, avoidance of traditional road
network, cost, and speed [5]. Drones can be either remote
controlled or fully autonomous depending on local regula-
tions. Despite the advantages, there are lots of open problems,
such as airspace utilization, payload capacity planning, auto-
pilot and navigation on difficult shadow areas.

Generally, drones are categorized into high altitude plat-
forms (HAP), e.g. 17+ km, or low altitude platforms (LAP),
e.g. tens of meters to few kilometers. HAPs are mostly con-
sidered quasi-stationary and have more endurance to face a
few days to months campaign. On the other hand, LAPs are
agile, cost-effective, and can be faster recharged. Drones are
also classified as fixed- or rotary-wings. The former, such as
small planes, have higher speeds and can carry more load,
however they need to keep moving forward with moderate
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speeds to stay in the air, making them harder tomaneuver. The
latter can be represented by quadrotor drones that can hover
at low speeds or in place, but their flight autonomy is limited
to less than one hour [6] given nowadays battery technology.
A hybrid drone is also possible, i.e. having fixed- and rotary-
wings on the same platform.

According to Alwateer and Loke [7], drones are on the
edge of the delivery service. Initiatives in the air traffic
management (ATM) system, including SESAR and NextGen,
indicate ongoing development along with future communica-
tion infrastructure preparations.

Aerial delivery may impact merchandise, courier, food
delivery, humanitarian aid, and passenger transport [8]. The
last is considered very ambitious but is already being planned.
These applications require the agents to plan and execute
delivery routes taking into account cost and time minimiza-
tion, while avoiding collisions with other agents and the
environment.

The amount of urban UAV’s is expected to grow even
more in the next years. One of the foreseen challenges of
this growth is how to manage this traffic over people’s heads.
In this matter, adaptations of different schemes available in
the literature on urban motorways traffic (UMT) to urban
UAV traffic (UAT) can take place. Such schemes may provide
some useful insight for our purpose.

Even though such literature and schemes have been pro-
posed and employed for UMT [9], its application to UAT is
not trivial, and should be adapted for the following reasons.
Firstly, there is more room for urban airways thanmotorways.
While motorways are limited by the land availability, such
constraint is less restrictive on airways. Hence, the chance
of congestion on airways is smaller than motorways. Sec-
ondly, although the air space congestion is less likely than
motorways congestion, the consequences are more complex
and serious. We highlight that wide availability does not
mean limitlessness: congestions on airways cannot be totally
undermined, since they may represent critical situations in
terms of safety. Finally, UMT congestions are more likely
to occur on bottlenecks [10]. Traditional airspace traffic
management schemes avoid congestions, and collisions alto-
gether, by requiring that each aircraft follows a strict path
previously planned by a central unit. However, such schemes
might not be appropriate to deal with the traffic and the
responsiveness requirements of LMD drones.

In this paper, we consider tradable permit models (TPM)
proposed by Akanatsu and Wada [11], in connection with
drones route planning. TPM is an innovative approach to
deal with capacity allocation that uses a market mechanism
to assign rights to users of a particular resource [9]. Permit
schemes has received growing attention in nowadays aca-
demic studies. Permit’s decentralized nature brings advan-
tages over centralized approaches [12]. In the context of
LMD, we consider the airspace as the resource of interest.

We simulate LMD drones (i.e. agents) route planning,
in a tradable permit model, under different arrival rates by
focusing on two main perspectives:

1) the investigation on the collective agent performance:
we assess how long the agents take to complete their
mission in different cases, and measure the costs of
acquiring all the needed permits; and

2) the investigation on the four-dimension airspace
utilization: under different arrival rates, we estimate
the effective airspace utilization taking into account
3D waypoints (i.e. latitude, longitude, altitude) along
with time.

Therefore, the contributions of this paper are two-fold:

1) we introduce the concept of tradable permit models in
the context of last-mile delivery (LMD) drones. To the
best of our knowledge, the previous related works in
this area have been considering a fully cooperative
scenario [13]–[16]. However, full cooperation does not
capture the competition for airspace utilization between
different players; and

2) we analyze how different parameters, such as airspace
dimensions and drones’ arrival rate, impact the collec-
tive agent performance and the airspace utilization in
this scenario. Even with a simplified simulation model,
we show that interesting properties emerge from the
agents’ collective behavior. From a practical perspec-
tive, the conclusions drawn from our results could drive
how airspace policies are defined.

We point out that the analyses shown herein consider a sim-
plified simulation model, where the drones’ flight dynamics
are not taken into account and the agents execute the planned
routes perfectly. Nevertheless, the simulation’s level of detail
was adequate for capturing interesting properties from the
agents’ collective behavior, as the simulation results show.

The remainder of this paper is organized as follows.
Section II reviews related literature. Section III describes the
computational experiments, while Section IV presents the
results of these experiments along with a discussion. Finally,
Section V brings the outcomes, and indicates possible future
works.

II. RELATED WORKS
Command and control for air traffic is an established research
field mainly for safety and regulation purposes. In recent
years, many articles have explored the control of small UAVs
(e.g. drones) for economic opportunities, especially for deliv-
ery applications. Many of these applications are enabled by
cooperative and collaborative autonomous control, as dis-
cussed in [17]–[20].

Besides, autonomous route control is a robust approach
with reactive responses to unexpected events. It may decrease
chances of collisions in a real environment where each com-
pany is free to perform its particular route control. It may
also result in inefficiency and congestions in areas with a high
density of UAVs, thus increasing the complexity of collision
avoidance systems and the network traffic among UAVs.

To overcome those issues, other researches [13]–[16] pro-
pose some level of centralized control optimize costs and
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improve collision avoidance. In that architecture, UAVs are
more passive than the previous ones. Collision avoidance is
achieved during path planning, computing occurs in a central
unit where more processing capacity is available, and the
holistic view of the fleet enables optimal solutions.

Furthermore, it is reasonable to expect that when using a
collision avoidance scheme during the path planning, col-
lision avoidance maneuvers will occur only in unexpected
and rare events, offering greater security. However, optimal
solutions can be unfeasible to compute since routing and
scheduling are well-known NP-hard problems. Specifically,
collision avoidance and trajectory optimization of UAVs can
be studied as the traditional vehicle routing problem (VRP)
in operational research and combinatorial optimization [16].

To the best of our knowledge, there is a lack of researches
considering efficient route control for UAVs in areas with a
high density of vehicles and free choice of routes for compa-
nies in practical time.

Our proposal is based on the concept of a tradable per-
mit scheme, introduced in the 1960s by Crocker [21] and
Dales [22], for externality regulation in atmospheric and
water pollution applications, respectively. In his original arti-
cle [22], Dales compares empirically the benefits of rent
theory for water use and rising land over 350 years. He states
a direct relationship between the level of rent and the develop-
ment of technologies. While water use was renting-free, there
was over-use and virtually zero improvements. On the other
hand, the land rent system forced a rational use, leading to
important improvements in land-use technology.

Since that time, many tradable permit schemes have been
developed and applied in a variety of fields: environmental
regulations [23], [24], fishing [25], agriculture [26], and oth-
ers. Early implementations of tradable permits in the field of
transport capacity allocation were proposed for airport slot
allocation to improve the efficiency of runway usage [27],
[28] and for roadway capacity allocation [29], [30].

For roadways, the road pricing alternative was preferred
in real implementations especially because of the cost of
monitoring and the technological resources at the time. How-
ever, tradable permits have been attracting attention in recent
years due to the current technology, especially the low cost of
transactions over the Internet [11], [31]–[34]. We emphasize
that these articles are related to road transportation and, to the
best of our knowledge, the literature lacks applications of
tradable permit schemes for air traffic control of UAVs.

Besides the first tradable permit studies focused on concep-
tual developments [29], [30], [35] for managing congestion,
recent works started to apply quantitative analysis [9], [10],
[31], [36]–[39], and simulations [40] to explore different
types of schemes.

Although road tradable permit is a transport application,
UAV imposes very different dynamics, e.g. safety and secu-
rity are much more critical, and autonomy and range of work
are very compromised, especially for delivering drones.

Since we deal with a competitive scenario, the market sim-
ulation of our TPM is a simplification of the model proposed

by Iori and Chiarella [41]. They introduce an order-driven
market model with heterogeneous agents trading via a central
order matching mechanism in a double auction, dispensing
the need for a controller. At the moment of ordering, agents
face three different parameters in their decision: the price
(limited at some value or marketed), the direction (long or
short) and the volume or the level of leverage. Moreover,
the agents have intelligence in order to decide the price and
the direction (buy or sell) and are allowed to trade even though
they have no goods.

They propose a model with three different components.
The first component, called fundamental, gives the intrin-
sic value of the good. For example, in the case of stocks,
the intrinsic value of the company is calculated using the
information in its balance sheet. The fundamental component
indicates to sell (buy) when the price is higher (lower) than
the stock intrinsic value or fundamental price.

The second component is the chart. It uses historical data
instead of the intrinsic value. The chartist component can
be divided into contrarians and trend followers. Contrarians
are based on the existence of overreaction in prices [42].
This indicates to buy (sell) past losers (winners). Unlike the
contrarians, trend-followers are based on the existence of
trends on prices [43]. This indicates to buy (sell) past winners
(losers).

The third component is called noise. This component does
not follow any standard or pre-defined behavior. This indi-
cates decisions using no strategy and zero-intelligence.

In comparison to these related state-of-the-art researches,
ourmain contributions are: a) adaptation of a TPM to consider
airspace as the resource of interest; and b)introduction of a
scheme of UAV route control in a decentralized competitive
manner using such a TPM.

III. EXPERIMENTS DESCRIPTION
This section details how we simulate the collective dynamics
of interacting agents bidding for flight permits considering a
TPM context.

A. OVERVIEW
First, we discretize time and space in arbitrary units. As a
consequence, each permit is uniquely identified by a tuple
(x, y, z, t), such that x, y, z, and t ∈ Z0+ (i.e. positive integers
including zero) represents latitude, longitude, altitude, and
time, respectively. The size and the timespan of each permit
depend on the discretization. The airspace is limited in each
simulation by the dimension limits X , Y , and Z , such that
0 ≤ x < X , 0 ≤ y < Y , 0 ≤ z < Z . Simulations start at
t = 0.
To simplify, we assume the agents only move in directions

parallel to the Cartesian axes, i.e. we forbid diagonal moves.
Moreover, each agent moves exactly one unit of space in one
unit of time. Therefore, formally, in terms of both space and
time, we define that permits (xa, ya, za, ta) and (xb, yb, zb, tb)
are adjacent if, and only if, |xa − xb|+|ya − yb|+|za − zb| =
1 and |ta − tb| = 1.

VOLUME 8, 2020 186281



F. A. N. Verri et al.: Analysis on Tradable Permit Models for Last-Mile Delivery Drones

Algorithm 1 gives an overview of the simulation.
At each time step t , up to λ new agents arrive at the system.

The parameter λ is called arrival rate and is fixed during
the simulation. For each simulation, exactly N agents are
generated. Thus, at time t ≥ dN/λe, no new agent arrives
at the system (See lines 1–3,17–19 in Algorithm 1).

After new agents arrive, each one of them bids for permits
given a random mission. A mission consists of a starting
point (xs, ys), and an ending point (xe, ye). Given a mission,
each agent a tries to achieve a sequence of adjacent permits
π = 〈p1, p2, . . . , pl〉 such that p1 = (xs, ys, 0, t) and pl =
(xe, ye, 0, t + l) for some t > ta and l ≥ 2, where ta is the
time agent a arrived (See lines 8-9 in Algorithm 1).

Notice that agents enter the simulation without owning
permits. However, they may eventually own unused permits
due to an unsuccessful attempt in acquiring a sequence com-
pletely in a given iteration. Since each permit is negotiated
individually, an agent may lose the auctions for some per-
mits. Then, in the next iteration, a newly computed shortest
sequence may not contain all the owned permits by this agent.

The agent’s strategy is naïve. An agent a tries to find
the shortest sequence of available1 permits to accomplish
the mission, preferring sequences that contains more owned
permits, and it offers (i.e. bids) a random value with the
probability distribution in Eq. (1) for each permit it currently
does not own. Then, all agents put the permits they own but
do not belong to the shortest sequence for sale in the next
iteration (See line 10 in Algorithm 1).

After each agent acts in an iteration, the bids are computed
and the trades are realized. Each permit for sale, including
the ones owned by no agent, that received a bid is transferred
to the agent that offered the greatest value (See line 13
in Algorithm 1).
All agents that successfully bought the whole sequence

stop bidding for new permits (See line 6 in Algorithm 1).

B. ASSUMPTIONS
For the sake of simplicity, we consider the following assump-
tions about the simulation:

• we assume all players will use drones with the same
speed;

• we do not simulate the flighting phase, only the
route planning and the permit acquisition within a
TPM context;

• we do not take into account possible collisions of drones
coming from opposite directions (in a real-world sce-
nario players would need to consider such restrictions
before flying); and

• we assume all drones start and end its mission on the
same fixed altitude, i.e. z = 0.

1A permit p is available to agent a if it satisfies one of the following: a
owns the permit p; permit p is owned by an agent other than a but it is also
for sale; or the permit p is owned by no agent.

Algorithm 1 Simulation Overview Pseudocode
1: Inactive← newAgents(N )
2: Active← sample(Inactive, λ)
3: t ← 0
4:

5: while Active 6= {} do
6: Active ← Active \ {agent ∈ Active :

missionAccomplished(agent)}
7: for all agent ∈ Active do
8: findSequence(agent)
9: doBids(agent)
10: doAsks(agent)
11: end for
12:

13: tradePermits()
14:

15: t ← t + 1
16:

17: Active′← sample(Inactive, λ)
18: Active← Active ∪ Active′

19: Inactive← Inactive \ Active′

20: end while

C. AGENT’s ACTIONS
The core behavior of each agent consists of choosing the
permits it bids for. Basically, the process is presented in Fig. 1,
which contains N simulated agents, each of them trying to
buy a sequence of permits that accomplishes a randomly
assigned mission. At each time t , λ agents enter the system
and become active. The remaining agents wait for the desig-
nated time t . An active agent acts until it achieves its goal.

FIGURE 1. Simulation overview and agent actions.

At each time step, as illustrated in Fig. 1, agents:
1) Check for the stop condition;
2) Find the shortest sequence of permits;
3) Bid for missing permits; and
4) Put unused permits for sale (i.e. ask).

1) DETAILS ON THE STOP CONDITION
At the beginning of the iteration, each agent knows an updated
list of permits it owns. From that list, the agent checks
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whether a sequence of adjacent permits that fulfills its mis-
sion does exist. If it does, the agent places every other permit
for sale and stops acting. Otherwise, the agent proceeds to the
next step, i.e. shortest sequence finding.

2) DETAILS ON THE SHORTEST SEQUENCE FINDING
The next action after verifying the stop condition consists
of finding a sequence of permits to bid for. Each agent has
a potentially different mission, with starting point (xs, ys)
and ending point (xe, ye), and a maximum waiting time t0,
initialized with t0 = 1. The updates related to the value
of t0 are kept along different iterations. Given a time frame
within t , the agents perform the following sub-steps to find
the sequence of permits:

Sub-step I Set the sequence T = shuffle(〈1, 2, . . . , t0〉),
where T is a random permutation of the input
sequence;

Sub-step II For each τ ∈ T :
a) Use A∗ search algorithm [44] to find

the shortest sequence of available per-
mits π with length |π | that connects
(xs, ys, 0, t + τ) to (xe, ye, 0, t + τ + |π |).
Our A∗ heuristic prefers shorter sequences
and, in case of ties, it prefers the ones that
contains more owned permits. If ties still
occur, we prefer ‘‘straighter paths’’.

b) If a sequence does not exist, try the next τ .
c) If a sequence exists, go to the next step

(as detailed discussed in SectionIII-C3).
Sub-step III If it cannot find a sequence, update t0 to 2 t0

and go to Sub-step I.

In summary, each agent looks for a short sequence π that
accomplishes its mission. When a sequence cannot be found,
the agent tries a different time τ to start the flight. The more
attempts to find a sequence, the longer the waiting time τ
tends to be.

Our naïve strategy to avoid permits that receive too many
bids is roughly based on the exponential backoff algo-
rithm [45]. Considering we have several agents bidding
concurrently, the natural selfish behavior leads to sparse pos-
sessing of permits. Random and uncoordinated attempts of
acquiring sequences cause collision among the player’s path.
Thus, too few agents accomplish the sequence to deploy the
mission. We can use an approach inspired by the random
access scheme for packet networks to tackle this problem.
As players compete for permits, our strategy is to adopt a
backoff algorithm and postpone t0 to the near future. Then,
we progressively move the sequence T (see Sub-step I) into
a time range that increased exponentially. Hence, observe
offloading the player’s demand settling in subsequent time.

3) DETAILS ON THE MARKET SIMULATION
For the purpose of this experiment, our market simula-
tion is a simplification of the model proposed by Iori and
Chiarella [41]. After an agent a finds the sequence π of

adjacent permits, it offers (i.e. bids) a value b = Ba(ω) for
each permit it currently does not own. Each value b is a
realization of the random variable Ba from a sample space �
given a sampled point ω ∈ �.

For each agent a, the random variable Ba is given by

Ba = µa − |Sa| , (1)

where the value µa ∈ [µmin, µmax] is constant in the sim-
ulation. Sa is a random variable such that Sa ∼ N (0, σa)
where σa ∈ [σmin, σmax] is also constant and N is the
normal distribution. Before the simulation starts, we choose
µa and σa uniformly for each agent a. The parameters µa
and σa are analogous to the fundamental price and the noise,
respectively, proposed by Iori and Chiarella2 [41].
Finally, agents put the permits they own but do not belong

to the sequence π for sale in the next iteration.
The trading mechanism we use in the simulation is rather

simple. At each iteration, all bids are computed, and for each
permit, the agent that offered the highest amount gets it. Only
the permits that were made available for sale or does not
belong to any agent are traded. When the permit is traded,
the cost of each agent is updated. In other words, if the permit
is traded with value b, the cost of the agent that buys the
permit receives an increment of b, and the one selling off,
a decrement of b. Agents have no budget limit.

D. ILLUSTRATIVE EXAMPLE
To clarify the simulation steps, we provide an example of our
experiments as shown in Fig. 2.
For the sake of simplicity, in this example, we consider

a 2-dimensional airspace, where altitude is not considered.
Then, permits are given by (x, y, t) with x, y, and t represent-
ing latitude, longitude, and time, respectively.

In this example, two agents are active at time t = k . The
agent ‘‘blue’’ (i.e. dot in blue color) seeks to find a sequence
of permits from (0, 1) to (2, 1), while agent ‘‘red’’ (dot in red
color), from (1, 0) to (1, 2).
Fig. 2 (a), at time t = k , agent ‘‘blue’’ already owns the

permit (2, 1, k + 3), and the stop condition (i.e.,
whether the sequence of permits that accom-
plishes the mission was found) is not met yet.
Both agents go to the next step.

Fig. 2 (b), both agents look for the shortest sequences of
available permits that accomplish their respective
missions.

Fig. 2 (c), next, they bid a random value for each per-
mit. Since agent ‘‘blue’’ already owns permit
(2, 1, k + 3), it only bids for the two missing
permits.

Fig. 2 (d), since they own no unused permit, they proceed to
the next iteration.

Fig. 2 (e), before the next iteration begins, permits are
traded considering the offers. The permit
(1, 1, k + 2) received bids from both agents.

2The second component (i.e. chart) is ignored in our simplified simulation.
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FIGURE 2. Illustrative example of the simulation.

In this example, agent ‘‘blue’’ bade the highest
value, so it gets the permit. All other permits
receive only one offer. At time t = k + 1, agent
‘‘blue’’ have got all needed permits and stops
acting on the system. Agent ‘‘red’’ continues in
the system.

Fig. 2 (f), agent ‘‘red’’ finds another sequence of available
permits starting at time t = 2.

Fig. 2 (g), agent ‘‘red’’ bids a random value for available
permits starting at time t = 2.

Fig. 2 (h), the owned permit (1, 0, k+3) is unused and, then,
it is placed for sale.

Fig. 2 (i), after auction results are calculated, agent ‘‘red’’
owns four permits as no other agent bade for the
permit that was for sale. Finally, at time t = 2,
agent ‘‘red’’ has accomplished its mission and
stops acting in the system.

Then, simulation stops.

E. PARAMETERS
Table 1 summarizes the simulation parameters and the values
we used in this paper. The choice of the airspace dimen-
sions, the arrival rate and the number of agents is arbi-
trary, as we are interested to study the relationship between
them and not absolute values. Also, we choose the interval
for the bid fundamental and its deviation (noise) so agent
have different fundamental values and their bids have low
variation.

TABLE 1. Simulation parameters.

IV. RESULTS AND DISCUSSION
In this section, we present the simulation results. The goal
of our investigations is to assess the behavior of the complex
system under different arrival rates. We focus on two main
perspectives:

1) the investigation on the collective agent performance:
we study how long agents take to complete their mission
in different situations, and measure the costs of acquir-
ing all the needed permits; and

2) the investigation on the airspace utilization: under dif-
ferent arrival rates, we verify the effective airspace
utilization.
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A. COLLECTIVE AGENT PERFORMANCE
We simulate the system 20 times for each combination of
parameters as shown in Table 1. The results presented in this
section are related to those simulations. Notice that we have
N = 8000 agents per simulation, therefore 20 × 8000 =
160,000 agents in total. Since our results encompass statis-
tics regarding agent behavior, 20 simulations are enough for
obtaining statistically significant results.

An important parameter to assess is the cost each agent
incurs in order to accomplish its mission. Since missions
differ among agents, we introduce the concept of relative cost
of an agent. The relative cost of agent a is given by

Ca
µaLa

, (2)

whereCa is the total cost of agent a during the simulation, i.e.
expenses to buy permits subtracting the income from selling
unused permits, and La is the length of the shortest sequence
of adjacent permits to accomplish the mission disregarding
their availability. By Eq. (1), the valueµa is an overestimation
of the price the agent a pays for a permit.

Fig. 3 shows the relative cost of the agents along with
different values of arrival rate. We observe that the cost does
not increase linearly with the arrival rate. In fact, we can
observe interesting peaks and variance oscillations.

FIGURE 3. Relative cost, Eq. (2), of the agents under different arrival rates
λ. Airspace dimensions are indicated on the top of each plot. The solid
line is the median relative cost over 20 simulations with N = 8000 agents
each. Shadows indicate the first and the third quartiles.

Fig. 4 explicits the average and variance of the rela-
tive cost for airspaces concerning the dimensions (10, 10, 3)
and (15, 15, 3).

We notice four different system’s behavior depending on
the arrival rate:
1) Ideal relative cost with almost no variance. When the

arrival rate is sufficiently low (threshold of the transition

FIGURE 4. Average relative cost (solid dark lines), Eq. (2), and its
variance (dashed light lines) under different arrival rates. Airspace
dimensions are indicated on top of the plot. The average and variance
over 20 simulations with N = 8000 agents each.

depends on the airspace size, see Table 2), the average
relative cost value remains under 1.0 and the variance
approaches 0.0;

2) Peak relative cost with low variance. By increasing the
arrival rate, the average relative cost reaches the first
peak while keeping low variance among agents;

3) Decreasing relative cost with maximum variance.
Beyond the point of the first peak of the relative cost,
the variance still continues to increase. The arrival rate
with higher variance coincides with a valley of the aver-
age cost; and

4) Increasing relative cost with decreasing variance. For
higher arrival rates, the average relative cost tends to
increase while the variance tends to decrease.

Similar behavior is also present in larger airspaces, how-
ever, peaks and valleys are smoother. One would need greater
and finer values of arrival rate as well as more agents in
the simulation to better observe the phenomena in larger
airspaces. Table 2 shows the values of arrival rate in which
the average relative cost and relative cost’s variance reaches
a peak for different airspace dimensions. In this sense, one
can observe that:
• the average first peak and variance peak increase with
the airspace size;

• the variance peak is always greater than the average first
peak, however, the larger the airspace, the closer the
peaks are; and
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TABLE 2. Arrival rates in which the average relative cost or the relative
cost’s variance reaches a peak for different airspace dimensions. The
value of the peak is shown between parentheses.

• the relationship between the arrival rate and the value of
the peaks seems to be not trivial.

We are also interested in assessing how long each agent
takes to accomplish its mission. Fig. 5 shows the number of
iterations the agents participated in the auction before com-
pleting their mission. As expected, the number of iterations
increases with the arrival rate. Although the curve is steeper
in smaller airspaces, beyond a certain arrival rate, the median
of the number of iterations shows to be bounded from above
by a value close to 7.5. It means that, even with many agents
competing to each other, they reach consensus in a reason-
able time with the proposed naïve strategy. We expect that
more robust bidding strategies would decrease the number of
iterations in the auction. We hypothesize that the relatively
small number of iterations is due to our strategy to choose t0
(see Section III-C2).

FIGURE 5. Number of iterations in the auction before complete the
mission under different arrival rates λ. Airspace dimensions are indicated
on the top of each plot. The solid line is the median number of iterations
over 20 simulations with N = 8000 agents each. Shadows indicate the
first and the third quartiles.

Fig. 6 shows the wait time τ value of the sequence that
accomplishes the mission under different arrival rates λ.
Notice that, for small λ (i.e. ≈ 0), the agents find a sequence
of permits with starting time close to the current time t . How-
ever, after a critical arrival rate, depending on the airspace

FIGURE 6. Wait time τ of the sequence that accomplishes the mission
under different arrival rates λ. Airspace dimensions are indicated on top
of the plot. The solid line is the median wait time over 20 simulations with
N = 8000 agents each. Shadows indicate the first and the third quartiles.

FIGURE 7. Relative length of the final sequence of permits, Eq. (3), under
different arrival rates λ. Airspace dimensions are indicated on the top of
each plot. The solid line is the median relative length over 20 simulations
with N = 8000 agents each. Shadows indicate the first and the third
quartiles.

size, the value of τ increases rapidly. It means that, under our
auction strategy, agents take few iterations to find a sequence,
but the starting time of the permits may become high to avoid
jamming.

It is also important to assess the size of the sequence each
agent finds out. A flight in a path that is too long may be
unfeasible in practice.
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FIGURE 8. Histogram of metrics of interest (relative cost, relative length, number of iterations, and wait time) under different arrival rates
(λ). Airspace dimension is fixed to (10,10,3). The metric and the arrival rate are indicated on the top of each plot. In order to improve
visualization, limits of the x-axis are the 1st percentile and the 99th percentile of the metric.

Since missions differ among agents, we introduce the con-
cept of relative length of the sequence that accomplishes the
mission. The relative length of agent a is given by

L ′a
La
, (3)

where L ′a is the length of the sequence agent a uses to
accomplish the mission and La is the length of the shortest
possible sequence of adjacent permits that would accomplish
the mission disregarding permit availability.

Fig. 7 shows the relative length of the sequences under
different conditions. Notice that the results are similar to the
relative cost of each agent. For most values of λ, the agents
find out sequences with length under two times the shortest
possible length.

By investigating the collective agent performance,
we show that, even using a naïve strategy, the problem of route

planning and permit acquisition can be solved in a competi-
tive decentralized fashion. Fig. 8 illustrates the histogram of
the metrics of interest under different arrival rates and fixed
airspace size (10, 10, 3). The majority of the agents:
• spend less than the expected (sometimes even profit3);
and

• acquire a permit sequence that is short using few auction
iterations.

In scenarios with larger arrival rates, such properties are
kept at the cost of increasing the wait time.

Fig. 8 also gives a detailed understanding of the four pre-
viously identified behaviors depending on the arrival rate λ.
We name these states as ‘‘no’’ (λ = 1), ‘‘low’’, ‘‘medium’’,
and ‘‘high competition’’ as a function of the arrival rate.

3Agents may profit due to selling unused permits for prices higher than
what they paid for.
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TABLE 3. Qualitative summary of agent’s performance under different arrival rates conditions. The range of the arrival rate (λ) in low, medium, and high
competition conditions depends on the airspace dimensions.

The range of the arrival rate for each state depends on the
airspace dimension. Table 3 summarizes the metrics of inter-
est in each one of these states in a qualitative manner.

B. AIRSPACE UTILIZATION
We also investigate how our proposed strategy impacts
airspace utilization. Since agents might obtain a partial
sequence, due to competition, some permits may be traded
but never belong to a sequence that accomplishes the mission.
Moreover, other permits may never be traded at all.

In this section, we assess the proportion of permits that
are traded and effectively used (i.e. belong to a sequence that
accomplishes the agent’s mission) under different conditions.
Fig. 9 shows the airspace usage over different arrival rates
at the time-slice that the last agent enters the system (t =
dN/λe − 1). The proportion of traded permits reaches a
peak and then decreases as the arrival rate increases. This
is due to agents finding out permit sequences with greater
wait time τ . Similar behavior happens for the effectively used
permits, although the proportion is lower as expected. For
both metrics, the variation over the simulations is negligible.

FIGURE 9. Proportion of traded (dashed line) and effectively used (solid
line) permits (x, y, z, dN/λe − 1) under different different arrival rates (λ).
Airspace dimensions are indicated on top of the plot. Solid lines are the
median of 20 simulations. Shadows indicate the first and the third
quartiles.

The ratio of effectively used permits over the traded per-
mits also decreases as the arrival rate increases, as seen
in Fig. 10. It indicates that in scenarios with high competi-
tion, many of the traded permits are never used. As a result,
resources are wasted. On the other hand, such a phenomenon
does not make the agent’s performance prohibited (assessed
in Section IV-A) and suggests that there is still room for
improvement. For instance, we expect to find out a more
robust strategy that keeps the agent’s performance while opti-
mizing airspace utilization.

FIGURE 10. Ratio of effectively used and traded permits
(x, y, z, dN/λe − 1) under different different arrival rates λ. Airspace
dimensions are indicated on top of the plot. Solid lines are the median of
20 simulations. Shadows indicate the first and the third quartiles.

V. CONCLUSION
In this paper, we proposed an alternative solution to the prob-
lem of route planning in airspaces. Instead of solving hard
centralized cooperative optimization problems, we showed
that a naïve decentralized competitive approach yields sat-
isfactory results even under high traffic conditions. As an
outcome, our proposal brings the following advantages:
• It avoids a central unit that controls the route planning.
We argue that such a decentralized functioning can lead
to many advantages in a real-world implementation,
such as faster auction results, simpler and cheaper infras-
tructure, and greater error resilience; and
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• It gives freedom to the players to use the airspace in
the way that most fits their needs. Players can use smart
planning to maximize the usage of the acquired permits.
They would still be responsible for collision avoidance
and other flight details among their drones, but they
would have the guarantee that no other parties would be
using their airspace.

Moreover, we showed that not only the naïve agent’s
performance is satisfactory, but also there is evidence that
smarter agents can behave even better.

Since we addressed the permit acquisition model, further
studies are required to assess issues concerning also infras-
tructure, flight, and realistic parametrization. Limitations of
our simulation include: a) the distance and time units in our
simulations are arbitrary; b) possible errors and failures in the
flight phase are not taken into account; and c) we assume all
drones fly at the same speed.

In future works, we plan to study agents that use smart
strategies, including the use of reinforcement learning [46].
Analytical studies are also planned to be conducted to explain
the phenomena under different arrival rates. Such studies can
provide tools to control the system in practical applications to
make it feasible. Finally, a cyber-physical system can use our
tradable permit model to obtain a global consensus for smart
cities’ missions.
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